

NORTH SYDNEY BOYS HIGH SCHOOL

2009 YEAR 12 HSC ASSESSMENT TASK 2

Mathematics

General Instructions

- Working time - 65 minutes
- Write in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Total Marks (54)

- Attempt all questions

Class Teacher:

(Please tick or highlight)
O Mr Weiss
O Mr Fletcher
O Mr Lowe
O Mr Ireland
O Mr Trenwith
O Mr Rezcallah
O Mr Barrett

Student Number:

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6	7	Total	Total
Mark	$\overline{8}$	$\overline{6}$	$\overline{8}$	$\overline{8}$	$\overline{8}$	$\overline{7}$	$\overline{9}$	$\overline{54}$	$\overline{100}$

Question 1 (8 marks)
(a) Find
(i) $\int\left(3 x^{2}+1\right) d x$
(ii) $\int\left(\frac{1}{x^{2}}-\sqrt{x}\right) d x$
(b) Evaluate $\int_{0}^{1}(2 x+1)^{4} d x$
(c) If $f^{\prime}(x)=4 x-1$, and $f(-1)=6$, find $f(x)$.

Question 2 (6 marks)
Solve for x, giving exact answers:
(a) $(x-2)^{2}=5 \quad 2$
(b) $\begin{array}{ll}x^{4}=8 x^{2}+9 & 2\end{array}$
(c) $x^{2}>9 x \quad 2$

Question 3 (8 marks)
(a) Sketch the parabola $x^{2}=-12 y$, showing all important features. $\quad \mathbf{2}$
(b) A parabola has its focus at $S(1,3)$, and its directrix has equation $x=-5$. Write down the equation of this parabola.
(c) Find the coordinates of the focus, and the equation of the directrix for the parabola $x^{2}+4 x-6 y+10=0$.

Question 4 (8 marks)
(a) The expression $2 x^{2}-x+4$ has zeros α and β. Find the values of
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\alpha^{2}+\beta^{2}$
(b) Form a quadratic equation whose roots are $1 \pm \sqrt{3}$.

Write your answer in the form $a x^{2}+b x+c=0$

Question 5 (8 marks)

(a) Write down the equation of the circle centred on $C(-3,1)$, with a radius of 4 units.
(b) The points A and B have coordinates $(-1,2)$ and $(0,4)$ respectively. Derive the equation of the locus of a point P which satisfies
(i) $\quad P$ is twice as far from A as from B. 3
(ii) $A P \perp B P$.

Question 6 (7 marks)
(a) Use the discriminant to show that the roots of $3 x^{2}+4 x-1=0$ are real.

Then write down two more properties of these roots.
(b) (i) Show that the equation $a x^{2}-(a+1) x+1=0$ has real roots for all values of a.
(ii) It is given that the vertex of $y=a x^{2}-(a+1) x+1$ lies on the x-axis. Find the coordinates of this vertex.

Question $7 \quad$ (9 marks)
(a) Express x^{2} in the form $a(x+1)^{2}+b(x+1)+c$ 3
(b) Solve $2^{2 x+1}+2^{x}=1 \quad$ [working needed to get any marks] 3
(c) A straight line through the origin has a gradient of m.

3
A parabola has an equation of the form $y=a x^{2}+m$. For what value of m (other than $m=0$) is the line a tangent to the parabola?
[Show all working]

Queston 1
(a) (i)

$$
\int\left(3 x^{2}-1\right) d x=x^{2}+x+c
$$

$$
\begin{gathered}
\text { ansower... } \\
c^{\prime} \cdots
\end{gathered}
$$

(13)

$$
\begin{aligned}
\int\left(x^{2}-\sqrt{x}\right) d x & =\int\left(x^{-2}-x^{1 /}\right) d x \\
& =\frac{x^{1}}{-1}-\frac{x^{2}}{x / 2} \\
& =-\frac{1}{x}-\frac{2}{3} \sqrt{x^{3}}+c
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{x} \cdots \cdots+ \\
& \cdots \frac{2}{3} x^{3 / 2} \ldots+
\end{aligned}
$$

b)

$$
\begin{align*}
\int_{0}^{1}(2 x+1)^{4} d x & =\frac{1}{10}\left[(2 x+1)^{5}\right]_{0}^{1} \\
& =\frac{1}{10}(243-1) \tag{2}\\
& =\frac{121}{5}
\end{align*}
$$

(c)

$$
\begin{aligned}
f^{\prime}(x) & =4 x-1 \\
f(x) & =2 x^{2}-x+c \\
(-1,6): 6 & =2+1+c \\
c & =3
\end{aligned}
$$

$$
" \quad+\quad-(40 \cos +1
$$

$$
f(x)=2 x^{2}-x+3
$$

Question 2
(a)

$$
\begin{aligned}
& (x-2)^{2}=5 \\
& x-2= \pm \sqrt{5} \\
& x=2 \pm \sqrt{5}
\end{aligned}
$$

(b)

$$
\begin{gathered}
x^{4}=8 x^{2}+9 \\
x^{4}-8 x^{2}-9=0 \\
\left(x^{2}-9\right)\left(x^{2}+1\right)=0 \\
x= \pm 3
\end{gathered}
$$

(c)

$$
\begin{aligned}
& x^{2}>9 x \\
& x^{2}-9 x>= \\
& x(x-\infty)>0 \\
& x<0 \text { or } x>9
\end{aligned}
$$

