

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC MATHEMATICS ASSESSMENT TASK

TERM 1 – 2006

Time Allowed: 1 hour + 2 minutes reading time

Instructions:

- Start each question on a new page
- Write on one side of the paper only, work down the page and do not work in columns
- Leave a margin on the left hand side of the page
- Show all necessary working
- Marks may not be awarded for untidy or poorly arranged work
- Diagrams are not drawn to scale
- There are five questions
- Marks are as indicated

This task is worth 20% of the HSC Assessment Mark

Name:_____

Question 1 (10 marks)

(a) Find the third term of the sequence whose n^{th} term is given by $T_n = 3 \times 2^{n-2}$ 1

(b) Consider the following series
$$101 + 96 + 91 + \dots$$

(i)	Explain why this series is arithmetic.	1
(ii)	State the next term.	1
(iii)	Which term is equal to 26?	2
(iv)	Find the sum of the first 10 terms.	2
. /		

(c) Evaluate
$$\sum_{r=1}^{4} \frac{1}{r}$$
 1

(d) A geometric series has
$$T_5$$
 equal to $\frac{81}{8}$ and T_2 equal to 3.
Find an expression for T_n .

Questi	ion 2	(11 marks)	Start a new page.	Marks	
(a)	A given geometric series has a limiting sum of 36 and its first term is 27. Find the common ratio.				
(b)	A retired woman decides to live off her savings. She has \$70 000 and invests it at an interest rate of 6% per annum, compounded monthly. At the end of each month after interest has been received, she withdraws \$D. Let the amount of money left at the end of the n^{th} month just after she has made her withdrawal be A_n			t 1	
	(i)	Find an express $A_2 = 70\ 000(1)$	ssion for A_1 and use it to show that .005) ² - $D(1.005 + 1)$	2	
	(ii)	Write down an after <i>n</i> months	n expression for A_n , the amount of money left s.	2	
	(iii)	Show that <i>D</i> =	$=\frac{70000(1\cdot005)^n - A_n}{\left[\frac{(1\cdot005)^n - 1}{0\cdot005}\right]}$	2	
	(iv)	Find the mont 10 years.	hly withdrawal, D , if the woman has no money left after	2	

^

Question 3 (9 marks) **Start a new page.**

a) Find the indefinite integral of $(5x+1)^2$

b) Evaluate
$$\int_{25}^{36} \frac{1}{\sqrt{x}} dx$$

c) The graph of y = f(x) is shown below. It consists of two circular arcs and intervals.

3

4

Question 4 (8 marks) **Start a new page.**

The diagram below represents a conical water container.

In this cone, the sum of the base diameter, *D*, and the height, *h*, is 60 metres.

- a) Write an expression for the height, h, in terms of the radius, r. 2
- b) Show that the volume of the container is given by

$$V = 20! r^2 - \frac{2}{3}\pi r^3$$

[You may use the formula $V = \frac{1}{3}\pi r^2 h$, the volume of a cone] 2

c) Find the radius that makes the volume of the container a maximum.

3

3

Question 5 (11 marks) **Start a new page.**

a) The graph of y = f(x) is drawn below

On your own paper, sketch the graph of y = f'(x).

3

A

b) Consider the curve $f(x) = 7 + 4x^3 - 3x^4$

i)	Given that $y = f(x)$ has a stationary point of inflexion at (0, 7), find any other stationary point(s) and determine their(its) nature.	3
ii)	The graph of $y = f(x)$ passes through the point $\left(\frac{2}{3}, 7\frac{16}{27}\right)$. Show that this point is a point of inflexion.	2
iii)	Sketch the graph of $y = f(x)$ showing stationary points, points of inflexion and the intercept on the <i>y</i> -axis.	3

End of paper

Marks

Solutions

~

a)
$$\int (\frac{1}{2}x+1)^{3} dx = \frac{5x+1}{15} + C^{3} \int 25x^{2}+10x+1)k \frac{25x^{2}k}{3} \frac{4x}{3} + C^{3} \int 25x^{2}+10x+1)k \frac{25x^{2}k}{3} \frac{4x}{3} + C^{3} \int \frac{1}{2}x^{2} dx$$

b) $\int \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} dx = \int \frac{1}{\sqrt{2}} x^{-\frac{1}{2}} dx$
 $= 2[x^{-\frac{1}{2}} \frac{1}{\sqrt{2}}]^{\frac{1}{2}}$
 $= 2[\sqrt{2} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}]^{\frac{1}{2}}$
 $= 2\pi r - 4$
 $\int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$

