Section I

10 marks
Use the multiple choice answer sheet for questions 1-10.
1 What is the derivative of $f(x)=\sqrt{3-x}$?
(A) $\quad f^{\prime}(x)=\frac{-1}{2 \sqrt{3-x}}$
(B) $\quad f^{\prime}(x)=\frac{-2}{\sqrt{3-x}}$
(C) $\quad f^{\prime}(x)=\frac{2}{\sqrt{3-x}}$
(D) $\quad f^{\prime}(x)=\frac{1}{2 \sqrt{3-x}}$

2 The gradient of the normal to the curve $f(x)=x^{2}-4 x$ at $(1,-3)$ is
(A) -10
(B) $\quad-2$
(C) $-\frac{1}{2}$
(D) $\frac{1}{2}$

3 Which of the following is true for the equation $3 x^{2}-x-2=0$?
(A) No real roots
(B) Equal roots
(C) Two real distinct roots
(D) Irrational roots

4 The exact value of $\cos \frac{2 \pi}{3}$ is ?
(A) $-\frac{\sqrt{3}}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
$5 A O B$ is a sector of a circle, centre O and radius 5 cm .
The sector has an area of 10π.

Not to scale

What is the arc length of the sector?
(A) 2π
(B) 4π
(C) 6π
(D) 10π

6 What is the derivative of $\log _{2} x$?
(A) $\frac{1}{x}$
(B) $\frac{1}{2 x}$
(C) $\ln 2 x$
(D) $\frac{1}{x \ln 2}$

7 What is the value of $\int_{-1}^{2} x^{2}+1 d x$?
(A) 4
(B) 5
(C) 6
(D) 7

8 The diagram below shows the graph of $y=x^{2}-2 x-8$.

What is the correct expression for the area bounded by the x-axis and the curve $y=x^{2}-2 x-8$ between $0 \leq x \leq 6$?
(A) $\quad A=\int_{0}^{5} x^{2}-2 x-8 d x+\left|\int_{5}^{6} x^{2}-2 x-8 d x\right|$
(B) $\quad A=\int_{0}^{4} x^{2}-2 x-8 d x+\left|\int_{4}^{6} x^{2}-2 x-8 d x\right|$
(C) $\quad A=\left|\int_{0}^{5} x^{2}-2 x-8 d x\right|+\int_{5}^{6} x^{2}-2 x-8 d x$
(D) $\quad A=\left|\int_{0}^{4} x^{2}-2 x-8 d x\right|+\int_{4}^{6} x^{2}-2 x-8 d x$

9 What are the solutions to the equation $e^{6 x}-7 e^{3 x}+6=0$?
(A) $x=1$ and $x=6$
(B) $x=0$ and $x=\frac{\ln 6}{2}$
(C) $x=0$ and $x=\frac{\ln 6}{3}$
(D) $x=1$ and $x=\frac{\ln 6}{2}$

10 The diagram below shows the graph of $y=2 \sqrt{x}$ and $y=\frac{x}{4}$.

Which of the following is the correct expression for the volume of the solid of revolution when the area between the curve $y=2 \sqrt{x}$ and $y=\frac{x}{4}$ is rotated around the x-axis?
(A) $\quad V=\int_{0}^{8}\left(4 y-\frac{y^{2}}{2}\right) d y$
(B) $\quad V=\int_{0}^{16}\left(2 \sqrt{x}-\frac{x}{4}\right) d x$
(C) $\quad V=\pi \int_{0}^{8}\left(16 y^{2}-\frac{y^{4}}{4}\right) d y$
(D) $\quad V=\pi \int_{0}^{16}\left(4 x-\frac{x^{2}}{16}\right) d x$

Section II

Answer questions in the writing booklet provided.

Start each question in a new booklet. Extra writing booklets are available.

Question 11 (15 marks) Start a new booklet.
Marks
(a) Consider the parabola $x^{2}-6 x+4 y+17=0$
(i) Express the parabola in the form $(x-h)^{2}=4 a(y-k)$

1
(ii) Write down the co-ordinates of the vertex. 1
(iii) Write down the coordinates of the focus.
(iv) Write down the equation of the directrix.
(b) If α and β are the roots of the equation $3 x^{2}+15 x+6=0$, find the value of
(i) $\alpha+\beta$
(ii) $\alpha \beta$

1
(iii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$

2
(c) If $A(x-1)^{2}+B(x-1)+C=3 x^{2}-5 x+7$, find A, B and C.
(d) Find the value of k for which the equation $x^{2}+(k+1) x+(k+3)=0$ has one root equal to 4 .
(e) Derive the equation of the locus of the point $\mathrm{P}(x, y)$ which moves so that $\mathrm{AP}: \mathrm{PB}=2: 3$, where A is $(-2,1)$ and B is $(3,-3)$.

