NORTH SYDNEY BOYS' HIGH SCHOOL

MATHEMATICS

General instructions

- Working time - 60 minutes.
- Write in the booklet provided.
- Each new question is to be started on a new booklet.
- Write using blue or black pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets within this paper and hand to examination supervisors.

Class teacher (please \boldsymbol{V})
\bigcirc Mr Fletcher
$\bigcirc \mathrm{Mr}$ LamMr LoweMr IrelandMr TrenwithMr RezcallahMr Weiss

STUDENT NUMBER:

Marker's use only.
QUESTION
1
2
:---
3
4
5
Total
Total $(\%)$

(a) i. Find $\int 6 x^{7} d x$.

2

2

2
(b) Find $\int \frac{x^{3}+x^{2}}{2 x} d x$.
(c) i. \quad Differentiate $y=\left(2 x^{5}-1\right)^{3}$.
ii. Hence or otherwise, find $\int 10 x^{4}\left(2 x^{5}-1\right)^{2} d x$.
(d) Find the exact value of k if $\int_{2}^{k} 3 x^{2} d x=50$.

Question 2 (12 Marks) Commence a new booklet.
(a) i. Evaluate $\int_{-a}^{a} x^{5} d x . \quad \mathbf{2}$
ii. Find the area bounded by the curve $y=x^{5}$ between the lines $x=-a$, $x=a$ and the x axis.
(b) By sketching the curve $y=\sqrt{9-x^{2}}$, hence or otherwise evaluate $\int_{0}^{3} \sqrt{9-x^{2}} d x$ as an exact value.
(c) Given $s^{\prime \prime}(t)=2 t^{2}, s^{\prime}(2)=1$ and $s(1)=2$, find:
i. $\quad s^{\prime}(t)$
ii. $\quad s(3)$

Question 3 (11 Marks)

(a) Find the area of the region between the curves

$$
\left\{\begin{array}{l}
y=x^{2} \\
y=3 x+4
\end{array}\right.
$$

(b) Find the volume of solid of revolution when the region bounded by the curve $y=x^{2}+1$, the y axis, the lines $y=2 \& y=5$, rotated about the y axis.
(c) Find an approximation to $\int_{0}^{1} 2^{x} d x$ by using Simpson's Rule with 5 function values.

Question 4 (13 Marks) Commence a new booklet.
(a) The probability that a particular man lives to the age of 75 is $\frac{4}{5}$ and the probability that his wife will live to 75 is $\frac{6}{7}$. By drawing a tree diagram or otherwise, find:
i. Only the man will live to 75 .
ii. \quad Both will live to 75 .
iii. At least one of them will live to 75.
(b) In a bag with 20 marbles, seven are red, nine are gold \& four are blue. One marble is taken from the bag and not replaced, then a second is taken out.

Find the probability of choosing:
i. Two red marbles.
ii. Marbles of a different colour
(c) If an integer x between 1 and 100 (inclusive) is chosen at random, find the probability of the number being:
i. Less than 50 or a multiple of 5 .
ii. Being a multiple of 9 but not a multiple of 12 .

Question 5 (6 Marks) Commence a new booklet.
(a) i. Find the equation of a line passing through the points $(0,0)$ and (h, r).
ii. Using the diagram below \& by rotating the given line about the x axis, derive the formula for the volume of a cone with radius r and height h.

(b) A certain telecommunications company offers "untimed" international calls but disconnects the call after 3 hours.

The probability of a call duration between $a<t<b$ hours using the function is

$$
P(a<t<b)=\int_{a}^{b} f(t) d t
$$

Using this, find the probability of a call lasting
i. Between $60 \& 90$ minutes.
ii. Exactly 1.5 hours.

End of paper.

Solutions

Question 1

(a) i. (2 marks)

$$
\int 6 x^{7} d x=\frac{3}{4} x^{8}+C
$$

ii. (2 marks)

$$
\begin{aligned}
& \int_{0}^{1} 5 x^{4}+3 x+1 d x \\
= & {\left[x^{5}+\frac{3}{2} x^{2}+x\right]_{0}^{1} } \\
= & 1+\frac{3}{2}+1=\frac{7}{2}
\end{aligned}
$$

(b) (2 marks)

$$
\begin{aligned}
\int \frac{x^{3}+x^{2}}{2 x} d x & =\frac{1}{2} \int \frac{x^{3}}{x}+\frac{x^{2}}{x} d x \\
& =\frac{1}{2} \int x^{2}+x d x \\
& =\frac{1}{2}\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right)+C \\
& =\frac{1}{6} x^{3}+\frac{1}{4} x^{2}+C
\end{aligned}
$$

