

HSC Mathematics Assessment Task 2 March 2009

<u>Time Allowed:</u> 50 minutes + 2 minutes reading time

Instructions:Start each question on a new page.Show all necessary working, writing on one side of the paper only.Work down the page and do not work in columns.Marks may not be awarded for untidy or poorly arranged work.

Name: ______

Teacher: _____ Class: _____

	Н5	H6	H7
Question 1	/10		
Question 2	/9		
Question 3	/11		
Question 4a)		/5	
Question 4b)			/4
Question 5	/8		
Totals	/38	/5	/4

Ques	estion 1 (10 marks)		Marks
(a)	Write	e $\sum_{k=1}^{4} \frac{1}{k}$ as a series of terms and find its sum as a fraction.	2
(b)	Find	T_7 if $T_n = 2(-1)^n (n+1)$	1
(c)	The f	following terms are consecutive terms of an arithmetic series	
		2b-1, 2b+1, 3b-2	
	(i)	Find the value of b.	2
	(ii)	Hence, find the 3 terms of this series in numerical form.	1
(d)	Consider the following series		
		8-2-12412	
	(i)	Show that this series has 43 terms.	2
	(ii)	Find the sum of this series.	2
Ques	tion 2 ((9 marks) Start a new page	
(a)	Find the primitive function of $x^3 - 3x^2 + 3x - 1$.		3
(b)	(i)	Calculate the probability of obtaining at least one head when a coin is tossed (α) 5 times;	1
		(β) <i>n</i> times.	1
	(ii)	How many times does the coin have to be tossed so that there is greater than a 99% probability that there is at least one head?	2
(c)	A dra wrap choco the cl	awer contains 12 chocolates in wrapping. Six chocolates have blue ping, four have green wrapping and two have red wrapping. Two plates are withdrawn without replacement. Find the probability that hocolates have the same coloured wrapping.	2

Question 3 (11 marks) Start a new page		Marks	
(a)	Find the n th term of an arithmetic series in which the sixth term is 8 and the tenth term is 20.		3
(b)	Consider the general geometric series with first term a and ratio r .		
	(i)	Write down the series formed from the alternate terms of this series, starting with a .	1
	(ii)	Show that the alternate terms of this geometric series form another geometric series.	1
(c)	Inser conse	It three numbers between $\frac{1}{2}$ and 648 so that all five numbers form ecutive terms of a geometric series.	3
(d)	A rubber ball is dropped from a height of 50 cm onto a concrete surface and		
	continues to rebound vertically in a straight line to $\frac{4}{5}$ of it previous height.		
	(i)	How high does it reach after the sixth bounce? [Answer to nearest centimetre]	2
	(ii)	What distance has the ball travelled when it hits the concrete for the <i>third</i> time?	1

Question 4 (9 marks) Start a new page

(a)

)	The gradient of a particular curve varies inversely as the square of x, that is, $\frac{dy}{dx} = \frac{k}{x^2}$			
	(i)	Find y in terms of x, k and the constant c .	2	
	(ii)	It is noted that the curve passes through the points $(1,3)$ and $(4,0)$. By forming simultaneous equations, express <i>y</i> in terms of <i>x</i> .	3	

Question 4 continued

1

(b) The curvature (concavity) of a section of the arch *AB* of a bridge with equation

y = f(x) is given by $\frac{d^2 y}{dx^2} = -\sqrt{1-2x}$ where x metres is the horizontal distance from O as shown below.

AB is the section of the arch. PQ is the power cable.

- (i) Show that the gradient function of the arch can be given by $\frac{dy}{dx} = \frac{(1-2x)\sqrt{1-2x}}{3}$
- (ii) A power line PQ, as shown, connects point Q on the vertical axis tangentially 1 to point P (at $x = \frac{3}{8}$). Find the slope of this power line.