Question 12 (16 marks) Start a new booklet.
(a) The equation of a curve is given by $y=6 x^{3}+9 x^{2}-3$
(i) Show that $6 x^{3}+9 x^{2}-3=3(x+1)^{2}(2 x-1)$.
(ii) Hence write down the co-ordinates of the x intercepts.
(iii) Find any stationary points and determine their nature.
(iv) Find the co-ordinates of any points of inflexion.
(v) Sketch the curve showing all essential details.
(b) A cylinder is inscribed in a cone of radius 9 cm and height 25 cm .

(i) Show that the height of the cylinder is $h=\frac{25(9-r)}{9}$,
where r is the radius of the cylinder.
(ii) Show that the volume of the cylinder is $\frac{25 \pi r^{2}(9-r)}{9}$.
(iii) Hence find the maximum volume of the cylinder.

Question 13 (15 marks) Start a new booklet.
(a) Find
(i) $\int(3 x+4)^{4} d x$

1
(ii) $\int \frac{4 x^{2}+6}{x^{2}} d x$
(b) Evaluate $\int_{0}^{5} \sqrt{25-x^{2}} d x$
(c) The derivative of the curve $y=f(x)$ is given by $f^{\prime}(x)=x^{2}-3 x-4$.

Find the equation of the curve, given that the curve passes through the point $(-2,1)$.
(d) (i) Sketch on the same axes the curves $y=4-x^{2}$ and $y=2 x^{2}-6 x+4$.
(ii) Hence find the area bounded by the parabolas $y=4-x^{2}$ and

$$
y=2 x^{2}-6 x+4
$$

(e) (i) Use the Trapezoidal Rule with 3 function values to find an approximation to $\int_{1}^{3} \log _{e} x d x$. Answer correct to 2 decimal places.
(ii) State whether the approximation found in part (i) is greater than or less 1 the exact value of $\int_{1}^{3} \log _{e} x d x$. Justify your answer.

Question 14 (15 marks) Start a new booklet.
(a) Differentiate
(i) $y=e^{4 x+3}$
(ii) $y=x \ln x \quad 1$
(iii) $y=\log _{e}(2 x+7) \quad 1$
(iv) $y=\ln \left(\frac{2 x+3}{2 x-3}\right)$
(b) Find the integral of
(i) $\int \frac{4 x}{4 x^{2}+7} d x$
(ii) $\int x^{3} e^{x^{4}+2} d x$
(c) If $\log _{10} 2=0.301$ and $\log _{10} 3=0.477$ find
(i) $\log _{10} 6$

1
(ii) $\log _{10} 5$
(d) (i) Sketch the graph of $y=\log _{e}(x-3)$.
(ii) State its domain and range. $\quad \mathbf{2}$
(iii) The area between the curve $y=\log _{e}(x-3)$, the y axis and the lines $y=1$ and $y=4$ is rotated about the y axis. Find the exact volume of the solid formed.

End of paper

Year 12 Mathematics
H.S.C Mini Examination 2013

Section 1
1.

$$
\begin{align*}
f(x) & =\sqrt{3-x} \\
& =(3-x)^{\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2}(3-x)^{-\frac{1}{2}} x^{-1} \\
& =\frac{-1}{2 \sqrt{3-x}} \tag{A}
\end{align*}
$$

2. $f(x)=x^{2}-4 x$
$f^{\prime}(x)=2 x-4$ at $x=1$

$$
=2(1)-4
$$

$$
=-2
$$

gradient of tangent $=-2$ gradient of normal $=\frac{1}{2}$ as $m_{1} m_{2}=-1$ for perpendicubr lines
(D)
3. $\quad 3 x^{2}-x-2=0$

$$
\begin{aligned}
\Delta & =b^{2}-40 c \\
& =(-1)^{2}-4(3)(2) \\
& =1+24 \\
& =25
\end{aligned}
$$