(c) i. (2 marks)

$$
\left.\begin{array}{c}
y=\left(2 x^{5}-1\right)^{3} \\
y(u)=u^{3} \quad u(x)=2 x^{5}-1 \\
y^{\prime}(u)=3 u^{2} \quad u^{\prime}(x)=10 x^{4}
\end{array}\right\}
$$

ii. (2 marks)

$$
\begin{aligned}
& \int 10 x^{4}\left(2 x^{5}-1\right)^{2} d x \\
= & \frac{1}{3} \int 30 x^{4}\left(2 x^{5}-1\right)^{2} d x \\
= & \frac{1}{3}\left(2 x^{5}-1\right)^{3}+C
\end{aligned}
$$

iii. (2 marks)

$$
\begin{aligned}
\int_{2}^{k} 3 x^{2} & =50 \\
{\left[x^{3}\right]_{2}^{k} } & =50 \\
k^{3}-2^{3} & =50 \\
k^{3} & =58 \\
k & =58^{1 / 3}
\end{aligned}
$$

Question 2

(a) i. (2 marks)

$$
\begin{aligned}
\int_{-a}^{a} x^{5} d x & =\left[\frac{1}{6} x^{6}\right]_{-a}^{a} \\
& =\frac{1}{6}\left(\not \&^{8}-(-a)^{6}\right) \\
& =0
\end{aligned}
$$

ii. (2 marks)

Since the integral is 0 , then the area from $x=-a$ to $x=0$ must be equal to the area from $x=0$ to $x=a$.

$$
\begin{aligned}
A & =2 \int_{0}^{a} x^{5} d x \\
& =2\left[\frac{1}{6} x^{6}\right]_{0}^{a} \\
& =\frac{1}{3} a^{6}
\end{aligned}
$$

Both marks to be awarded iff explanation is acceptable.
(b) (3 marks)

The integral $\int_{0}^{3} \sqrt{9-x^{2}} d x$ is the same as the area of the quarter circle.

$$
\begin{aligned}
\int_{0}^{3} \sqrt{9-x^{2}} d x & =\frac{1}{4} \pi \times 3^{2} \\
& =\frac{9}{4} \pi
\end{aligned}
$$

(c) i. (2 marks)

$$
\begin{aligned}
s^{\prime}(t) & =\int s^{\prime \prime}(t) d t \\
& =\int 2 t^{2} d t \\
& =\frac{2}{3} t^{3}+C_{1}
\end{aligned}
$$

Using $s^{\prime}(2)=1$

$$
\begin{aligned}
1 & =\frac{2}{3} \times 2^{3}+C_{1} \\
& =\frac{16}{3}+C_{1} \\
C_{1} & =1-\frac{16}{3}=-\frac{13}{3} \\
\therefore & s^{\prime}(t)=\frac{2}{3} t^{3}-\frac{13}{3}
\end{aligned}
$$

ii. (3 marks)

$$
\begin{aligned}
s(t) & =\int s^{\prime}(t) d t \\
& =\int \frac{2}{3} t^{3}-\frac{13}{3} d t \\
& =\frac{2}{3} \cdot \frac{1}{4} t^{4}-\frac{13}{3} t+C_{2} \\
& =\frac{1}{6} t^{4}-\frac{13}{3} t+C_{2}
\end{aligned}
$$

Using $s(1)=2$,

$$
\begin{aligned}
& 2=\frac{1}{6}-\frac{13}{3}+C_{2} \\
& C_{2}=2-\frac{1}{6}+\frac{13}{3} \\
&=\frac{37}{6} \\
& \therefore s(t)=\frac{1}{6} t^{4}-\frac{13}{3} t+\frac{37}{6} \\
& \therefore s(3)=\frac{20}{3}
\end{aligned}
$$

Question 3

(a) (4 marks)

Find the points of intersection between the two curves by equating,

$$
\begin{gathered}
x^{2}=3 x+4 \\
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0 \\
\therefore x=4,-1
\end{gathered}
$$

The area is thus

$$
\begin{aligned}
A & =\left|\int_{-1}^{4}(3 x+4)-x^{2} d x\right| \\
& =\left|\int_{-1}^{4} x^{2}-3 x-4 d x\right| \\
& =\left|\left[\frac{1}{3} x^{3}-\frac{3}{2} x^{2}-4 x\right]_{-1}^{4}\right| \\
& =\frac{125}{6}
\end{aligned}
$$

(b) (3 marks)

Changing the subject to x^{2} :

$$
\begin{aligned}
y & =x^{2}+1 \\
x^{2} & =y-1
\end{aligned}
$$

Integrating,

$$
\begin{aligned}
V & =\pi \int_{2}^{5} x^{2} d y \\
& =\pi \int_{2}^{5} y-1 d y \\
& =\pi\left[\frac{1}{2} y^{2}-y\right]_{2}^{5} \\
& =\pi\left(\frac{1}{2}\left(5^{2}-2^{2}\right)-(5-2)\right) \\
& =\pi\left(\frac{21}{2}-3\right) \\
& =\frac{15 \pi}{2}
\end{aligned}
$$

