Newington College HSC Mini Examination April 2012

Answer Questions 1 to 10 (multiple choice) on the sheet attached to the end of the paper which is to be removed.

Question 1

The correct equation for a circle with centre $(-1,2)$ and radius of 5 is:
A. $(x-1)^{2}+(y+2)^{2}=25$
B. $(x-1)^{2}+(y+2)^{2}=5$
C. $(x+1)^{2}+(y-2)^{2}=25$
D. $(x+1)^{2}+(y-2)^{2}=5$

Question 2

The integral of $\int \frac{1}{x^{2}}+\frac{1}{x} d x$ is
A. $-\frac{3}{x^{3}}-\frac{2}{x^{2}}+c$
B. $-\frac{1}{x}+\log _{e} x+c$
C. $-\frac{1}{x}-\frac{2}{x^{2}}+c$
D. $-\frac{1}{3 x^{3}}+\log _{e} x+c$

Question 3

If $\log _{a} 2=x$ and $\log _{a} 3=y$, then $\log _{a} 12$ can be written as
A. $2 x+y$
B. $x^{2} y$
C. $2 x y$
D. $x+2 y$

Question 4

For the parabola, $(y-k)^{2}=4 a(x-h)$, the axis of symmetry is given by:
A. $x=h$
B. $x=k$
C. $y=h$
D. $y=k$

Question 5

If $f^{\prime}(x)=-\frac{1}{x^{2}}$ and $f^{\prime \prime}(x)=\frac{2}{x^{3}}$, then for $x>0, f(x)$ is
A. Increasing and concave down
B. Decreasing and concave down
C. Increasing and concave up
D. Decreasing and concave up

Question 6

Which graph best represents the equation, $\quad y=e^{x}-e^{-x}$?
A.

C.

B.

D.

Q7...cont./Page 3

Question 7

If $\sin \theta=\cos \left(\frac{3 \pi}{4}\right)$, then θ could be equal to
A. $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$
B. $\frac{3 \pi}{4}$ and $\frac{5 \pi}{4}$
C. $\frac{5 \pi}{4}$ and $\frac{7 \pi}{4}$
D. $\quad \frac{\pi}{4}$ and $\frac{7 \pi}{4}$

Question 8

$2^{-\log _{2} 5}$ is equal to
A. $\frac{1}{5}$
B. $-\frac{1}{5}$
C. 5
D. -5

Question 9

Using the graph above, or otherwise, if $\int_{0}^{\pi} \sin x d x=1$ then the area shaded above is equal to:
A. 2
B. 0
C. π
D. 2π

Question 10

Choose the locus from the diagrams below that is best described by the information given;
"A point P moves such that it is equidistant from two fixed points A and B."
A.

C.

B.

D.

Question 11 Start this question in a new booklet

(a) If α and β are the roots of the quadratic equation, $y=x^{2}-5 x+6$, find:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$
(iv) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
(b) Show that $y=-\left(x^{2}-3 x+6\right)$ is negative definite for all values of x.
(c) For the curve, $y=x^{2}-4 x$, rewrite in the form, $(x-h)^{2}=4 a(y-k)$, and hence, or otherwise, find:
(i) the vertex
(ii) the focal length
(iii) the focus
(iv) the equation of the directrix

Question 12 Start this question in a new booklet
(a) Find the following limits:
(i) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
(ii) $\lim _{x \rightarrow \infty} \frac{1-x}{x}$

Question 12 (cont.)

(b) Differentiate the following:
(i) $\quad\left(x^{3}-5\right)^{7}$
(ii) $\quad x^{3}(2-x)^{4}$
(iii) $\frac{x}{x^{2}-4}$
(c) (i) Find the roots of the curve, $y=x^{2}-3 x+2$.
(ii) Find the equation of the tangent for the root with the greatest value of x.

