Question 1 (Use a separate booklet)
(a) If $x^{7}=2000$, find x correct to 4 significant figures.
(b) A store adds a GST of 10% to the selling price of all its goods. Including the GST, an item costs $\$ 119.90$. What was the selling price before the GST was added?
(c) If $V=\pi r^{2} h$, find r correct to 1 decimal place when $V=1000$ and $h=22$. (Use the calculator value of π.)
(d) Solve $12-5 x<x-3$.
(e) Factorise $t^{3}-8$.
(f) Find integers a and b such that $\frac{\sqrt{3}}{2+\sqrt{3}}=a+b \sqrt{3}$.
(g) Solve $15-x^{2}=2 x$.2

Question 2 (Use a separate booklet)
In the diagram, the line $A B$ cuts the y-axis at the point $A(0,3)$ and passes through the point $B(4,5)$. A perpendicular is dropped from B to meet the x-axis at $C(4,0)$.

Copy or trace the diagram into your working booklet.

(a) Calculate the length of the interval $A B$.
(b) Find the gradient of the line $A B$.
(c) Show that the equation of the line $A B$ is $x-2 y+6=0$
(d) Find the equation of the line which is perpendicular to $A B$ and which passes through C.
(e) Calculate the perpendicular distance from C to $A B$.
(f) Find the area of the triangle $A B C$.
(g) Prove that triangle $A B C$ is isosceles.
(h) Let D be the point such that $A D B C$ is a rhombus. Find the coordinates of D, and give a reason for your answer.

Question 3 (Use a separate booklet)
(a) On a particular parabola, all the points are equidistant from a fixed point $(0,5)$ and a fixed line $y=-5$.
(i) Write down the equation of the parabola.
(ii) State the coordinates of the vertex of the parabola.
(b) A parabola has axis of symmetry $x=3$, vertex $(3,-1)$ and focal length 2.
(i) If the parabola is concave up, what are the coordinates of the focus of the parabola?
(ii) If the parabola is concave up, what is the equation of the directrix?
(iii) If the parabola is concave down, what is the equation of the parabola?
(c) In a number plane are two fixed points $A(-1,4)$ and $B(2,-2)$. A variable point $P(x, y)$ moves so that $P A=2 P B$.
(i) Show that P moves on the circle $x^{2}+y^{2}-6 x+8 y+5=0$.
(ii) Find the centre and radius of this circle.

Question 4 (Use a separate booklet)

Marks

(a) Find a primitive of each of the following.
(i) $x^{6}-5$.
(ii) $\sqrt[3]{x}$.

1
1

2

Use the graph to evaluate $\int_{-4}^{2} f(x) d x$.
(c) Find
(i) $\int 9 u^{-4} d u$
(ii) $\int \sqrt{6 x+3} d x$.
(d) Consider the function $y=2 x-x^{2}$ defined between $x=-1$ and $x=2$.
(i) Sketch the function.
(ii) Find the area of the region bounded by the curve $y=2 x-x^{2}$, the x-axis, and the line $x=-1$.

Question 5 (Use a separate booklet)
(a) For the curve $y=f(x)$, the second derivative is given by $f^{\prime \prime}(x)=12 x-4$. The tangent at the point $(1,3)$ on the curve has gradient 1.
(i) Show that $f^{\prime}(x)=6 x^{2}-4 x-1$.
(ii) Find the equation of the curve.
(b) The table below shows values of t and corresponding values of $s(t)$.

t	0	0.5	1
$s(t)$	10	6.7	4.5

Use the trapezoidal rule and the three function values given in the table to evaluate $\int_{0}^{1} s(t) d t$ correct to 1 decimal place.
(c) In the diagram the shaded region is bounded by the curve $y=\frac{1}{\sqrt{x}}$, the y-axis, and the lines $y=1$ and $y=2$.

(i) Find the area of the shaded region.
(ii) Find the volume of the solid obtained by rotating the shaded region about the y-axis. Leave the answer in terms of π.

Question 6 (Use a separate booklet)
(a) Evaluate $\int_{-2}^{3}(2 x+1)^{4} d x$.
(b) Consider the curves $y=x^{2}-2 x+3$ and $y=3-x^{2}$.
(i) Show that the curves have the same y-intercept. 1
(ii) Show that the curves intersect at the point $(1,2)$.
(iii) Find the area of the region bounded by the two curves.
(c) A table of values for the function $y=\frac{6}{1+x^{2}}$, with one of the values missing, is shown below.

x	1	2	3	4	5
y	3	1.2	0.6		0.23

(i) Show that the missing value in the table, correct to two decimal places, is 0.35 .
(ii) Use Simpson's rule with five function values to find an estimate of the area under the curve $y=\frac{6}{1+x^{2}}$ between $x=1$ and $x=5$. Give the answer correct to one decimal place.

Question $7 \quad$ (Use a separate booklet)
(a) Find the value of
(i) $\log _{3} \sqrt{27} \quad 1$
(ii) $\left(\log _{5} 7\right) \times\left(\log _{7} 5\right) \quad 1$
(iii) $e^{\ln 3}$. 1
(b) Differentiate with respect to x :
(i) $\frac{e^{2 x}}{x}$
(ii) $\log _{e}\left(x^{2}+x\right)$. 2
(c) Find $\int e^{\left(\frac{5 x}{3}\right)} d x$.
(d) (i) Show that $3+\frac{1}{x+1}=\frac{3 x+4}{x+1}$.
(ii) Hence evaluate $\int_{0}^{2} \frac{3 x+4}{x+1} d x$. Leave the answer in exact form.

Question 8 (Use a separate booklet)
(a) (i) On the same set of axes, carefully draw the graphs of $y=\frac{1}{x}$ and $y=\ln x$ for $0<x \leq 3$.
(ii) By referring to where the graphs cross, find an approximate solution to the equation $\frac{1}{x}=\ln x$.
(iii) Using trial and error and your calculator, find the solution asked for in part (ii) correct to two decimal places.
(b) (i) Find the stationary point on the curve $y=\frac{1}{x}+\ln x$.
(ii) Determine the nature of this stationary point.
(c) (i) Show that $\frac{d}{d x}(x \ln x-x)=\ln x$
(ii) Hence find the area under the curve $y=\ln x$ between $x=1$ and $x=3$. You may leave the answer in exact form.

