Total marks - 80

Attempt Questions 1-5
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (14 Marks) Use a SEPARATE writing booklet
(a) For the curve. $y=4+3 x-x^{3}$,
(i) find any stationary points and determine their nature.
(ii) find any points of inflexion.
(iii) find the co-ordinates of the y-intercept.
(iv) sketch the curve in the domain $-3 \leq x \leq 3$ showing all the above features.
(b) The sum of the radii of two circles is 100 cm . If one of the circles has a radius of $x \mathrm{~cm}$
(i) Show that the sum of the areas of the two circles is given by

$$
A=2 \pi\left(x^{2}-100 x+5000\right)
$$

(ii) Find the least possible value for this area.

Question 2 (14 Marks) Use a SEPARATE writing booklet
(a) Find the centre and radius of this circle $x^{2}+14 x+14+y^{2}-2 y=0$.
(b) Express $5 x^{2}+2 x-3$ in the form $A(x+1)^{2}+B(x+1)+C$.
(c) For what values of k does the equation $k x^{2}-4 k x-(k-5)=0$ have real roots ?

Question 2 Continued.
Marks
(d) The vertex of the parabola is $(-7,-2)$ and the focus is $(-3,-2)$. Find
(i) the equation of the directrix.
(ii) the equation of the parabola.
(e) Derive the equation of the locus of the point $\mathrm{P}(x, y)$ that moves so that it is equidistant from the point $\mathrm{A}(-6,5)$ and the point $\mathrm{B}(3,-1)$.

Question 3 (16 Marks) Use a SEPARATE writing booklet
(a) Find:
(i) $\int\left(4 x^{3}+7 x^{2}-3\right) d x$.
(ii) $\int \frac{6 x^{3}-7 x}{x^{2}} d x$.
(iii) $\int x \sqrt{x} d x$
(b) Evaluate $\int_{0}(2 x-1)^{3} d x$.
(c) Find the equation of the curve that passes through the point $(2,5)$, given that the gradient function is $3+2 x-x^{2}$.
(d) (i) Sketch, on the same axes $y=10-x^{2}$ and $y=x+4$.
(ii) Hence find the area bounded by parabola $y=10-x^{2}$ and the line $y=x+4$.

Question 4 (16 Marks) Use a SEPARATE writing booklet
Marks
(a) Differentiate
(i) $e^{4 x+8}$

1
(ii) $\frac{e^{x}}{e^{x}+1}$
(b) Evaluate $\int_{0}^{2} e^{3 x} d x$.
(c) Find $\int 8 x^{3} e^{x^{4}} d x$
(d) Find the equation of the tangent to the curve $y=e^{x^{2}-1}$ at $x=1$.
(e) Find the exact volume of the solid of revolution formed when the curve $y=e^{x}-e^{-x}$ is rotated about the x-axis between $x=0$ and $x=\frac{1}{2}$.
(f) Use Simpson's Rule with five function values to find an approximation
to $\int_{0}^{4} e^{-x^{2}} d x$, correct to two decimal places.

Question 5 (20 Marks) Use a SEPARATE writing booklet
(a) Find $\frac{d y}{d x}$ given
(i) $y=\log _{e}(2 x+7)$

1
(ii) $y=\log _{e}(2 x+1)(x-5)$ 2
(iii) $y=x^{3} \log _{e} x$ 2
(b) Evaluate $\int_{2}^{3} \frac{8 x}{2 x^{2}+7} d x$.

Question 5 Continued.
(c) (i) Show $\frac{4 x+3}{2 x+1}=2+\frac{1}{2 x+1}$.
(ii) Hence find $\int \frac{4 x+3}{2 x+1} d x$
(d) Simplify $2 \log _{3} 6+\log _{3} 18-3 \log _{3} 2$.
(e) Solve
(i) $\log _{2} 64=x \quad 1$
(ii) $3^{x}=5$, correct to two decimal places.
(f) (i) Sketch the curve $y=\log _{e} x . \quad 1$
(ii) Find the area enclosed between the curve $y=\log _{e} x$, the x axis and the line $x=2$. Shade this area on your diagram.

