Question 1 (Use a separate booklet)

Marks

(a)	If $x^7 = 2000$, find <i>x</i> correct to 4 significant figures.	2
(b)	A store adds a GST of 10% to the selling price of all its goods. Including the GST, an item costs \$119.90. What was the selling price before the GST was added?	1
(c)	If $V = \pi r^2 h$, find <i>r</i> correct to 1 decimal place when $V = 1000$ and $h = 22$. (Use the calculator value of π .)	1
(d)	Solve $12 - 5x < x - 3$.	2
(e)	Factorise $t^3 - 8$.	1
(f)	Find integers <i>a</i> and <i>b</i> such that $\frac{\sqrt{3}}{2+\sqrt{3}} = a + b\sqrt{3}$.	3

(g) Solve
$$15 - x^2 = 2x$$
.

Question 2 (Use a separate booklet)

In the diagram, the line AB cuts the y-axis at the point A(0, 3) and passes through the point B(4, 5). A perpendicular is dropped from B to meet the x-axis at C(4, 0).

Copy or trace the diagram into your working booklet.

Question 3 (Use a separate booklet)

Marks

(a)	On a particular parabola, all the points are equidistant from a fixed point (0,5) and a fixed line $y = -5$.			
	(i)	Write down the equation of the parabola.	2	
	(ii)	State the coordinates of the vertex of the parabola.	1	
(b)	A parabola has axis of symmetry $x = 3$, vertex (3,-1) and focal length 2.			
	(i)	If the parabola is concave up, what are the coordinates of the focus of the parabola?	1	
	(ii)	If the parabola is concave up, what is the equation of the directrix?	1	
	(iii)	If the parabola is concave down, what is the equation of the parabola?	2	
(c)	In a number plane are two fixed points $A(-1,4)$ and $B(2,-2)$. A variable point			

P(x,	y) moves so that $PA = 2PB$.
(i)	Show that P moves on the circle $x^2 + y^2 - 6x + 8y + 5 = 0$.

(ii)

Find the centre and radius of this circle.

2

Question 4 (Use a separate booklet)

Find a primitive of each of the following. (a)

(i)
$$x^6 - 5$$
. 1

(ii)
$$\sqrt[3]{x}$$
. 1

In the number plane, the dark line is the graph of y = f(x). (b)

Use the graph to evaluate $\int_{-4}^{2} f(x) dx$.

(c) Find

(i)
$$\int 9u^{-4} du$$
 1

(ii)
$$\int \sqrt{6x+3}dx$$
. 2

Consider the function $y = 2x - x^2$ defined between x = -1 and x = 2. (d)

(i) Sketch the function.
(ii) Find the area of the region bounded by the curve
$$y = 2x - x^2$$
, the *x*-axis, 3
and the line $x = -1$.

2

Question 5 (Use a separate booklet)

- (a) For the curve y = f(x), the second derivative is given by f''(x) = 12x 4. The tangent at the point (1,3) on the curve has gradient 1.
 - (i) Show that $f'(x) = 6x^2 4x 1$. 2
 - (ii) Find the equation of the curve.
- (b) The table below shows values of t and corresponding values of s(t).

t	0	0.5	1
s(t)	10	6.7	4.5

Use the trapezoidal rule and the three function values given in the table to evaluate $\int_{0}^{1} s(t)dt$ correct to 1 decimal place.

(c) In the diagram the shaded region is bounded by the curve $y = \frac{1}{\sqrt{x}}$, the y-axis, and the lines y = 1 and y = 2.

(i)	Find the area of the shaded region.	3

(ii) Find the volume of the solid obtained by rotating the shaded region about 3 the y-axis. Leave the answer in terms of π .

Marks

2

Question 6 (Use a separate booklet)

(a) Evaluate
$$\int_{-2}^{3} (2x+1)^4 dx$$
. 3

Marks

1

- (b) Consider the curves $y = x^2 2x + 3$ and $y = 3 x^2$.
 - (i) Show that the curves have the same *y*-intercept.
 (ii) Show that the curves intersect at the point (1, 2).
 (iii) Find the area of the region bounded by the two curves.
 - (iii) Find the area of the region bounded by the two curves.
- (c) A table of values for the function $y = \frac{6}{1+x^2}$, with one of the values missing, is shown below.

x	1	2	3	4	5
У	3	1.2	0.6		0.23

- (i) Show that the missing value in the table, correct to two decimal places, is 0.35.
- (ii) Use Simpson's rule with five function values to find an estimate of the area under the curve $y = \frac{6}{1+x^2}$ between x = 1 and x = 5. Give the answer correct to one decimal place.

Question 7 (Use a separate booklet)

(a)) Find the value of		
	(i)	$\log_3 \sqrt{27}$	1
	(ii)	$(\log_5 7) \times (\log_7 5)$	1
	(iii)	$e^{\ln 3}$.	1

(b) Differentiate with respect to *x*:

(i)
$$\frac{e^{2x}}{x}$$
 2

(ii)
$$\log_e(x^2 + x)$$
. 2

(c) Find
$$\int e^{\left(\frac{5x}{3}\right)} dx$$
.

(d) (i) Show that
$$3 + \frac{1}{x+1} = \frac{3x+4}{x+1}$$
.

(ii) Hence evaluate
$$\int_{0}^{2} \frac{3x+4}{x+1} dx$$
. Leave the answer in exact form. 3

Question 8 (Use a separate booklet)

Marks

(a) (i) On the same set of axes, carefully draw the graphs of $y = \frac{1}{x}$ and $y = \ln x$ 2 for $0 < x \le 3$.

- (ii) By referring to where the graphs cross, find an approximate solution to the equation $\frac{1}{x} = \ln x$.
- (iii) Using trial and error and your calculator, find the solution asked for in part (ii) correct to two decimal places.

(b)	(i)	Find the stationary point on the curve $y = \frac{1}{x} + \ln x$.	2
		X	

(ii) Determine the nature of this stationary point. 2

(c) (i) Show that
$$\frac{d}{dx}(x \ln x - x) = \ln x$$
 2

(ii) Hence find the area under the curve $y = \ln x$ between x = 1 and x = 3. 2 You may leave the answer in exact form.