

North Sydney Boys' High School MATHEMATICS (HSC COURSE) ASSESSMENT TASK 2 (2007)

Name /60

QUESTION 1

- (a) Write down the primitive function of \sqrt{x} .
- (b) Evaluate:

i.
$$\int_0^1 (5x^4 - 3x^2 + 7) dx$$
 2

ii.
$$\int_{-1}^{1} (2y-1)^5 \, dy$$
 3

(c) The curve y = f(x) has gradient function $\frac{dy}{dx} = 3 - 4x$. The curve passes **3** through the point (1, -1). Find the equation of the curve.

(d) Find the value of
$$A$$
 if

$$2x^{2} - 3x + 5 \equiv A(x - 1)^{2} + x + 3$$

(e) The diagram illustrates a function y = f(x) for $-2 \le x \le 3$. It consists of 1 **2** line segment & 2 semi-circles.

Evaluate
$$\int_{-2}^{3} f(x) \, dx$$

 $\mathbf{2}$

1

Sketch the locus of the point P(x, y) which moves so that it is always a distance (a) of 2 units from the point (-2, 0). Hence write down its equation.

(b) Solve the equation
$$x^4 - 7x^2 + 12 = 0$$
.

- A point Q(x, y) moves so that it is equidistant from the point (1, 2) and the (c)line y = -2. Describe the locus of point Q geometrically. (Do not find its equation).
- If $\alpha \& \beta$ are roots of the equation $2x^2 7x 5 = 0$, find the values of: (d)

i.
$$\alpha + \beta$$
 1

iii.
$$(\alpha+1)(\beta+1)$$
 2

iv.
$$(\alpha + 1)^{-1} + (\beta + 1)^{-1}$$
 2

QUESTION 3

.

ii.

 $\alpha\beta$

(a) Find:

i.
$$\int (2x-1)(2x+1) \, dx$$
 2

ii.
$$\int \left(\frac{2x^5+3}{x^5}\right) dx$$
 2

(b) Find the approximate area under the curve shown using the Trapezoidal Rule.

x	10	15	20	25	30
y	0	13	17	22	16

(c) Find the volume of the solid of revolution shown below.

Mathematics (HSC Course) - Assessment Task 2 (2007) Last updated March 13, 2008

3

1

 $\mathbf{2}$

3

1

(a)	A parabola has vertex $V(3, 1)$ and directrix $y = -1$. Find the equation of the parabola.	2	
(b)	Find the values of k in the quadratic equation $x^2 - 5x + k - 1 = 0$ if:		
	1. one root is equal to 2.	2	
	ii. one root is the reciprocal of the other.	2	
(c)	For the parabola $x^2 = 8y - 24$, find the coordinates of the focus.		
	i. Find the equation of the locus of point P .	3	
	ii. Describe this locus in geometrical terms, stating its important features.	2	
QUI	ESTION 5		
(a)	Solve $(4+k)(1-k) < 0$.	1	
(b)	For what values of k is the quadratic expression $kx^2 + 4x + (k + 3)$ positive definite? (Hint: part (a) may be useful).	<mark>3</mark>	
(c)	i. Differentiate $(x^2 + 3)^5$.	1	

ii. Hence, find
$$\int x(x^2+3)^4 dx$$
. 1

(d) The area of the shaded region is 40 square units.

Find the value of a.

(e) If
$$\int_{-1}^{5} g(x) dx = 7$$
, find the value of:
i. $\int_{5}^{-1} g(x) dx$.
ii. $\int_{5}^{5} [3g(x) + 2] dx$.
2

End of task

3

Brief solutions

QUESTION 1

(a)
$$\int x^{1/2} dx = \frac{2}{3}x^{3/2} + C$$

(b) i.
$$\int_0^1 5x^4 - 3x^2 + 7 \, dx$$

= $\left[x^5 - x^3 + 7x\right]_0^1$
= $1 - 1 + 7 = 7$

ii.
$$\int_{-1}^{1} (2y-1)^5 \, dy$$
$$= \left[\frac{(2y-1)^6}{6 \times 2} \right]_{-1}^{1}$$
$$= \frac{1}{12} \left((2-1)^6 - (2(-1)-1)^6 \right)$$
$$= \frac{1}{12} (1-729) = -\frac{728}{12}$$
$$= -\frac{182}{3}$$