END OF THE PAPER

Year 12
Mathematics
Mini Examination 2011

Question 1
a)

$$
\begin{aligned}
& y=4+3 x- \\
& \frac{d y}{d x}=3-3 x^{2} \\
& \frac{d y}{d x^{2}}=-6 x
\end{aligned}
$$

For stationary paris $\frac{d y}{d x}=0$

$$
\begin{aligned}
3-3 x^{2} & =0 \\
3\left(1-x^{2}\right) & =0 \\
3(1-x)(1+x) & =0 \\
x & = \pm 1
\end{aligned}
$$

when $x=1$

$$
\begin{aligned}
y & =4+3 x-x^{3} \\
& =4+3(1)-(1)^{3} \\
& =6
\end{aligned}
$$

$\therefore(1,6)$ is a stationary point.
Test the nature

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =-6 x \text { at } x=1 \\
& =-6(1) \\
& =-6
\end{aligned}
$$

As $\frac{d^{2} y}{d x^{2}}<0$ the curve is concave down \curvearrowleft
$\therefore(1,6)$ is a local maximum
when $x=-1$

$$
\begin{aligned}
y & =4+3(x)-x^{3} \\
& =4+3(-1)-(-1)^{3} \\
& =2
\end{aligned}
$$

$\therefore(-1,2)$ is a stationary point (iv) Endpoints when $x=-3$.

$$
\begin{aligned}
y & =4+3 x-x^{3} \\
& =4+3(-3)-(-3)^{2} \\
& =22
\end{aligned}
$$

when $x=3$

$$
\begin{aligned}
y & =4+3 x-x^{3} \\
& =4+3(3)-3^{3} \\
& =-14
\end{aligned}
$$

\therefore The endpoints are $(-3,22)$ and $(3,14)$

b) radius of 1 circle $=x$
radius of the other circle $=100-x$

$$
\begin{aligned}
A & =\pi r^{2}+\pi R^{2} \\
& =\pi x^{2}+\pi(100-x)^{2} \\
& =\pi x^{2}+10000 \pi-200 \pi x+\pi x^{2} \\
& =2 \pi x^{2}-200 \pi x+10000 \pi \\
\therefore A & =2 \pi\left(x^{2}-100 x+5000\right)
\end{aligned}
$$

․)

$$
\begin{aligned}
A & =2 \pi x^{2}-200 \pi x+10000 \pi \\
\frac{d A}{d x} & =4 \pi x-200 \pi \\
\frac{d^{2} A}{d x^{2}} & =4 \pi
\end{aligned}
$$

For stationary points $\frac{d A}{d x}=0$

$$
\begin{aligned}
\therefore \quad 4 \pi x-200 \pi & =0 \\
4 \pi x & =200 \pi \\
x & =50
\end{aligned}
$$

when $x=50$

$$
\begin{aligned}
A & =2 \pi x^{2}-200 \pi x+10000 \pi \\
& =2 \pi(50)^{2}-200 \pi(50)+10000 \pi \\
& =5000 \pi
\end{aligned}
$$

As $\frac{d^{2} y}{d x^{2}}>0$; a minimum value oceurs
\therefore The least possible area is $5000 \pi \mathrm{~cm}^{2}$

Question 2

$$
\begin{aligned}
& \text { a) } x^{2}+14 x+14+y^{2}-2 y=0 \\
& x^{2}+14 x+\left(\frac{14}{2}\right)^{2}+y^{2}-2 y+\left(\frac{-2}{2}\right)^{2}=-14+\left(\frac{14}{2}\right)^{2}+\left(\frac{-2}{2}\right)^{2} \\
& (x+7)^{2}+(y-1)^{2}=-14+49+1 \\
& (x+7)+(y-1)^{2}=36 \\
& (x+7)+(y-1)^{2}=6^{2} \\
& \therefore \text { centre is }(-7,1) \\
& \text { radius is } 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } 5 x^{2}+2 x-3 \\
& =A(x+1)^{2}+B(x+1)+C \\
& =A x^{2}+2 A x+A+B x+B+C \\
& =A x^{2}+(2 A+B) x+(A+B+C) \\
& \therefore A=S \\
& 2 A+B=2 \\
& A+B+C=-3 \\
& 2(5)+B=2 \\
& \begin{aligned}
2(5)+B & =2 \\
B & =-8
\end{aligned} \\
& 5-8+C=-3 \\
& \square \\
& c=0 \\
& \therefore \quad 5 x^{2}+2 x-3 \equiv 5(x+1)^{2}-8(x+1)
\end{aligned}
$$

c)

$$
\begin{aligned}
& k x^{2}-4 k x-(k-5)=0 \\
& \Delta=b^{2}-4 a c \\
& =(-4 k)^{2}-4(k) \times-(k-5) \\
& =16 k^{2}+4 k^{2}-20 k \\
& \\
& =20 k^{2}-20 k
\end{aligned}
$$

For real roots $\Delta \geqslant 0$

$$
\begin{aligned}
& \therefore 20 k^{2}-20 k \geqslant 0 \\
& 20 k(k-1) \geqslant 0 \quad \text { 気 } \\
& \therefore k \leqslant 0, k \geqslant 1
\end{aligned}
$$

d)

