MATHEMATICS

2014 HSC Course Assessment Task 2
 Monday March 10, 2014

General instructions

- Working time - 55 minutes.
(plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 5)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:

\# BOOKLETS USED: \qquad

Class (please \boldsymbol{V})12M2A - Mr Lin
○ $12 \mathrm{M} 3 \mathrm{~A}-\mathrm{Mr}$ Zuber
12M4A - Ms Ziaziaris
○ 12M3B - Mr Berry
○ $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Mr}$ Lam

- $12 \mathrm{M} 2 \mathrm{~B}-\mathrm{Mr}$ Weiss
○ $12 \mathrm{M} 3 \mathrm{C}-\mathrm{Mr}$ Lowe
O $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Ireland

Marker's use only.

QUESTION	$1-5$	6	7	8	9	10	Total	$\%$
MARKS	$\overline{5}$	$\overline{9}$	$\overline{8}$	$\overline{9}$	$\overline{10}$	$\overline{8}$	$\overline{44}$	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

1. What is the value of $e^{-0.2}$ correct to 3 decimal places?
(A) 0.818
(B) 0.819
(C) 1.221
(D) 1.222
2. Which expression is equivalent to $\int \sqrt{5 x+1} d x$?
(A) $\frac{1}{10}(5 x+1)^{\frac{3}{2}}+C$
(C) $\frac{3}{10}(5 x+1)^{\frac{3}{2}}+C$
(B) $\frac{2}{15}(5 x+1)^{\frac{3}{2}}+C$
(D) $\frac{2}{3}(5 x+1)^{\frac{3}{2}}+C$
3. If $f(x)=e^{-x}-2 e^{-2 x}$, what is the value of $f(\ln 2)$?
(A) 0
(B) 4
(C) 6
(D) 10
4. Which of the following best represents the shape of the graph $y=\log _{e} x$?
(A)

(C)

(B)

(D)

5. Which of the following integrals is representative of the shaded area?

(A) $\int_{-1}^{2}\left(x-x^{2}+2\right) d x$
(B) $\int_{-1}^{2}\left(x^{2}+x-2\right) d x$
(C) $\int_{-1}^{2}\left(x^{2}-x-2\right) d x$
(D) $\int_{-1}^{2}\left(x-x^{2}-2\right) d x$

End of Section I.
Examination continues overleaf.
Question 6 (9 Marks)
Commence a NEW page.
(a) The function $y=f(x)$ is shown in the following diagram.

Evaluate:
i. $\int_{0}^{8} f(x) d x$.
ii. $\int_{-2}^{8} f(x) d x$.
(b) Evaluate $\int_{1}^{4}(3 x-2)^{4} d x$.
(c) Find the area enclosed by the curves $y=x^{2}-x$ and $y=5 x-x^{2}$.

Question 7 (8 Marks)
Commence a NEW page.
Marks
(a) Find the primitives of the following:
i. $\frac{x^{4}-6}{x^{3}}$.
ii. \sqrt{x}.
(b) Find the volume of the solid of revolution generated when the curve $y=x^{2}+1$ is rotated about the x axis between $x=0$ and $x=2$.

Question 8 (9 Marks)
Commence a NEW page.
(a) Given the parabola $x^{2}=-6 y$, find:
i. the coordinates of the vertex.
ii. the coordinates of the focus.
iii. the equation of the directrix.
(b) Find the coordinates of the vertex and focus of the parabola

$$
x^{2}-6 x-3 y-12=0
$$

(c) A parabola has its focus at $(1,-4)$ and the directrix is the line $y=6$.

Find the equation of the parabola.

Question 9 (10 Marks)
Commence a NEW page.
(a) Evaluate the following, giving your answer in simplest form.
i. $\frac{d}{d x}\left(\frac{x}{e^{x}}\right)$.
ii. $\frac{d}{d x}\left(x^{2} e^{-(x+2)}\right)$.
iii. $\frac{d}{d x}\left(\log _{e}\left(\frac{3 x+4}{2 x-1}\right)\right)$.
(b) For the function $y=\log _{e}(2 x+1)$,
i. Find the domain of the function.
ii. Find the range of the function.
iii. Sketch the function, showing all important information.

Question 10 (8 Marks)
Commence a NEW page.
Marks
(a) Evaluate:
i. $\int_{0}^{2} 3 e^{1-5 x} d x$.
ii. $\int x e^{x^{2}} d x$.
(b) Given $y=\log _{e} x$,

$$
\begin{array}{c|lllll}
x & 1 & 2 & 3 & 4 & 5 \\
\hline \log _{e} x & & & & &
\end{array}
$$

i. Copy and complete the table above, giving the values correct to 3 decimal $\mathbf{1}$ places.
ii. Use Simpson's Rule with five function values to estimate

$$
\int_{1}^{5} \log _{e} x d x
$$

End of paper.

