

NORTH SYDNEY BOYS HIGH SCHOOL

2009 YEAR 12 HSC ASSESSMENT TASK 2

Mathematics

General Instructions

- Working time 65 minutes
- Write in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Total Marks (54)

Attempt all questions

Class Teacher:

- (Please tick or highlight)
 - O Mr Weiss
 - O Mr Fletcher
 - O Mr Lowe
 - O Mr Ireland
 - O Mr Trenwith
 - O Mr Rezcallah
 - O Mr Barrett

Student Number:

Question	1	2	3	4	5	6	7	Total	Total
Mark	8	6	8	8	8	7	9	54	100

Question 1 (8 marks)

(a) Find (i)
$$\int (3x^2 + 1) dx$$
 2
(ii) $\int \left(\frac{1}{x^2} - \sqrt{x}\right) dx$ 2

(b) Evaluate
$$\int_0^1 (2x+1)^4 dx$$
 2

(c) If
$$f'(x) = 4x - 1$$
, and $f(-1) = 6$, find $f(x)$. 2

Question 2 (6 marks)

Solve for x, giving exact answers:

(a) $(x-2)^2 = 5$ 2

(b)
$$x^4 = 8x^2 + 9$$
 2
(c) $x^2 > 9x$ 2

Question 3 (8 marks)

(a)	Sketcl	h the parabola $x^2 = -12y$, showing all important features.	2	
(b)	A parabola has its focus at $S(1, 3)$, and its directrix has equation $x = -5$. Write down the equation of this parabola.			
(c)	Find the coordinates of the focus, and the equation of the directrix for the parabola $x^2 + 4x - 6y + 10 = 0$.			
Quest	ion 4	(8 marks)		
(a)	The e	xpression $2x^2 - x + 4$ has zeros α and β. Find the values of		
	(i)	$\alpha + \beta$	1	
	(ii)	αβ	1	
	(iii)	$\frac{1}{\alpha} + \frac{1}{\beta}$	2	
	(iv)	$\alpha^2 + \beta^2$	2	
(b)	Form Write	a quadratic equation whose roots are $1 \pm \sqrt{3}$. your answer in the form $ax^2 + bx + c = 0$	2	

Question 5 (8 marks)

(a)	Write of 4 u	down the equation of the circle centred on $C(-3, 1)$, with a radius nits.	2
(b)	The po Derive	points A and B have coordinates $(-1, 2)$ and $(0, 4)$ respectively. It the equation of the locus of a point P which satisfies	
	(i)	P is twice as far from A as from B .	3
	(ii)	$AP \perp BP$.	3

Question 6 (7 marks)

(a)	Use t Then	he discriminant to show that the roots of $3x^2 + 4x - 1 = 0$ are real. write down two more properties of these roots.	3
(b)	(i)	Show that the equation $ax^2 - (a+1)x + 1 = 0$ has real roots for all values of <i>a</i> .	2
	(ii)	It is given that the vertex of $y = ax^2 - (a + 1)x + 1$ lies on the x-axis. Find the coordinates of this vertex.	2

Question 7 (9 marks)

(a)	Express x^2 in the form $a(x+1)^2 + b(x+1) + c$		3
(b)	Solve $2^{2x+1} + 2^x = 1$	[working needed to get any marks]	3
(c)	A straight line through the c A parabola has an equation For what value of m (other [Show all working]	brigin has a gradient of m . of the form $y = ax^2 + m$. than $m = 0$) is the line a tangent to the parabola?	3

$$\frac{Question 1}{(a)} (i) \int (3x^{2} + i) dx = x^{3} + x + ic$$
(a) (i) $\int (3x^{2} + i) dx = \sqrt{(x^{2} - x^{1/3})} dx$

$$= \frac{x^{-1}}{-1} - \frac{x^{3/2}}{24} dx$$

$$= -\frac{1}{x} - \frac{2}{3}\sqrt{x^{3}} + c$$

$$= -\frac{1}{x} - \frac{2}{3}\sqrt{x^{3}} + c$$

$$= \frac{1}{10} \left[(2x + i)^{5} - \frac{1}{3} \right]$$
(b) $\int (2x + i)^{5} dx = \frac{1}{10} \left[(2x + i)^{5} - \frac{1}{3} \right]$

$$= \frac{121}{3}$$
(c) $f'(x) = 4x - 1$

$$f(x) = 2x^{2} - x + c$$
(with or)
(with or

(-1,6): 6=2+1+c

C=3.

f(x) = 2x2 - x + 3

ç1

Mathematics (HSC Course) Assessment Task 2

2

١

÷

101

Question 2 (a) $(\pi - 2)^2 = 5$ $\pi - 2 = \pm \sqrt{5}$ $\pi = 2 \pm \sqrt{5}$ $\chi^{4} = 8\chi^{2} + 9$ (b) 24-822-9=0 (22-9) (x2+1)20 x===3

÷...