(i) $a=4$
\therefore directrix is $x=-11$
(ii) $(y-k)^{2}=4 a(x-h)$
$(y+2)^{2}=4 \times 4(x+7)$
$(y+2)^{2}=16(x+7)$
2)

$$
\begin{gathered}
P A=P B \\
\sqrt{(x+6)^{2}+(y-5)^{2}}=\sqrt{(x-3)^{2}+(y+1)^{2}} \\
\therefore P A^{2}=P B^{2} \\
(x+6)^{2}+(y-5)^{2}=(x-3)^{2}+(y+1)^{2} \\
x^{2}+12 x+36+y^{2}-10 y+25=x^{2}-6 x+9+y^{2}+2 y+1 \\
12 x+6 x-10 y-2 y+61-10=0 \\
18 x-12 y-51=0 \\
6 x-4 y-17=0
\end{gathered}
$$

Question 3
a) u)

$$
\begin{aligned}
& \text { u) } \begin{aligned}
\int\left(4 x^{3}+7 x^{2}-3\right) d x=x^{4}+\frac{7}{3} x^{3}-3 x+
\end{aligned} \\
& \text { (iv) } \begin{aligned}
\int \frac{6 x^{3}-7 x}{x^{2}} d x & =\int\left(6 x-\frac{7}{x}\right) d x \\
& =3 x^{2}-7 \log _{e} x+C
\end{aligned}
\end{aligned}
$$

(III)

$$
\begin{aligned}
\int x \sqrt{x} d x & =\int x^{\frac{3}{2}} d x \\
& =\frac{2}{5} x^{\frac{5}{2}}+c \\
& =\frac{2}{5} x^{2} \sqrt{x}+c
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \int_{0}^{2}(2 x-1)^{3} d x=\left[\frac{(2 x-1)^{4}}{8}\right]_{0}^{2} \\
&=\left[\frac{(2 \times 2-1)^{4}}{8}\right]-\left[\frac{(2 \times 0-1)^{4}}{8}\right] \\
&=\frac{81}{8}-\frac{1}{8} \\
&=10 \\
&\text { c) } \left.\begin{array}{rl}
\frac{d y}{d x} & =3+2 x-x^{2} \\
y & =\int\left(3+2 x-x^{2}\right) d x \\
& =3 x+x^{2}-\frac{1}{3} x^{3}+c
\end{array}\right]
\end{aligned}
$$

The curve passes through $(2,5)$

$$
\begin{aligned}
\therefore \quad 5 & =3(2)+2^{2}-\frac{1}{3}(2)^{3}+c \\
5 & =6+4-\frac{8}{3}+c \\
c & =-\frac{7}{3} \\
\therefore y & =-\frac{1}{3} x^{3}+x^{2}+3 x-\frac{7}{3}
\end{aligned}
$$

$0=(2)$

$$
\begin{aligned}
x+4 & =10-x^{2} \\
x^{2}+x-b & =0 \\
(x+3)(x-2) & =0 \\
x & =-3,2
\end{aligned}
$$

when $x=-3$
when $x=2$
sub (2)
sub (2)

$$
\begin{aligned}
y & =x+4 \\
& =-3+4 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
y & =x+4 \\
& =2+4 \\
& =6
\end{aligned}
$$

\therefore points of intersection are $(-3,1)(2,6)$

$$
\begin{aligned}
A & =\int_{-3}^{2}\left(10-x^{2}\right) d x-\int_{-3}^{2}(x+4) d x \\
& =\int_{-3}^{2}\left(10-x^{2}-x-4\right) d x \\
& =\int_{-3}^{2}\left(6-x-x^{2}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
A & =\left[6 x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{-3}^{2} \\
A & =\left[6(2)^{-\frac{1}{2}}(2)^{2}-\frac{1}{3}(2)^{3}\right]-\left[6(-3)-\frac{1}{2}(-3)^{2}-\frac{1}{3}(-3)^{3}\right] \\
& =\left[12-2-\frac{8}{3}\right]-\left[-18-\frac{9}{2}+9\right] \\
& =\frac{22}{3}+\frac{27}{2} \\
& =20 \frac{5}{6}
\end{aligned}
$$

\therefore Area is $20 \frac{5}{6 \text { units }^{2}}$
Question 4
a) (i) Let $y=e^{4 x+8}$

$$
\frac{d y}{d x}=4 e^{4 x+8}
$$

(ii) Let $y=\frac{e^{x}}{e^{x}+1}$

$$
\begin{aligned}
&=\frac{v}{v} \\
& \frac{d y}{d x}=\frac{v \frac{d u}{d x}-v^{\frac{d v}{d x}}}{v^{2}} \quad v=e^{x} \quad v=e^{x+1} \\
&=\frac{e^{x}\left(e^{x}+1\right)-e^{x} \cdot e^{x}}{\left(e^{x}+1\right)^{2}}=e^{x} \frac{d v}{d x}=e^{x} \\
&=\frac{e^{2 x}+e^{x}-e^{2 x}}{\left(e^{x+1}\right)^{2}} \\
&=\frac{e^{x}}{\left(e^{x+1}\right)^{2}}
\end{aligned}
$$