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})
○ $12 \mathrm{M} 2 \mathrm{~A}-\mathrm{Mr}$ Lin
○ 12M3A - Mr Zuber

- 12M4A - Ms Ziaziaris
○ 12M3B - Mr Berry
○ $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Mr}$ Lam
O 12M2B - Mr Weiss
○ 12M3C - Mr Lowe
○ 12M4C - Mr Ireland

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Suggested Solutions

Section I

1. (D) 2. (B) 3. (D) 4. (C) 5. (A)

Section II

Question 5 (Berry)
(a)

Marking
QC \quad Lin
Qi
$2 B$
$3 \quad A$
43

5 A

QC)
a)
1)

$$
\begin{aligned}
& 2+6+8+4 \\
= & 20
\end{aligned}
$$

ii) $20-2$

$$
=18
$$

b)

$$
\begin{aligned}
& \int_{i}^{4}(3 x-2)^{4} d x \\
= & \left.\frac{(3 x-2)^{2}}{15}\right]_{1}^{4} \\
= & \frac{10^{5}}{15}-\frac{1}{15} \\
= & \frac{10^{5}-1}{15}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{3} 5 x-x^{2}-\left(x^{2}-x\right) \\
& \int_{0}^{3} 6 x-2 x^{2} d x \\
& \left.=3 x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{3} \\
& =27-18=9 k^{2}
\end{aligned}
$$

Q7)
a)

$$
\begin{aligned}
& \text { i) } \int x-6 x^{-3} d x \\
& =\frac{x^{2}}{2}+3 x^{-2}+c
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \int x^{1 / 2} d x \\
= & \frac{2 x^{3 / 2}}{3}+c
\end{aligned}
$$

b)

$$
\begin{aligned}
r & =\pi \int_{0}^{2} 4^{2} d x \\
& =\pi \int_{0}^{2} x^{4}+2 x^{2}+1 d x \\
& \left.=\pi \frac{x^{5}}{5}+\frac{2 x^{3}}{3}+x\right]_{0}^{2} \\
& =\left(\frac{32}{5}+\frac{6}{3}+2\right) \pi u^{3} \\
& =13 \frac{i 1}{15} \pi u^{3}
\end{aligned}
$$

QB)
a) 1

$$
\begin{aligned}
x^{2} & =40 y \\
x^{2} & =-6 y \\
a & =-\frac{3}{2}
\end{aligned}
$$

i) $V(0,0)$
ii) $5\left(0,-\frac{3}{2}\right)$
iii) $y=\frac{3}{2}$
b)

$$
\begin{aligned}
& x^{2}-6 x-3 y-12=0 \\
& x^{2}-6 x+9=x^{2} 3 y+1 x+9 \\
&(x-3)^{2}=3(y+7)
\end{aligned}
$$

\therefore Vertex $(3,-7)$
Focus $(3,-6 / 4)$
C)

$$
(x-1)^{2}=-20(y-1)
$$

Qq)
a)

$$
\text { i) } \begin{aligned}
d / d x & \frac{x}{e^{x}} \\
& =\frac{e^{x} 1-x e^{x}}{e^{2 x}} \\
& =\frac{e^{x}(1-x)}{e^{x x}} \\
& =\frac{1-x}{e^{x}}
\end{aligned}
$$

ii) $d / d x$

$$
\begin{aligned}
& =2 x e^{-(x+2)}+-x^{2} e^{-(x+2) 1} \\
& =x e^{-(x+2)}(2-x)
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
& \frac{d}{d x}(\ln (3 x+4)-\ln (2 x-1)) \\
&=\frac{3}{3 x+4}-\frac{2}{2 x-1} \\
&=\frac{6 x-3-6 x-5}{(3 x+4)(2 x-1)} \\
&=\frac{-11}{(3 x+4)(2 x-1)}
\end{aligned}
$$

Quo)

$$
\text { a) } \begin{aligned}
1 / & \int_{0}^{2} 3 e^{1-5 x} d x \\
& \left.=\frac{-3}{5} e^{1-5 x}\right]_{0}^{2} \\
& =\frac{-3}{5 e^{4}}+\frac{3}{5 e^{1}}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \int x e^{x^{2}} d x \\
= & \frac{1}{2} \int 2 x e^{x^{2}} d x \\
= & \frac{1}{2} e^{x^{2}}+c
\end{aligned}
$$

b)

$$
\begin{aligned}
& \begin{array}{lllllll}
i j & x & 2 & 3 & 4 & 5
\end{array} \\
& \begin{array}{llllllll}
\ln x & 0 & 693 & 1.099 & 1.386 & 1.609 & &
\end{array} \\
& \text { ii) } \int_{1}^{5} \log _{e} x d x=\frac{1}{3}[0+1.609+4(.693+1.386)+2(1.094)] \\
& =4.041
\end{aligned}
$$