(c)
$$y' = 3 - 4x$$
.
 $y = \int 3 - 4x \, dx = 3x - 2x^2 + C$
At $x = 1, y = -1$.
 $-1 = 3(1) - 2(1) + C$
 $-1 = 1 + C$
 $\therefore C = -2$
 $\therefore y = 3x - 2x^2 - 2$
 $= -2x^2 + 3x - 2$

(d)
$$A = 2$$
:
 $2x^2 - 3x + 5 \equiv A(x-1)^2 + x + 3$
 $= Ax^2 - 2Ax - A + x + 3$
 $= Ax^2 - x(2A-1) + (3+A)$

Equating coefficients, A = 2.

(e) Note that the areas of the semi-circles are offset and the remaining area is the area of the triangle with length = 1 and height = 2.

$$\int_{-2}^{3} f(x) \, dx = \frac{1}{2} \times 2 \times 1 = 1$$

QUESTION 2

(a) Using the distance formula to describe the distance from the point P(x, y) to the point (-2, 0) being 2 units,

which is a circle centred at (-2, 0) with radius 2.

(b) Letting
$$m = x^2$$
,
 $m^2 - 7m + 12 = 0$
 $(m - 4)(m - 3) = 0$
 $(x^2 - 4)(x^2 - 3) = 0$
 $(x - 2)(x + 2)(x - \sqrt{3})(x + \sqrt{3}) = 0$
 $\therefore x = \pm 2, \pm \sqrt{3}$

(c) Parabola with focus at (1, 2), vertex (1, 0) and directrix y = -2.

(d)
i.
$$\alpha + \beta = -\frac{b}{a} = \frac{7}{2}$$

ii. $\alpha\beta = \frac{c}{a} = -\frac{5}{2}$
iii. $(\alpha + 1)(\beta + 1)$
 $= \alpha\beta + \alpha + \beta + 1$
 $= \frac{7}{2} - \frac{5}{2} + 1$
 $= 2$
A)
iv. $(\alpha + 1)^{-1} + (\beta + 1)^{-1}$
 $= \frac{1}{\alpha + 1} + \frac{1}{\beta + 1}$
 $= \frac{\beta + 1 + \alpha + 1}{(\alpha + 1)(\beta + 1)}$
 $= \frac{\alpha + \beta + 2}{(\alpha + 1)(\beta + 1)} = \frac{\frac{7}{2} + 1}{2}$
 $= \frac{11}{4}$

(a) i.
$$\int (2x-1)(2x+1) dx$$

 $= \int 4x^2 - 1 dx$
 $= \frac{4}{3}x^3 - x + C$
ii. $\int \left(\frac{2x^5 + 3}{x^5}\right) dx$
 $= \int \frac{2x^5}{x^5} + \frac{3}{x^5} dx$
 $= \int 2 + 3x^{-5} dx$
 $= 2x - \frac{3}{4}x^{-4} + C$

(b)
$$A \approx \frac{h}{2} (y_1 + \sum y_{\text{middle}} + y_\ell)$$

= $\frac{5}{2} (0 + 2(13 + 17 + 22) + 16)$
= 300 units²

(c) Since
$$y = x^2 + 1$$
,
 $y^2 = (x^2 + 1)^2$
 $= x^4 + 2x^2 + 1$
 $V = \pi \int_a^b y^2 dx$
 $= \pi \int_0^2 x^4 + 2x^2 + 1 dx$
 $= \pi \left[\frac{1}{5}x^5 + \frac{2}{3}x^3 + x\right]_0^2$
 $= \pi \left(\frac{32}{5} + \frac{16}{3} + 2\right)$
 $= \frac{206\pi}{15}$ units³

QUESTION 4

(a) Focus-directrix form with (3, 1) being the vertex & a = 2 being the focal length as a is half of the distance between the focus & directrix.