(c) (4 marks)

Using Simpson's Rule with the 5 function values from the table,*

$$
\begin{aligned}
A & \approx \frac{h}{3}\left(y_{1}+4 y_{\text {even }}+2 y_{\text {odd }}+y_{\ell}\right) \\
& =\frac{\frac{1}{4}}{3}\left(1+4\left(2^{1 / 4}+2^{3 / 4}\right)+2 \times 2^{1 / 2}+2\right) \\
& =1.4427 \text { (4 d.p.) }
\end{aligned}
$$

Question 4

(a) Draw out the probability tree, letting the event of the man living to $75+$ be M and the event of the woman living to $75+$ be W.

i. (1 mark)

$$
P(M)=P(M) \times P(\bar{W})=\frac{4}{5} \times \frac{1}{7}=\frac{4}{35}
$$

ii. (2 marks)

$$
\begin{aligned}
P(M W) & =P(M) \times P(W) \\
& =\frac{4}{5} \times \frac{6}{7}=\frac{24}{35}
\end{aligned}
$$

The first mark is for identification of a pair of independent events.
iii. (2 marks)

$$
\begin{aligned}
& P(\text { at least } M \text { or } W) \\
= & 1-P(\text { neither }) \\
= & 1-(P(\bar{M}) P(\bar{W})) \\
= & 1-\left(\frac{3}{5} \times \frac{1}{7}\right)=\frac{32}{35}
\end{aligned}
$$

The first mark is for identifying the complement.

[^0](b) i. (2 marks)

\[

$$
\begin{aligned}
P(R R) & =\frac{7}{20} \times \frac{6}{19} \\
& =\frac{21}{190}
\end{aligned}
$$
\]

ii. (2 marks)

$$
\begin{aligned}
& P(\text { different }) \\
= & 1-P(\text { same }) \\
= & 1-(P(R R)+P(G G)+P(B B)) \\
= & 1-\left(\frac{21}{190}+\left(\frac{9}{20} \times \frac{8}{19}\right)+\left(\frac{4}{20} \times \frac{3}{19}\right)\right) \\
= & \frac{127}{190}
\end{aligned}
$$

(c) A Venn diagram would assist in the calculations. Not drawn here for brevity.
i. (2 marks)

There are 11 multiples of 5 from 50 to 100 inclusive, and 49 numbers less than 50 (1 to 49). Hence

$$
P(x<50 \cup 5 \mid x)=\frac{49+11}{100}=\frac{3}{5}
$$

A Venn diagram would assist in the calculations.
ii. (2 marks)

Common multiples of 9 and 12 are 36 $\& 72$. Since there are 11 multiples of 9 between $1 \& 100$, then there are 9 of them which are not also multiples of 12. Hence

$$
P(x \mid 9 \cap 12 \not \Varangle x)=\frac{9}{100}
$$

Question 5

(a) i. (1 mark)

$$
\begin{aligned}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{r-0}{h-0}=\frac{r}{h} \\
\therefore y & =\frac{r}{h} x
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
V & =\pi \int_{0}^{h} y^{2} d x \\
& =\pi \int_{0}^{h} \frac{r^{2}}{h^{2}} x^{2} d x \\
& =\frac{\pi r^{2}}{h^{2}}\left[\frac{1}{3} x^{3}\right]_{0}^{h} \\
& =\frac{\pi r^{2}}{\not h^{2}} \times \frac{1}{3} h^{\not p} \\
& =\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

(b) i. (2 marks)

$$
\begin{aligned}
& P(1<t<1.5) \\
= & \int_{1}^{3 / 2}-\frac{2}{9} t+\frac{2}{3} d t \\
= & {\left[-\frac{1}{9} t^{2}+\frac{2}{3} t\right]_{1}^{3 / 2} } \\
= & \left(-\frac{1}{9}\left(\frac{9}{4}-1\right)+\frac{2}{3}\left(\frac{3}{2}-1\right)\right) \\
= & \left(-\frac{1}{9}\left(\frac{5}{4}\right)+\frac{2}{3} \times \frac{1}{2}\right) \\
= & \frac{7}{36}
\end{aligned}
$$

Both marks to be awarded if student is capable of finding the function values at $t=1$ and $t=\frac{3}{2}$, then using the area of a trapezium to find the proper area.
ii. (1 mark)

$$
\begin{aligned}
P(t=1.5) & =P(1.5<t<1.5) \\
& =\int_{1.5}^{1.5} f(t) d t \\
& =0
\end{aligned}
$$

Highlights the theoretical impossibility of ANY call lasting exactly 1.5 hours under a continuous probability distribution.

[^0]: ${ }^{*}$ Students may use a 4 d.p. approximation of 2^{x} where 2^{x} is irrational.