As the discriminant is a perfect square, there are two distinct rational roots
4. $\cos \left(\frac{2 \pi}{3}\right)=\cos \left(\frac{2 \times 180}{3}\right)$

$$
=\cos 120
$$

$$
\begin{equation*}
=-\frac{1}{2} \tag{B}
\end{equation*}
$$

$9 \cdot e^{6 x}-7 e^{3 x}+6=0$
Let $y=e^{3 x}$

$$
\begin{aligned}
y^{2} & =\left(e^{3 x}\right)^{2} \\
& =e^{6 x}
\end{aligned}
$$

$$
\therefore y^{2}-7 y+6=0
$$

$$
(y-6)(y-1)=0
$$

$$
y=6,1
$$

But

$$
\begin{aligned}
y=e^{3 x} & \\
e^{3 x}=1 & e^{3 x}
\end{aligned}=6
$$

$$
\begin{equation*}
\therefore x=0, x=\frac{\ln 6}{3} \tag{C}
\end{equation*}
$$

10

$$
\begin{align*}
& y=2 \sqrt{x} y=\frac{x}{4} \\
& y^{2}=4 x \quad y^{2}=\frac{x^{2}}{16} \\
& I=\pi \int_{a}^{b} y^{2} d x \tag{D}\\
&=\pi \int_{0}^{16}\left(4 x-\frac{x^{2}}{16}\right) d x
\end{align*}
$$

Section II
a)

$$
\begin{aligned}
& x^{2}-b x+4 y+17=0 \\
& x^{2}-b x=-4 y-17 \\
& x^{2}-b x+\left(\frac{-6}{2}\right)^{2}=-4 y-17+\left(-\frac{6}{2}\right)^{2} \\
&(x-3)^{2}=-4 y-8 \\
&(x-3)^{2}=-4(y+2) \\
&(x-h)^{2}=-4 a(y-b) \\
& a=1
\end{aligned}
$$

11) \therefore vertex is $(3,-2)$
iii) \therefore focus is $(3,-3)$
iv). directrix is $y=-1$
b)

$$
\begin{aligned}
& 3 x^{2}+15 x+b=0 \\
& a=3 \quad b=15 \quad c=6
\end{aligned}
$$

1)

$$
\begin{aligned}
\alpha+\beta & =\frac{-b}{a} \\
& =\frac{-15}{3} \\
& =-5
\end{aligned}
$$

i)

$$
\begin{aligned}
\alpha \beta & =\frac{c}{a} \\
& =\frac{b}{2} \\
& =3
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{\alpha}{\beta}+\frac{\beta}{\alpha} & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{(-5)^{2}-2 \times 3}{3} \\
& =\frac{25-6}{3} \\
& =\frac{19}{3} \\
& =6 \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& A(x-1)^{2}+B(x-1)+C=3 x^{2}-5 x+7 \\
& A\left(x^{2}-2 x+1\right)+B x-B+C=3 x^{2}-5 x+7 \\
& A x^{2}-2 A x+A+B x-B+C=3 x^{2}-5 x+7 \\
& A x^{2}+(B-2 A x)+(A-B+C)=3 x^{2}-5 x+7 \\
& \therefore A=3
\end{aligned} \begin{array}{rrr}
B-2 A=-5 & A-B+C=7 \\
B-2(3)=-5 & 3-1+C=7 \\
B=1 & C=5
\end{array}
$$

d)

$$
\begin{aligned}
x^{2}+(k+1) x+(k+3) & =0 \\
4^{2}+4(k+1)+(k+3) & =0 \\
16+4 k+4+k+3 & =0 \\
5 k & =-23 \\
k & =\frac{-23}{5}
\end{aligned}
$$

c)
$\xrightarrow{(-2,1)^{A} \cdot \underbrace{y}_{P(x, y)}} \underset{B_{B}^{(3,-3)}}{ }$

$$
\begin{aligned}
& \frac{A P}{P B}=\frac{2}{3} \\
& 3 A P=2 P B \\
& (3 A P)^{2}=(2 P B)^{2} \\
& 9 A P^{2}=4 P B^{2}
\end{aligned}
$$