b) $\int_{0}^{2} e^{3 x} d x=\left[\frac{1}{3} e^{3 x}\right]_{0}^{2}$

$$
\begin{aligned}
& =\left[\frac{1}{3} e^{3(2)}\right]-\left[\frac{1}{3} e^{3(0)}\right] \\
& =\frac{1}{3} e^{6}-\frac{1}{3} \\
& =\frac{1}{3}\left(e^{6}-1\right)
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
\int 8 x^{3} e^{x^{4}} d x & =2 \int 4 x^{3} e^{x^{4}} d x \\
& =2 e^{x^{4}}+c
\end{aligned}
$$

d)

$$
\begin{aligned}
y & =e^{x^{2}-1} \\
\frac{d y}{d x} & =2 x\left(e^{x^{2}-1}\right) \text { at } x=1 \\
& =2\left(e^{1^{2}-1}\right) \\
& =2
\end{aligned}
$$

when $x=1, y=e^{x^{2}-1}$

$$
\begin{aligned}
&=e^{1-1} \\
&=1 \\
& \therefore \text { point }(1,1) \quad \frac{d y}{d x}=2 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=2(x-1) \\
& \therefore y=2 x-1
\end{aligned}
$$

e)

$$
\begin{aligned}
& y=e^{x}-e^{-x} \\
& y^{2}=\left(e^{x}-e^{-x}\right)^{2} \\
&=e^{2 x}-2+e^{-2 x} \\
& v=\pi \int_{a}^{b} y^{2} d x \\
&=\pi \int_{0}^{\frac{1}{2}}\left(e^{2 x}-2+e^{-2 x}\right) d x \\
&=\pi\left[\frac{1}{2} e^{2 x}-2 x-\frac{1}{2} e^{-2 x}\right]_{0}^{\frac{1}{2}} \\
&=\pi\left[\frac{1}{2} e^{2\left(\frac{1}{2}\right)}-2\left(\frac{1}{2}\right)-\frac{1}{2} e^{-2\left(\frac{1}{2}\right)}\right]-\pi\left[\frac{1}{2} e^{0}-0-\frac{1}{2} e^{0}\right] \\
&=\pi\left[\frac{1}{2} e-1-\frac{1}{2} e^{-1}\right] \\
&= \frac{\pi}{2}\left[e-2-\frac{1}{e}\right]
\end{aligned}
$$

\therefore Volume is $\frac{\pi}{2}\left(e-2-\frac{1}{2}\right)$ units 3

x	0	1	2	3	4
$f(x)=e^{-x^{2}}$	1	e^{-1}	e^{-4}	e^{-9}	e^{-16}

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \doteq \frac{b-a}{b}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
& \begin{aligned}
\int_{0}^{4} e^{-x^{2}} d x & \doteq \frac{2-0}{6}\left[1+4\left(e^{-1}+e^{-a}\right)+2 e^{-4}+e^{-16}\right] \\
& \doteqdot 0.8362142647 \\
& =0.84 \text { to } 2 d p .
\end{aligned}
\end{aligned}
$$

Question 5
a) (1)

$$
\begin{aligned}
& y=\log _{e}(2 x+7) \\
& \frac{d y}{d x}=\frac{2}{2 x+7}
\end{aligned}
$$

(iI)

$$
\begin{aligned}
y & =\log _{e}(2 x+1)(x-5) \\
& =\log _{e}\left(2 x^{2}-9 x-5\right) \\
\frac{d y}{d x} & =\frac{4 x-9}{2 x^{2}-9 x-5}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y & =x^{3} \log _{e} x \\
& =u v \\
\frac{d y}{d x} & =v \frac{d u}{d x}+u \frac{d v}{d x} \\
& =\log _{e} x \times 3 x^{2}+x^{3} \times \frac{1}{x} \\
& =3 x^{2} \log _{e} x+x^{2} \\
& =x^{2}\left(3 \log _{e} x+1\right)
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\int_{2}^{3} \frac{8 x}{2 x^{2}+7} d x & =2 \int_{2}^{3} \frac{4 x}{2 x^{2}+7} d x \\
& =\left[2 \log _{e}\left(2 x^{2}+7\right)\right]_{2}^{3} \\
& =2 \log _{e}\left(2 \times 3^{2}+7\right)-2 \log _{e}\left(2 \times 2^{2}+7\right) \\
& =2 \log _{e} 25-2 \log _{e} 15 \\
& =2 \log _{e}\left(\frac{25}{15}\right) \\
& =2 \log _{e}\left(\frac{5}{3}\right)=\log _{e}\left(\frac{25}{9}\right)
\end{aligned}
$$