Question 13 Start this question in a new booklet

(15 marks)

(a) For the curve, $y=x^{3}+x^{2}-x+5$,
(i) find any stationary points and their nature.
(ii) find any points of inflexion.
(iii) Sketch the curve showing all the above and the y intercept.
(b) A square-based prism has a total surface area of $96 \mathrm{~cm}^{2}$.
(i) Using $x \mathrm{~cm}$ as the base length and $y \mathrm{~cm}$ as the height draw a diagram of the prism.
(ii) Show that $y=\frac{\left(48-x^{2}\right)}{2 x}$
(iii) Hence, write an equation for the volume of the prism, in terms of x only.
(iv) Hence, or otherwise, find the maximum volume of the prism and the values of x and y when this occurs.

Question 14 Start this question in a new booklet

(15 marks)
Marks
(a) Find the integral of
(i) $\int 3 x^{2}+\frac{2}{x^{2}} d x$
(ii) $\int_{0}^{1}(4-x)^{5} d x$
(b) Find the area bounded by the curve $y=4 x-x^{2}$ and the x axis.
(c) Below are the curve $y=(x-2)^{2}$ and the straight line $y=4-x$,

(i) Find the points of intersection A, B and C .
(ii) Hence, find the shaded area.
(d) Without the use of a sketch, explain with reasoning, why $\int_{-a}^{a} x^{5}-x^{3} d x=0$

Question 15 Start this question in a new booklet

Marks
(a) Simplify $\quad \log _{3} 27-\log _{9}\left(\frac{1}{3}\right)+7$
(b) (i) Find the first and second derivatives of $f(x)=\frac{x}{e^{x}}$.
(ii) Find any stationary points for the curve determine their nature.
(iii) Find any points of inflexion.
(iv) Explain why $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
(v) Sketch $f(x)=\frac{x}{e^{x}}$, using the information above.
(c) The graph shows the curve $y=\frac{4}{\sqrt{x}}$, with the area under the curve from $1 \leq x \leq 5$ shaded.

If this area is now revolved around the x axis find the exact value of the volume generated.
(5)

Question 16 Start this question in a new booklet

(a) In the diagram, the area of the sector is $\frac{3 \pi}{2} \mathrm{~cm}^{2}$. Find the radius of the sector.

(b) In the unit circle shown, find the exact value of the co-ordinates of the point P.

(c) Solve the following equation, for $0 \leq x \leq 2 \pi$,

$$
\begin{equation*}
2 \sin ^{2} x-1=0 \tag{3}
\end{equation*}
$$

(d) (i) Sketch the graph, $y=2 \sin \frac{x}{2}$, from $0 \leq x \leq 2 \pi$
(ii) Use Simpson's Rule and 5 function values to find the approximate area bounded by the curve and the x-axis.

END OF EXAMINATION

Question 1

C

Question 2

B.

Question 3

A

Question 4

D

Question 5

D

Question 6

D

Question 7

C

Question 8

A

Question 9
A

Question 10

B

Question 11 Start this question in a new booklet

(a) (i) $\alpha+\beta=-\frac{-5}{1}=5$
(ii) $\quad \alpha \beta=\frac{6}{1}=6$
(iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =5^{2}-2 \times 6 \\
& =13
\end{aligned}
$$

(iv) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}$
(b) $y=-\left(x^{2}-3 x+6\right)$ is negative definite if for the general equation:

$$
a<0 \text { and } \Delta<0
$$

In this equation $a=-1<0$ so true, and, $\Delta=3^{2}-4(-1)(-6)=9-24=-13<0$ which is also true so this equation is negative definite.
(c)

$$
\begin{align*}
y & =x^{2}-4 x \\
y+4 & =x^{2}-4 x+4 \tag{3}\\
y+4 & =(x-2)^{2} \\
(x-2)^{2} & =4\left(\frac{1}{4}\right)(y-(-4))
\end{align*}
$$