Question 5 (8 marks) Start a new page

(a) We note that $0 \cdot 2 = 0 \cdot 2 + 0 \cdot 02 + 0 \cdot 002 + ...$ and $0 \cdot 2$ is approximated by *s* where *s* is given by $s = 0 \cdot 2 + 0 \cdot 02 + 0 \cdot 002 + ...$ to *n* terms. **3**

Show that $s = \frac{2}{9}(1 - \frac{1}{10^n})$

- (b) A standard pack of 52 playing cards is used in a game where a card is selected and then replaced. Two people take alternate turns to select a card.
 If a court card (Jack, King or Queen) is selected on a turn, the game is won.
 If an Ace is selected on a turn, the game is lost. Otherwise, the game continues.
 - (i) Represent this situation for the first 2 turns using a probability tree.
 (ii) Find the probability that the game continues after the second turn.
 - (iii) Find the probability that the game is lost on the third turn.

End of Paper

50 25, 25 S=50+2×50(\$)+ 2×50(€) $y = \frac{kx^{-1}}{2} + C$ $y = \frac{kx^{-1}}{2} + C$ $y = -\frac{k}{2} + C$ $y = -\frac{k}{2} + C$ y = 0 $y = -\frac{k}{2} + C$ $0 = -\frac{k}{2} + C$ e) () da = k. da = k. - 2. = 50 + 80 + 64 (1) The = 50(#)" 30 = -3 Question 4 7-法=兄 なーー・ C = -1: 00 = 194 北村 Ty = ars WWW a tar tartartartart 1 Ta T3 T4 T5 het the nurserus he () pt art art a rt 1... T2 == 3, T3= 18, T== +/D8 c) 2, 7, 7, 73, 74, 648 (a)This is geometric as Rer 2. Row wate A = a. A for TI b) det the series be E WWWAT/ONN 3 = 13-1072. a + 5d = 8 () a + 9d = 20(2)(y - 0) = 12 $\mu d = 12$ Tn= a+(n-1)d =-7+(n-1)3. Kl 3im = 30-10 d), a = 50 From (1) 2+15= 8 a) To = 8 To = 20 R = - 7 Г. 2009 WUEDTAND EMATHERIANCI MEL 4(2) = 23-32°+32-1 +4 F(2)=424-23+32-X+C (3) p(at least) = 1- p(mtaik) = 4- (2) n (2) × 0.01 n 109(2) × 109,000 n 3 109.00 10,000 10 5) (1)p(at heat) = 1-p(5 true) P(at least) \$ 0.99 on hear) \$ 0.99 (11) P(2 characters) ... 1+ 1, to Bit B $cx f(x) = (x-1)^3$ $F(x) = \frac{(x-1)^3}{4}$ 12/2 the the ~6 CH P= 3:15+ 3:13. 4.14 1m (2a-2) - (2a+1) = (2a+1)-(2a-1) 3a-2- 2a-1 = 2a+1-2a+1 $\begin{array}{l} & 5 & 7 = 2(-1)^{7}(7+1) \\ & = -16 \\ & = -16 \\ & c) & 2a^{-1}, & 2a^{-1}, \\ & 7 & 7 & -7, \\ & 7 & -7, & 7 & -7, \\ \end{array}$ a) Z = = 1+2+2+4 8+(n-1)+0=-412 8-10n+10=-412 Su3 = 43 (8-412 10n = 412+18 10n = 430 (1) Sn= 2 (a+L = - 8686 a+(n-1)de-412 9,11,09 1 = 43 WWWWTION I a)") a= 8 d=-10 Tn =- 412

4(b) $(1) \qquad 4'' = -\sqrt{1-3x}$ $(1) \qquad 4'' = -\sqrt{1-3x}$ $(1) \qquad 4'' = -\sqrt{1-3x}$ $(1) \qquad 4'' = \sqrt{1-3x}$ $(1) \qquad 5'' = \sqrt{1-3x}$ $(2) \qquad 5'' = \sqrt{1-3x}$ $(3) \qquad 5'' = \sqrt{1-3x}$ $(3) \qquad 5'' = \sqrt{1-3x}$ $(4) \qquad 5'' = \sqrt{1-3x}$ $(5) \qquad 5''$ 6) The choices are W (unit) 2 (lose) 3 (W (unit) 2 (lose) 3 (W (unit) 2 (lose) 3 (C (construct) 3 (P(G) z <u>9 9</u> 4 (P(G)