Let $P(x, y)$ be a point on the locus

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& A P=\sqrt{(x+2)^{2}+(y-1)^{2}} \\
& A P^{2}=(x+2)^{2}+(y-1)^{2} \\
& P B=\sqrt{(x-3)^{2}+(y+3)^{2}} \\
& P B^{2}=(x-3)^{2}+(y+3)^{2}
\end{aligned}
$$

But

$$
\left.\begin{gathered}
\text { But } 9 A P^{2}=4 P B^{2} \\
9\left[(x+2)^{2}+(y-1)^{2}\right]=4\left[(x-3)^{2}+(y+3)^{2}\right] \\
9\left[x^{2}+4 x+4+y^{2}-2 y+1\right]=4\left[x^{2}-6 x+9+y^{2}+6 y\right.
\end{gathered} \right\rvert\,
$$

$$
\begin{array}{r}
9 x^{2}+36 x+9 y^{2}-18 y+45=4 x^{2}-24 x+4 y^{2} \\
+24 y+72 \\
5 x^{2}+60 x+5 y^{2}-42 y-27=0
\end{array}
$$

Question 12

$$
\text { a) } \begin{aligned}
& y=6 x^{3}+9 x^{2}-3 \\
& 6 x^{3}+9 x^{2}-3=3(x+1)^{2}(2 x-1) \\
& \text { R.HS }=3(x+1)^{2}(2 x-1) \\
&=3\left(x^{2}+2 x+1\right)(2 x-1) \\
&=\left(3 x^{2}+6 x+3\right)(2 x-1) \\
&=6 x^{3}+12 x^{2}+6 x-3 x^{2}-6 x-3 \\
&=6 x^{2}+9 x^{2}-3 \\
&=6 H 5 \\
& \therefore 6 x^{3}+9 x^{2}-3=3(x+1)^{2}(2 x-1)
\end{aligned}
$$

(ii) x-intercepts $\Rightarrow y=0$

$$
\begin{aligned}
6 x^{3}+9 x^{2}-3 & =0 \\
3(x+1)^{2}(2 x-1) & =0 \\
x & =-1, \frac{1}{2}
\end{aligned}
$$

$\therefore x$ intercepts are $(-1,0)\left(\frac{1}{2}, 0\right)$
iii)

$$
\begin{aligned}
& y=6 x^{3}+9 x^{2}-3 \\
& \frac{d y}{d x}=18 x^{2}+18 x \\
& \frac{d^{2} y}{d x^{2}}=36 x+18
\end{aligned}
$$

For stationary points $\frac{d y}{d x}=0$

$$
\begin{aligned}
18 x^{2}+18 x & =0 \\
18 x(x+1) & =0 \\
x & =0,-1
\end{aligned}
$$

when $x=0$

$$
\begin{aligned}
y & =6 x^{3}+9 x^{2}-3 \\
& =-3
\end{aligned}
$$

$\therefore(0,-3)$ is a stationary point

Test the nature

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =36 x+18 \text { at } x=0 \\
& =18
\end{aligned}
$$

As $\frac{d^{2} y}{d x^{2}}>0$ the curve is concave up U
$\therefore(0,-3)$ is a local minimum

When $x=-1$

$$
\begin{aligned}
y & =6 x^{3}+9 x^{2}-3 \\
& =6(-1)^{3}+9(-1)^{2}-3 \\
& =-6+9-3 \\
& =0
\end{aligned}
$$

$\therefore(-1,0)$ is a stationary point
Test the nature

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =36 x+18 \text { at } x=-1 \\
& =36(-1)+18 \\
& =-18
\end{aligned}
$$

As $\frac{d^{2} y}{d x^{2}}<0$ the curve is concave down \curvearrowright $\therefore(-1,0)$ is a local maximum.
iv) For points of inflexion $\frac{d^{2} y}{d x^{2}}=0$ and there is a change in concavity

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =36 x+18 \\
36 x+18 & =0 \\
36 x & =-18 \\
x & =-\frac{1}{2}
\end{aligned}
$$

when $x=-\frac{1}{2}$

$$
\begin{aligned}
y & =6 x^{3}+9 x^{2}-3 \\
& =6\left(-\frac{1}{2}\right)^{3}+9\left(-\frac{1}{2}\right)^{2}-3 \\
& =-1 \frac{1}{2}
\end{aligned}
$$