(i) the vertex at $(2,-4)$
(ii) the focal length $=\frac{1}{4}$
(iii) the focus at $\left(2,-3 \frac{3}{4}\right)$
(iv) the equation of the directrix is given by $y=-4 \frac{1}{4}$

Question 12 Start this question in a new booklet

(15 marks)
(a)

$$
\begin{align*}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3} \\
& =\lim _{x \rightarrow 3} x+3 \tag{1}\\
& =6
\end{align*}
$$

(ii)

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{1-x}{x} & =\lim _{x \rightarrow \infty} \frac{1}{x}-1 \tag{2}\\
& =0-1 \\
& =-1
\end{align*}
$$

(b) (i)

$$
\begin{align*}
\frac{d\left(x^{3}-5\right)^{7}}{d x} & =3 x^{2}(7)\left(x^{3}-5\right)^{6} \tag{2}\\
& =21 x^{2}\left(x^{3}-5\right)^{7}
\end{align*}
$$

(ii)

$$
\begin{align*}
\frac{d\left[x^{3}(2-x)^{4}\right]}{d x} & =3 x^{2}(2-x)^{4}+x^{3}(-4)(2-x)^{3} \tag{3}\\
& =x^{2}(2-x)^{3}[3(2-x)-4 x] \\
& =x^{2}(2-x)^{3}(6-7 x)
\end{align*}
$$

(iii) $\frac{d\left(\frac{x}{x^{2}-4}\right)}{d x}=\frac{\left(x^{2}-4\right)-2 x(x)}{\left(x^{2}-4\right)^{2}}=-\frac{x^{2}+4}{\left(x^{2}-4\right)^{2}}$
(c) (i).

$$
\begin{align*}
y & =x^{2}-3 x+2 \tag{2}\\
x^{2}-3 x+2 & =0 \\
(x-2)(x-1) & =0 \\
x & =1 \text { or } 2
\end{align*}
$$

(ii) If $x=2$, then

$$
\begin{aligned}
& \frac{d y}{d x}=2 x-3 \\
& \text { If } x=2 \text { then } \\
& \frac{d y}{d x}=2(2)-3=1 \\
& \text { At } x=2, y=2^{2}-3(2)+2=0
\end{aligned}
$$

$$
\begin{aligned}
y-0 & =1(x-2) \\
y & =x-2
\end{aligned}
$$

Question 13 Start this question in a new booklet

(15 marks)

(a)
(i)

$$
\begin{aligned}
y & =x^{3}+x^{2}-x+5 \\
\frac{d y}{d x} & =3 x^{2}+2 x-1 \\
& =(3 x-1)(x+1)
\end{aligned}
$$

$$
\text { If } \frac{d y}{d x}=0, \text { then } x=\frac{1}{3} \text { or }-1
$$

Hence, stationary points at $\left(\frac{1}{3}, 4 \frac{22}{27}\right)$ and $(-1,6)$

Since, $y=\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{2}-\frac{1}{3}+5=4 \frac{22}{27}$, and

$$
y=(-1)^{3}+(=1)^{2}-(-1)+5=6
$$

x	-2	-1	0	$1 / 3$	1
$\frac{d y}{d x}$	+ve	0	-ve	0	+ve
slope	$/$	-	\backslash	-	$/$
		Max tp		Min tp	

(ii) $y=x^{3}+x^{2}-x+5$

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2}+2 x-1 \\
\frac{d^{2} y}{d x^{2}} & =6 x+2
\end{aligned}
$$

If $\frac{d^{2} y}{d x^{2}}=0$, then $x=-\frac{1}{3}$

$$
y=\left(-\frac{1}{3}\right)^{3}+\left(-\frac{1}{3}\right)^{2}-\left(-\frac{1}{3}\right)+5=5 \frac{11}{27}
$$

Hence, point of inflexion at $\left(-\frac{1}{3}, 5 \frac{11}{27}\right)$
(iii)

(b) (i)

