

Shore

Year 12

Term II Examination
May 2014

Mathematics

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Start each of questions $11-16$ in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total marks - 100
Section I Pages 2-5
10 marks

- Attempt questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-13
90 marks

- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.
1 It is known that for a pair of rational values a and $b, \frac{2}{2+\sqrt{3}}=a+b \sqrt{3}$.
What is the value of a ?
(A) $a=-4$
(B) $a=-2$
(C) $a=2$
(D) $a=4$

2 For what value of x does $a^{2 x+1}=\frac{1}{a^{3}}$?
(A) $x=-2$
(B) $x=-\frac{1}{2}$
(C) $x=1$
(D) $x=2$

NOT TO

(A) 2.5
(B) 2.8
(C) 3.6
(D) 4.375

4 Which of the following graphs is a possible gradient function of the function drawn below?

(A)

(C)

(D)

5 What is the value of $\log _{16} 32$?
(A) $\frac{1}{2}$
(B) $\frac{4}{5}$
(C) $\frac{5}{4}$
(D) 2

6 Which of the following expressions correctly uses Simpson's rule to approximate $\int_{1}^{5} \frac{d x}{x}$ using 5 function values?
(A) $\frac{1}{3}\left[\left(\frac{1}{1}+\frac{1}{5}\right)+4\left(\frac{1}{2}+\frac{1}{4}\right)+2\left(\frac{1}{3}\right)\right]$
(B) $\frac{3}{2}\left[\left(\frac{1}{1}+\frac{1}{5}\right)+4\left(\frac{1}{2}+\frac{1}{4}\right)+2\left(\frac{1}{3}\right)\right]$
(C) $\frac{3}{2}\left[\left(\frac{1}{1}+\frac{1}{5}\right)+2\left(\frac{1}{2}+\frac{1}{4}\right)+4\left(\frac{1}{3}\right)\right]$
(D) $\frac{1}{3}\left[\left(\frac{1}{1}+\frac{1}{5}\right)+2\left(\frac{1}{2}+\frac{1}{4}\right)+4\left(\frac{1}{3}\right)\right]$
$7 \quad$ What is the primitive of $3 x^{2}-\frac{1}{x^{2}}$?
(A) $x^{3}-x^{-1}+C$
(B) $6 x+2 x^{-3}+C$
(C) $x^{3}+x^{-1}+C$
(D) $x^{3}-\ln x+C$

8 Which of the following is a possible equation for the graph drawn below?

(A) $y=e^{2 x}-1$
(B) $y=1-2 e^{x}$
(C) $y=2 e^{-x}-1$
(D) $y=2 e^{x}-1$

9 Consider geometric series $1-2+4-8+16-\ldots$
The sum to n terms of this series is 2796 203. For what value of n is this true?
(A) 21
(B) 22
(C) 23
(D) no possible value.

10 What is the equation of the directrix for the parabola $(x-2)^{2}=-20(y+1)$?
(D) $x=7$
(A) $y=-3$
(B) $y=4$
(C) $x=6$

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or
calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Evaluate, correct to 3 significant figures, $\frac{\sqrt{\pi}-1}{\sin 30^{\circ}}$.
(b) Factorise $x^{2}-1-a x-a$.
(c) Find the gradient of the tangent to the curve $y=4 \ln x$ at the point where $x=e^{2}$.
(d) Show that $f(x)=\frac{x^{2}+2}{x}$ is an odd function.
(e) Find the equation of the line that passes through the point $(1,2)$ and is perpendicular to $2 x-y+3=0$.
(f) Find the values of x for which the geometric series
$(1-x)+(1-x)^{2}+(1-x)^{3}+\ldots$ has a limiting sum?
(g) Find $\int\left(e^{5 x+4}-2\right) d x$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) The points, A, B and C are shown on the number plane below. The point A has coordinates $(-1,-2)$. Points B and C lie on the line $x=4$.

(i) The equation of the line $A B$ is given as $3 x-5 y-7=0$. Show that the point B has coordinates $(4,1)$.
(ii) Given the area of $\triangle A B C$ is 22.5 units 2, find the length of $A C$.
(b) The quadratic equation $y=x^{2}-\sqrt{2} x-2$ has the roots α and β.
(i) Find $\alpha+\beta$.
(ii) Find $\alpha \beta$.
(iii) Find $\alpha^{2}+\beta^{2}$

Question 12 (continued)

(c) Differentiate $y=\frac{x^{2}}{e^{3 x}}$ with respect to x. Write your answer in simplest form.
(d) (i) Differentiate $y=\sqrt{16-x^{2}}$ with respect to x.
(ii) Hence, or otherwise, find $\int \frac{2 x}{\sqrt{16-x^{2}}} d x$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Samantha's parents opened a bank account for her when she was born and deposited $\$ 1$ in it. They deposited $\$ 2$ on her first birthday, $\$ 4$ on her second birthday and so on, with the deposits doubling each birthday. The parents discontinued making deposits after they made a deposit exceeding a million dollars.