$\therefore\left(-\frac{1}{2},-1 \frac{1}{2}\right)$ may be a point of inflexion.
check concavity

x	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}+$
$\frac{d^{2} y}{d x^{2}}=36 x+18$	-	0	+

As there is a change in concavity $\left(-\frac{1}{2},-1 \frac{1}{2}\right)$ is a point of inflexion

In $\triangle A D E, \triangle A B C$

$$
\begin{aligned}
\hat{A D E} & =\hat{A B C} \\
& =90^{\circ}
\end{aligned}
$$

$\hat{A E D}=\hat{A C B}$ corresponding angles are equal $D E$ lief
$\therefore \triangle A D E I I I \triangle A B C$ equiangular

$$
\begin{aligned}
& \frac{B C}{D E}=\frac{A B}{A D} \text { corresponding } \\
& \frac{9}{r}=\frac{25}{25^{-h}} \begin{array}{l}
\text { sides of } \\
\text { similar triandt } \\
\text { are in proportion }
\end{array}
\end{aligned}
$$

$$
9(25-h)=25 r
$$

$$
225-9 h=25 r
$$

$$
9 h=225-25 r
$$

$$
=25(q-r)
$$

$$
h=\frac{25(q-r)}{9}
$$

$$
V=\pi r^{2} h
$$

$$
=\pi r^{2} \times \frac{25(q-r)}{9}
$$

$$
=\frac{25 \pi r^{2}(q-r)}{9}
$$

$$
\begin{aligned}
v & =\frac{225 \pi r^{2}-25 \pi r^{3}}{9} \\
\frac{d v}{d r} & =\frac{450 \pi r-75 \pi r^{2}}{9} \\
& =\frac{25 \pi r(6-r)}{\frac{73}{3}}
\end{aligned}
$$

For stationary points $\frac{d v}{d r}=0$

$$
\begin{aligned}
\frac{75 \pi r(6-r)}{9} & =0 \\
75 \pi r(6-r) & =0 \\
r & =0, b r>0 \\
\therefore r & =6
\end{aligned}
$$

when $r=6$

$$
\begin{aligned}
V & =\frac{25 \pi r^{2}(9-r)}{9} \\
& =\frac{25 \pi(6)^{2}(9-6)}{9} \\
& =300 \pi
\end{aligned}
$$

Test the nature

$$
\begin{aligned}
\frac{d v}{d r} & =\frac{150 \pi r-25 \pi r^{2}}{3} \\
\frac{d^{2} v}{d r^{2}} & =50 \pi-\frac{50 \pi r}{3} \\
& =\frac{50 \pi-50 \pi(6)}{3} \\
& =50 \pi-100 \pi \\
& =-50 \pi
\end{aligned}
$$

As $\frac{d^{2} v}{d r^{2}}<0 \quad \checkmark \quad a$ maximum value occurs \therefore The maximum volume is 300-1

Question 13
a) (1) $\int(3 x+4)^{4} d x=\frac{1}{15}(3 x+4)^{5}+c$
ii). $\int \frac{4 x^{2}+6}{x^{2}} d x=\int 4+6 x^{-2} d x$

$$
=4 x-6 x^{-1}+c
$$

$$
=4 x-\frac{6}{x}+c
$$

b)

$$
\begin{aligned}
\int_{0}^{5} \sqrt{25-x^{2}} d x & =\frac{1}{4} \pi r^{2} \\
& =\frac{1}{4} \pi(5)^{2} \\
& =\frac{25 \pi}{4}
\end{aligned}
$$

c) $f^{\prime}(x)=x^{2}-3 x-4$

$$
\begin{aligned}
f(x) & =\int x^{2}-3 x-4 d x \\
& =\frac{x^{3}}{3}-\frac{3 x^{2}}{2}-4 x+c
\end{aligned}
$$

when $x=-2, f(x)=1$

$$
\begin{aligned}
1 & =\frac{(-2)^{3}}{3}-\frac{3(-2)^{2}}{2}-4(-2)+c \\
1 & =\frac{-8}{3}-6+8+c \\
c & =\frac{5}{3} \\
\therefore \quad f(x) & =\frac{x^{3}}{3}-\frac{3 x^{2}}{2}-4 x+\frac{5}{3}
\end{aligned}
$$

d)

$$
A=\int_{0}^{2} 4-x^{2}-\left(2 x^{2}-6 x+4\right) d x
$$

$$
\begin{aligned}
& =\int_{0}^{2} 4-x^{2}-2 x^{2}+6 x-4 d x \\
& =\int_{0}^{2}-3 x^{2}+6 x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left[-x^{3}+3 x^{2}\right]_{0}^{2} \\
& =\left[-2^{3}+3(2)^{2}\right]-[0] \\
& =4
\end{aligned}
$$