(ii) Surface Area $=96 \mathrm{~cm}^{2}$. Hence,

$$
\begin{align*}
2 x^{2}+4 x y & =96 \\
4 x y & =96-2 x^{2} \\
y & =\frac{2\left(48-x^{2}\right)}{4 x} \tag{2}\\
y & =\frac{48-x^{2}}{2 x}
\end{align*}
$$

(iii)

$$
\begin{align*}
& \text { Volume }=x^{2} y \\
& \qquad \begin{aligned}
V & =\frac{x^{2}\left(48-x^{2}\right)}{2 x}=\frac{1}{2} x\left(48-x^{2}\right) \\
V & =24 x-\frac{x^{3}}{2}
\end{aligned} \tag{1}
\end{align*}
$$

(iv) Now, maximum volume when $\frac{d V}{d x}=0$,

$$
\begin{aligned}
V & =24 x-\frac{x^{3}}{2} \\
\frac{d V}{d x} & =24-\frac{3 x^{2}}{2} \\
3 x^{2} & =48 \\
x^{2} & =16 \\
x & =4 \mathrm{~cm}, \quad x>0 \\
y & =\frac{48-16}{8}=4 \mathrm{~cm} \\
\text { Max Volume } & =64 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 14

(a) (i)

$$
\begin{align*}
\int 3 x^{2}+\frac{2}{x^{2}} d x & =\int 3 x^{2}+2 x^{-2} d x \\
& =\frac{3 x^{3}}{3}+\frac{2 x^{-1}}{(-1)}+c \tag{1}\\
& =x^{3}-\frac{2}{x}+c
\end{align*}
$$

(ii) $\int_{0}^{1}(4-x)^{5} d x=\left[\frac{(4-x)^{6}}{(-1)(6)}\right]_{0}^{1}$
(b) Find the area bounded by the curve $y=4 x-x^{2}$ and the x axis.

Area wholly above the x-axis, hence

$$
\begin{align*}
\text { Area } & =\int_{0}^{4} 4 x-x^{2} d x \\
& =\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{4} \tag{3}\\
& =\left(32-\frac{64}{3}\right) \\
& =\frac{32}{3} \text { units }^{2}
\end{align*}
$$

(c) (i) At A, for the curve, $y=(x-2)^{2}, y=0$.

So, $x=2$, i.e. $\mathrm{A}(2,0)$
At B, for the line, $y=4-x, y=0$

So, $x=4$, i.e. $\mathrm{B}(4,0)$
At C, the curves $y=(x-2)^{2}$ and $y=4-x$ intersect, so,

$$
\begin{aligned}
& (x-2)^{2}=4-x \\
& x^{2}-4 x+4=4-x \\
& x^{2}-3 x=0 \\
& x(x-3)=0 \\
& x=0 \text { or } 3, x>0 \\
& x=3
\end{aligned}
$$

(ii)

$$
\begin{align*}
\text { Area } & =\int_{2}^{3}(x-2)^{2} d x+\int_{3}^{4} 4-x d x \\
& =\left[\frac{(x-2)^{3}}{3}\right]_{2}^{3}+\left[4 x-\frac{x^{2}}{2}\right]_{3}^{4} \\
& =\left(\frac{1}{3}-0\right)+\left[(16-8)-\left(12-\frac{9}{2}\right)\right] \\
& =\frac{1}{3}+8-\frac{15}{2} \\
& =\frac{5}{6} \text { square unitss }
\end{align*}
$$

(d) $\int_{-a}^{a} x^{5}-x^{3} d x=0$. The graph of $y=x^{5}-x^{3}$ is an odd function, i.e. $f(a)=-f(-a)$, and as such has point symmetry about the origin.