$$(x-h)^2 = 4a(y-k)^2$$

 $\Rightarrow (x-3)^2 = 8(y-1)^2$

(b) $x^2 - 5x + (k - 1) = 0.$ i. $\alpha = 2$. Using the sum of roots,

$$\alpha + \beta = -\frac{b}{a}$$
$$2 + \beta = \frac{5}{1}$$
$$\therefore \beta = 3$$

Using the product of roots,

$$\alpha\beta = \frac{c}{a}$$
$$2 \times 3 = k - 1$$
$$\therefore k = 7$$

- ii. $\alpha = \frac{1}{\beta}$. Using the product of roots,
 - $\alpha\beta = \frac{c}{a}$ 1 = k 1 $\therefore k = 2$

(c)
$$x^2 = 8y - 24$$

$$\Rightarrow x^2 = 4 \times 2(y - 3)$$

i.e. vertex is at (0,3) and focal length a = +2. Hence the focus is at (0,5).

(d) i. Applying the distance formula,

$$\begin{split} PA &= \sqrt{(x+3)^2 + (y-1)^2} \\ PB &= \sqrt{(x-3)^2 + (y+1)^2} \end{split}$$

Applying the condition

$$PA^{2} + PB^{2} = 70$$

$$\overbrace{(x+3)^{2} + (y-1)^{2}}^{PB^{2}}$$

$$+ \overbrace{(x-3)^{2} + (y+1)^{2}}^{PB^{2}} = 70$$

$$(x^{2} + 6x + 9) + (y^{2} - 2y + 1)$$

$$+ (x^{2} - 6x + 9) + (y^{2} + 2y + 1) = 70$$

$$2(x^{2} + 9) + 2(y^{2} + 1) = 70$$

$$x^{2} + y^{2} + 10 = 35$$

$$\Rightarrow x^{2} + y^{2} = 25$$

ii. Circle of radius 5 centred at the origin.

(a) i. Sketching
$$y = (4+k)(1+k)$$

(d)

(-k),

ii. In
$$y = kx^2 + 4x + (k+3)$$
,
 $\Delta = b^2 - 4ac$
 $= 4^2 - 4k(k+3)$
 $= 4(4 - k^2 + 3k)$

 $y = kx^2 + 4x + (k+3)$ is positive definite when k > 0 & $\Delta < 0$.

$$4(-k^{2} + 3k + 4) < 0$$

(4+k)(1-k) < 0

Using Question 5(a)i,

$$k > 1$$
 $k < -4$

But it was established that k > 0. Hence k > 1 for the quadratic to be positive definite.

- (b) i. Differentiating by the chain rule, $\frac{d}{dx} (x^2 + 3)^5 = 5 \times 2x (x^2 + 3)^4$ $= 10x (x^2 + 3)^4$ (5.1)
 - ii. Using Equation (5.1),

$$\int x(x^2+3)^4 dx = \frac{1}{10} \int 10x (x^2+3)^4 dx$$
$$= \frac{1}{10} (x^2+3)^5 + C$$

(c) Integrating,

$$40 = \int_0^2 4ax - ax^2 dx$$
$$= \left[2ax^2 - \frac{a}{3}x^3\right]_0^2$$
$$= (2a \cdot 4) - \left(\frac{a}{3} \cdot 8\right)$$
$$= \frac{16a}{3}$$
$$\therefore a = \frac{120}{16} = \frac{15}{2}$$

Mathematics (HSC Course) – (Assessment Task 2 (2007) SOLUTIONS) Last updated March 13, 2008

i.
$$\int_{5}^{-1} g(x) \, dx = -\int_{-1}^{5} g(x) \, dx =$$

ii.
$$\int_{-1}^{5} (3g(x) + 2) \, dx$$

$$= \int_{-1}^{5} 3g(x) \, dx + \int_{-1}^{5} 2 \, dx$$

$$= 3 \int_{-1}^{5} g(x) \, dx + \int_{-1}^{5} 2 \, dx$$

$$= 3 \times 7 + 2 \times 6$$

$$= 33$$