\therefore Area is 4 units 2
a)

x	1	2	3
$f(x)=\ln x$	0	$\ln 2$	$\ln 3$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \doteq \frac{b-a}{2}[f(a)+f(b)] \\
\int_{1}^{3} \ln x d x & \doteqdot \frac{2-1}{2}[0+2 \ln 2+\ln 3] \\
& \doteqdot 1.242453325 \\
& =1.24 \text { to } 2 d p
\end{aligned}
$$

b)

The area using the trapezoidal rule is less than the area under the curve.
The curve is concave down
Question 14
a) (i) $y=e^{4 x+3}$

$$
\frac{d y}{d x}=4 e^{4 x+3}
$$

(II)

$$
\begin{aligned}
y & =x \ln x \quad u=x \quad v=\ln x \\
& =u v \quad \frac{d u}{d x}=1 \frac{d v}{d x}=\frac{1}{x} \\
\frac{d y}{d x} & =v \frac{d u}{d x}+u \frac{d v}{d x} \\
& =\ln x+x \times \frac{1}{x} \\
& =\ln x+1
\end{aligned}
$$

(III) $y=\log _{e}(2 x+7)$

$$
\frac{d y}{d x}=\frac{2}{2 x+7}
$$

$$
\begin{aligned}
\text { iv) } \begin{aligned}
y & =\ln \left(\frac{2 x+3}{2 x-3}\right) \\
& =\ln (2 x+3)-\ln (2 x-3) \\
\begin{aligned}
\frac{d y}{d x} & =\frac{2}{2 x+3}-\frac{2}{2 x-3} \\
& =\frac{2(2 x-3)-2(2 x+3)}{(2 x+3)(2 x-3)} \\
& =\frac{-12}{4 x^{2}-9} \\
\text { b) } 1) & \int \frac{4 x}{4 x^{2}+7} d x
\end{aligned} & =\frac{1}{2} \int \frac{8 x}{4 x^{2}+7} d x \\
& =\frac{1}{2} \ln \left(4 x^{2}+7\right)+
\end{aligned}
\end{aligned}
$$

ii) $\int x^{3} e^{x^{4}+2} d x=\frac{1}{4} e^{x^{4}+2}+c$

$$
\text { c) } \begin{aligned}
\log _{10} b & =\log _{10}(2 \times 3) \\
& =\log _{10} 2+\log _{10} 3 \\
& =0.301+0.477 \\
& =0.778
\end{aligned}
$$

ii) $\log _{10} 5=\log _{10}\left(\frac{10}{2}\right)$

$$
\begin{aligned}
& =\log _{10} 10-\log _{10} 2 \\
& =1-0.301 \\
& =0.699
\end{aligned}
$$

domain $x>3$
range \mathbb{R}

$$
\begin{aligned}
& y=\log _{e}(x-3) \\
& e^{y}=x-3 \\
& x=e^{y}+3 \\
& x^{2}=\left(e^{y}+3\right)^{2} \\
&=e^{2 y}+b e^{y}+9 \\
& v=\pi \int_{a}^{b} x^{2} d y \\
&=\pi \int_{1}^{4} e^{2 y}+6 e^{y}+9 d y \\
&=\pi\left[\frac{1}{2} e^{2 y}+6 e^{y}+9 y\right]_{1}^{4} \\
&=\pi\left[\frac{1}{2} e^{8}+6 e^{4}+36\right]-\pi\left[\frac{1}{2} e^{2}+6 e+9\right] \\
&=\pi\left[\frac{1}{2} e^{8}+6 e^{4}-\frac{1}{2} e^{2}-b e+27\right] \\
& \therefore v_{0} l u m e e^{1 s} \pi\left[\frac{1}{2} e^{8}+b e^{4}-\frac{1}{2} e^{2}-6 e+27\right] \text { units }
\end{aligned}
$$