*** 4

127

(c) 2² > 9× 2-9770 roots 27 x(x=a) >0 inequality ... ! x < 0 or x > 9

Mathematics (HSC Course) Assessment Task 2

Mathematics (HSC Course) Assessment Task 2

Guestian 4 6) (1) a+B= 2 --- [] (11) XB = Z ... [] $(ii) \frac{1}{x} + \frac{1}{3} = \frac{1}{33} - \frac{1}{x}$ 1/2 Z 27 = 1/4 -- 1 (11) $x^{2} + B^{2} = (a+B)^{2} - 2xB \dots y$ $= (\frac{1}{2})^{c} - 2(2)$ ---1 2 - 15

sum of roots = Z (b)prod. of nots = $(1+\sqrt{3})(1-\sqrt{3})$ any one = -2 $\int of these \dots]$ $x^2 - 2x - 2 = 0$

Questan 5

Ċ

(a)
$$(x+3)^{2} r(y-1)^{2} = 16$$
 $2r^{3}, y-1 = 1$
 16 -1 $2?$

(b)
$$PA = 2PB$$

 $PA^{2} = 4PB^{2}$
 $(z+i)^{2} + (y-2)^{2} = 4-x^{2} + 4(y-4)^{2} - \frac{1}{2}$
 $x^{2} + 2z+i + y^{2} - 0y + 4 = 4x^{2} + 4y^{2} - 32y + K + \frac{13}{2}$
 $3x^{2} + 3y^{2} - 2x - 28y + 59 = 0$

 $M_{AP} - M_{BP} = -1$ (C) $\frac{y-2}{x+1}, \quad \frac{y-2}{x} = -1$ (y-2)(y-9) = -z(x+1) $y^2 - 6y + 8 = -x^2 - x$ $x^2 + y^2 + x - 6y + 8 = 0$

Mathematics (HSC Course) Assessment Task 2 105

Guiden t
(a)
$$\Delta = 4 + 2 - 4 + (3)(-1)$$

 $= 28 > c$
 $\therefore reads are real $\dots y$
also distant $\dots y$
 $ad investional $\dots y$
 $ad investional $\dots y$
 $= a^2 + 2a + 1 - 4n$
 $= a^2 - 2a + 1$
 $= (a - 1)^2$
 $\Rightarrow 0 = \forall a = \dots y$
 $\therefore real reads \forall a$
(1) $equal rads \Rightarrow a = 1$
 $\therefore y(1, 0)$
Mathematic (HECC)$$$

thematics (HSC Course) Assessment Task 2

Question 7 (a) $\pi^2 \equiv \alpha (z+i)^2 + b(x+i) + c$: x=-1 => 1= C 2=0 7 0= atb+1 a+b=-1 a-b=31=-2 => 4= a-b+1 (+ 2a = 2. $\alpha = 1$ b = -2 $x^2 \equiv (x+i)^2 - 2(x+i) + 1$ OR 22= a(2+1)2 + b(2(+1)+(= ant+ 20x + a + bx + b + c = 922 + (2a+b)x + (a+b+c) arthic = 0 . a 21 2arb=0 1-2+c=e2+b=0b = -26=1 - x2 = (x+1)2 - 2(x+1) +1

Mathematics (HSC Course) Assessment Task 2

b)
$$2^{2x+1} + 2^{x} = 1$$

 $2(2^{x}) + 2^{x} = 1$
 $1et m = 2^{x}$
 $2m^{2} + m - 1 = 0$
 $(2m - 1)(m + 1) = 0$
 $m - \frac{1}{2}$
 $m = -1$
 $2^{x} = \frac{1}{2}$
 $x = -1$
 $x = -1$

··· / $q \pi^2 + m = m \varkappa$ ant - mx + m = 0A = 0 for tangent $m^2 - 4am = 0$ m(m-4a) = 0m = 4 - qmed Stated already

Mathematics (HSC Course) Assessment Task 2