Auetrion 3
(a)

(b)

$$
(y-3)^{2}=12(x+2)
$$

oratation...

$$
3
$$

$x=-5$
(c)

$$
\begin{gathered}
x^{2}+4 x-6 y+10=0 \\
x^{2}+4 x+4=6 y-10 \\
(x+2)^{2}=6(y-1) \\
B(-2,1) \\
a=1 \frac{1}{2} \\
\therefore\left(-2,2 \frac{1}{2}\right)
\end{gathered}
$$

dir:

$$
y=-\frac{1}{2}
$$

…

Guvestion 4
(a) (i) $\alpha+\beta=\frac{1}{2} \ldots$ E
(ii) $\alpha \beta=2$
(ii1)

$$
\begin{aligned}
\frac{1}{x}+\frac{1}{\beta} & =\frac{\alpha+\beta}{\alpha \beta} \ldots 1 \\
& =\frac{1 / 2}{2} \\
& =1 / 4 \ldots 1
\end{aligned}
$$

(18)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(25 B)^{2}-2 \alpha \beta \cdots 1 \\
& =\left(\frac{1}{2}\right)^{2}-2(2) \\
& =-\frac{15}{4} \quad \cdots-1
\end{aligned}
$$

(b)

$$
\left.\begin{array}{rl}
\text { sun of roots } & =2 \\
\text { prod of roots } & =(1+\sqrt{3})(1-\sqrt{3}) \\
& =-2
\end{array}\right\} \begin{aligned}
& \text { anyon } \\
& \text { ot these } \cdots . . . ~
\end{aligned}
$$

$$
\therefore x^{2}-2 x-2=0
$$

avistens
(a) $(x+3)^{2}+(y-1)^{2}=16$
(b)

$$
\begin{aligned}
& P A=2 P \\
& P A^{2}=4 P B^{2} \\
& (x+1)^{2}+(y-2)^{2}=4 x^{2}+4(y-4)^{2} \\
& x^{2}+2 x+1+y^{2}-4 y+4=4 x^{2}+4 y^{2}-32 y+64 \\
& 3 x^{2}+3 y^{2}-2 x-25 y+59=0
\end{aligned}
$$

(C)

$$
\begin{aligned}
& m_{A P} \cdot m_{B P}=-1 \\
& \frac{y-2}{x+1} \cdot \frac{y-4}{x}=-1 \\
& (y-2)(y-8)=-x(x+1) \\
& y^{2}-6 y+8=-x^{2}-x \\
& x^{2}+y^{2}+x-6 y+8=0
\end{aligned}
$$

Guatorst
(a)

$$
\begin{aligned}
\angle & =4^{2}-4(3)(-1) \\
& =28>c
\end{aligned}
$$

\therefore rocts are real ... 1/
alse distinct ... 2
and innational …i
(b)

$$
\begin{aligned}
\Delta & =(a+1)^{2}-4 a-1 \\
& =a^{2}+2 a+1-a n \\
& =a^{2}-2 a+1 \\
& =(a-1)^{2} \\
& \geqslant 0 \quad \forall a \quad \cdots ン
\end{aligned}
$$

\therefore real roots $\forall a$
(ii) equal roots $\Rightarrow a=1$

$$
\begin{gathered}
\quad x^{2}-2 x+1=0 \\
(x-1)^{2}=0 \\
x=1 \\
\therefore \vee(1,0)
\end{gathered}
$$

Mucostran?
(a)

$$
\begin{array}{ll}
x^{2}=a(x+1)^{2}+b(x+1)+c \\
x=-1 \Rightarrow 1=a \\
x=a \Rightarrow a & \Rightarrow a+b+1 \\
x=-2 \Rightarrow a+b & =a-b+1 \\
a-b & =3 \\
2 a & =2 \\
a & =1 \\
a & b=-2 \\
& =a
\end{array}
$$

02

$$
\begin{aligned}
& x^{2}=a(x+1)^{2}+⿻(x+b)+c \\
&=a x^{2}+2 a x+a+b x+b+c \\
&=a x^{2}+(2 a+b) x+(a+b+c) \\
& \therefore \quad a=1 \quad 2 a+b=0 \quad a+b+c=0 \\
& 2+b=0 \quad 1-2+c=a \\
& b=-2 \quad c=1
\end{aligned}
$$

$$
\therefore x^{2} \equiv(x+1)^{2}-2(x+1)+1
$$

(b)

$$
\begin{align*}
& 2^{2 x+1}+2^{x}=1 \\
& 2\left(2^{2}\right)+2^{x}=1 \\
& \text { let } m=2^{x} \\
& 2 m^{2}+m-1=0 \\
& (2 m-1)(m+1)=0 \tag{3}\\
& m=\frac{2}{2} \quad m=-1 \\
& 2^{x}=\frac{1}{2} \quad 2^{x}=-1 \\
& x=-1 \quad n o \text { sation } \quad \cdots, 1
\end{aligned} \quad \begin{aligned}
& \text { Nowating } \\
& x^{2}
\end{align*}
$$

(c)

$$
\begin{aligned}
& a x^{2}+m=m x \\
& a x^{2}-m x+m=0
\end{aligned}
$$

$\Delta=0$ for tangent...y

$$
\begin{aligned}
& m^{2}-4 a m= \\
& m(m-4 a)=0 \\
& m=0 \quad m=4 a \quad \ldots 1
\end{aligned}
$$

Stated atready

