Total marks – 80 Attempt Questions 1–5

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (14 Marks) Use a SEPARATE writing booklet			Marks
(a)	For the curve. $y = 4 + 3x - x^3$,		
	(i)	find any stationary points and determine their nature.	4
	(ii)	find any points of inflexion.	2
	(iii)	find the co-ordinates of the <i>y</i> -intercept.	1
	(iv)	sketch the curve in the domain $-3 \le x \le 3$ showing all the above features.	2
(b)	The sum of the radii of two circles is 100 <i>cm</i> . If one of the circles has a radius of <i>x cm</i>		
	(i)	Show that the sum of the areas of the two circles is given by	2
		$A = 2\pi (x^2 - 100x + 5000) .$	
	(ii)	Find the least possible value for this area.	3
Que	stion 2	(14 Marks) Use a SEPARATE writing booklet	
(a)	Find	the centre and radius of this circle $x^2 + 14x + 14 + y^2 - 2y = 0$.	3
(b)	Expre	ess $5x^2 + 2x - 3$ in the form $A(x+1)^2 + B(x+1) + C$.	3
(c)	For w	what values of k does the equation $kx^2 - 4kx - (k-5) = 0$ have real roots	? 3

Question 2 continues on Page 2.

Yr 12 Mathematics

Question 2 Continued.

(d) The vertex of the parabola is (-7, -2) and the focus is (-3, -2). Find

(e) Derive the equation of the locus of the point P(x, y) that moves so that it is equidistant from the point A (-6, 5) and the point B (3, -1).

Question 3 (16 Marks) Use a SEPARATE writing booklet

(a) Find:

(i)
$$\int (4x^3 + 7x^2 - 3) dx$$
.

(ii)
$$\int \frac{6x^3 - 7x}{x^2} dx.$$
 2

(iii)
$$\int x\sqrt{x} \, dx$$
 2

(b) Evaluate
$$\int_{0}^{2} (2x-1)^{3} dx$$
. 2

(c) Find the equation of the curve that passes through the point (2, 5), given 3
that the gradient function is
$$3+2x-x^2$$
.

(d) (i) Sketch, on the same axes
$$y = 10 - x^2$$
 and $y = x + 4$. 2

(ii) Hence find the area bounded by parabola
$$y = 10 - x^2$$
 and 4
the line $y = x + 4$.

Differentiate (a) e^{4x+8} (i) 1 $\frac{e^x}{e^x+1}$ (ii) 2 Evaluate $\int_{0}^{2} e^{3x} dx$. (b) 2 Find $8x^3e^{x^4} dx$. (c) 2 Find the equation of the tangent to the curve $y = e^{x^2 - 1}$ at x = 1. 3 (d) (e) Find the exact volume of the solid of revolution formed when the curve 3 $y = e^{x} - e^{-x}$ is rotated about the x-axis between x = 0 and $x = \frac{1}{2}$.

(f) Use Simpson's Rule with five function values to find an approximation 3
to
$$\int_{0}^{4} e^{-x^2} dx$$
, correct to two decimal places.

Question 5 (20 Marks) Use a SEPARATE writing booklet

(a) Find
$$\frac{dy}{dx}$$
 given
(i) $y = \log_e(2x+7)$ 1
(ii) $y = \log_e(2x+1)(x-5)$ 2
(iii) $y = x^3 \log_e x$ 2
(b) Evaluate $\int_{-3}^{3} \frac{8x}{-4x} dx$ 2

(b) Evaluate
$$\int_{2}^{2} \frac{8x}{2x^{2}+7} dx$$
. 2

Question 5 continues on Page 4.

Newington College

Yr 12 Mathematics

HSC Assessment 3 2011

Question 5 Continued.