Thus the areas above and below the x-axis on either sides of the y-axis must be equal, hence the integral:

$$
\begin{equation*}
\int_{-a}^{a} x^{5}-x^{3} d x=0 \tag{2}
\end{equation*}
$$

Question 15 (15 marks) Marks

(a) $\quad \log _{3} 27-\log _{9}\left(\frac{1}{3}\right)+7=\log _{3}(3)^{3}-\log _{9}\left(9^{-\frac{1}{2}}\right)+7$

$$
\begin{align*}
& =3 \log _{3} 3+\frac{1}{2} \log _{9} 9+7 \tag{2}\\
& =10 \frac{1}{2}
\end{align*}
$$

(b) (i) $\quad f(x)=\frac{x}{e^{x}}$

$$
\begin{align*}
f^{\prime}(x) & =\frac{e^{x}(1)-x\left(e^{x}\right)}{e^{2 x}} \\
& =\frac{e^{x}(1-x)}{e^{2 x}} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{e^{x}(-1)-(1-x)\left(e^{x}\right)}{e^{2 x}} \\
& =\frac{e^{x}(x-2)}{e^{2 x}} \\
& =\frac{x-2}{e^{x}}
\end{aligned}
$$

(ii) If $f^{\prime}(x)=0$

$$
\begin{align*}
& 1-x=0 \\
& x=1 \tag{2}
\end{align*}
$$

If $x=1$ then $y=e^{-x}$ and $f^{\prime \prime}(x)=\frac{-1}{e^{x}}<0$.

Hence, $\left(1, e^{-x}\right)$ is a max turning point.
(iii) If $f^{\prime \prime}(x)=0$

$$
\begin{aligned}
& x-2=0 \\
& x=2
\end{aligned}
$$

If $x=2$ and $y=2 e^{-x}$

x	1	2	3
$f^{\prime \prime}(x)$	-ve	0	+ve
	Concave down		Concave up

Hence point of inflexion at $\left(2,2 e^{-x}\right)$
(iv) Let $y=x e^{-x}$, so $e^{-x} \rightarrow 0$, as $x \rightarrow \infty$
(v)

(c)

$$
\begin{aligned}
y & =\frac{4}{\sqrt{x}} \\
y^{2} & =\frac{16}{x} \\
\text { Volume } & =\pi \int_{1}^{5} \frac{16}{x} d x \\
& =\pi\left[16 \log _{e} x\right]_{1}^{5} \\
& =16 \pi\left(\log _{e} 5-\log _{e} 1\right) \\
& =16 \pi \log _{e} 5
\end{aligned}
$$

Question 16

(a)

$$
\begin{align*}
\text { Area } & =\frac{r^{2} \theta}{2} \\
\frac{3 \pi}{2} & =\frac{r^{2} \frac{\pi}{3}}{2} \tag{2}\\
r^{2} & =9 \\
r & =3
\end{align*}
$$

(b) \quad At $P, \quad\left(\cos \left(-\frac{\pi}{3}\right), \sin \left(-\frac{\pi}{3}\right)\right)=\left(\cos \frac{\pi}{3},-\sin \frac{\pi}{3}\right)$

$$
=\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
$$

(c)

$$
\begin{align*}
& 2 \sin ^{2} x-1=0 \tag{3}\\
& \sin ^{2} x=\frac{1}{2} \\
& \sin x=\frac{1}{\sqrt{2}} \text { or }-\frac{1}{\sqrt{2}} \\
& x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4} \text { or } \frac{7 \pi}{4}
\end{align*}
$$

(d) (i)

[3]
(ii) $\quad h=\frac{2 \pi-0}{4}=\frac{\pi}{2}$

x	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$f(x)=2 \sin \frac{x}{2}$	0	$\sqrt{2}$	2	$\sqrt{2}$	0
Factor	x 1	x 4	x 2	x 4	x 1
Value	0	$4 \sqrt{2}$	4	$4 \sqrt{2}$	0

$$
\begin{equation*}
\text { Area }=\frac{\pi}{6}(4+8 \sqrt{2}) \square 8 \tag{5}
\end{equation*}
$$