(c) (i) Show
$$\frac{4x+3}{2x+1} = 2 + \frac{1}{2x+1}$$
. 1

(ii) Hence find
$$\int \frac{4x+3}{2x+1} dx$$
 2

(d) Simplify
$$2\log_3 6 + \log_3 18 - 3\log_3 2$$
. **3**

(e) Solve

(i)
$$\log_2 64 = x$$
 1

(ii)
$$3^x = 5$$
, correct to two decimal places. 2

(f) (i) Sketch the curve $y = \log_e x$. 1

(ii) Find the area enclosed between the curve $y = \log_e x$, the x axis and **3** the line x = 2. Shade this area on your diagram.

END OF THE PAPER

Marks

Year 12MathematicsMini Examination 2011
$$question 1$$
 $question 1$ $question 2$ $question 2$

when
$$\infty = 3$$

 $y = 4 + 3\infty - x^{3}$
 $z = 14$
 $z = 14 + 3(x) - 3^{3}$
 $z = 14$
 $(-3, 22) \text{ and } (3, 14)$
 $(-3, 22)$
 13
 $(-3, 22)$
 13
 15
 15
 15
 15
 15
 15
 15
 15
 16
 12
 16
 17
 17
 18
 15
 17
 19
 19
 19
 19
 19
 19
 112
 19
 112
 19
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112
 112

$$(a) kx^{2} - kkx - (k-s) = 0$$

$$A = b^{2} - kac$$

$$= (-kk)^{2} - k(k)x - (k-s)$$

$$= 2ak^{2} - 2ak$$

$$(x+k)^{2} + (y-s)^{2} = (x-3)^{2} + (y+1)^{2}$$

$$(x+k)^{2} - 2ak + (y-s)^{2} = (x-3)^{2} + (y+1)^{2}$$

$$(x+k)^{2} - 2ak + (y-s)^{2} = (x-3)^{2} + (y+1)^{2}$$

$$(x+k)^{2} - 2ak + (y-s)^{2} = (x-3)^{2} + (y+1)^{2}$$

$$(x+k)^{2} - 1(y-2y+k+1) = 0$$

$$(2ak + 1 - 2a) + (x+1)^{2} = 0$$

$$(2ak + 1)^{2} = (k + 1)^{2}$$

$$(a) - 1 + (x+1)^{2}$$

$$(b) - 1 + (x+1)^{2}$$

$$(c) - 1 + (x+1)^{2}$$

$$(c$$

$$y = 10 - x^{2}$$

$$y = 10 - x^{2}$$

$$y = x + u$$

$$x^{2} + x - b = 0$$

$$(x + 3)(x - 3) = 0$$

$$x = -3, 2$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$y = x + u$$

$$z = -3, u$$

$$z$$

$$A = \left[bx - \frac{1}{2}x^{2} - \frac{1}{3}x^{3} \right]_{-3}^{2}$$

$$A = \left[b(2) - \frac{1}{2}(2)^{2} \frac{1}{3}(2)^{3} \right] - \left[b(-2) - \frac{1}{2}(-2)^{2} \frac{1}{3}(-2)^{2} \frac{1}{3}(-2$$

$$\begin{aligned} \Im_{x} & \int \Im_{x} \Im_{x} \Im_{x} = 2 \int \lim_{x \to \infty} \Im_{x} \Im_{x} & \int \iint_{x} \Im_{x} \Im_{x} \Im_{x} & \int \bigcap_{x} \Im_{x} \Im_{x} & \int \Im_{x} \Im_{x} \Im_{x} & \int \Im_{x} \Im_{x} \Im_{x} & \int \Im_{x} \Im_{x}$$

-

$$c) \circ \frac{1}{2\pi\pi+1} = 2 + \frac{1}{2\pi\pi+1}$$

$$u) = 2^{2} = 2 + \frac{1}{2\pi\pi+1}$$

$$c.He = 2 + \frac{1}{2\pi\pi+1}$$

$$d) = \frac{1}{2\pi\pi+1} + \frac{1}{2\pi\pi+1} + \frac{1}{2\pi\pi+1}$$

$$d) = \frac{1}{2\pi\pi+1} + \frac{1}{2\pi\pi+1} + \frac{1}{2\pi\pi+1}$$

$$d) = \frac{1}{2\pi\pi+1} + \frac{1}$$

.