On what birthday did the deposit exceed a million dollars?
(b) Find $\int_{0}^{4} x^{3}+\frac{1}{\sqrt{x}} d x$.
(c) Evaluate $\lim _{x \rightarrow 3} \frac{3-x}{x^{2}-9}$.
(d) Everyonetown had a population of 50000 people on the $1^{\text {st }}$ of January 2009. The population has grown at a constant rate of 9% every year.
(i) What was the population of Everyonetown on the $1^{\text {st }}$ of January 2014?
(ii) If this population continues to grow at 9% every year, in what year will the population first exceed 100000 people?
(e) Find the exact value of the area between the curve $y=\frac{4 x}{x^{2}-1}$, the x-axis and 3

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the parabola $y^{2}-2 y=12 x-37$.
(i) Rewrite this equation in the form $(y-k)^{2}=4 a(x-h)$.
(ii) Hence sketch the graph of the parabola $y^{2}-2 y=12 x-37$, showing the coordinates of the focus.
(b) Consider the function $f(x)=x(x-3)^{2}$.
(i) Show that $f^{\prime}(x)=3(x-3)(x-1)$.
(ii) Find all stationary points on $y=f(x)$ and determine their nature.

(iii) Draw a neat sketch of $y=f(x)$, showing all intercepts and stationary
(c) A function $f(x)$ has a second derivative $f^{\prime \prime}(x)=36 x+6$. Find the equation of $f(x)$ if $y=f(x)$ has a stationary point at $(0,-1)$.
(d) Solve $|x+1|=|2 x-2|$.

the lines $x=2$ and $x=5$.

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) A radio mast $A B$, of height 20 metres, stands at the top of a slope which is inclined at 18° to the horizontal. The mast is supported by the wire $A C$ which is attached to the point C on the slope. $B C=30$ metres.

(i) Calculate the size of $\angle A B C$. 1
(ii) Find the length of the wire $A C$. Write your answer correct to the nearest 2 metre.
(b) Show that $\tan ^{2} x+1+\tan x \sec x=\frac{1+\sin x}{\cos ^{2} x}$.
(c) The area under the curve $y=3 e^{x}$ between the values of $x=1$ and $x=3$ is rotated about the x-axis. Find the exact volume of the solid of revolution formed.

(d) The diagram below shows a right-angled triangle $A B C$ with $\angle A C B=90^{\circ}$. The point D is the midpoint of $A B$, and E is the point where the perpendicular drawn from D meets $B C$. $A E$ bisects $\angle D A C$.

NOT TO
SCALE

Copy or trace the diagram into your booklet.
(i) Prove that $\triangle A D E \equiv \triangle B D E$.
(ii) Show that $\angle A B C=30^{\circ}$.
(iii) Hence find the exact ratio $C B: E B$.

Question 15 continues on page 12

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Stephanie borrowed $\$ 50000$ to start a business. For the first year of the loan Stephanie made no repayments. The loan accrued interest at 9\% per annum, compounded monthly. Stephanie then made equal monthly instalments of $\$ M$ for the next 5 years. Let A_{n} be the amount owing after n months.
(i) Show that the amount owing after 15 months is given by
(ii) Calculate Stephanie's monthly repayment of $\$ M$ correct to the nearest
(b) A wire of length 10 metres is bent to form the hypotenuse and base of a right angled triangle $A B C$, as shown in the diagram below. Let the length of the base $A B$ be x metres.

NOT

TO SCALE
(i) Show that the area of the triangle $A B C$ in square metres is given by $A=\frac{x}{2} \sqrt{100-20 x}$.
(ii) Find the value of x that gives the greatest possible area.
(c) Consider the graphs $y=\sqrt{x}$ and $y=m x$, where m is a constant such that $m>0$.
(i) Show that the two graphs intersect at $(0,0)$ and $\left(\frac{1}{m^{2}}, \frac{1}{m}\right)$.
(ii) Hence find the area enclosed by the two graphs in terms of m.

End of Paper

Year 12 Mathematics Mid Year Solutions

1) D

$$
\begin{aligned}
\frac{2}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} & =\frac{2(2-\sqrt{3})}{4-3} \\
& =4-2 \sqrt{3}
\end{aligned}
$$

2) A
$a^{2 x+1}=\frac{1}{a^{3}}$
$a^{2 x+1}=a^{-3}$
$2 x+1=-3$
$2 x=-4$
$x=-2$
3) A
$\frac{x}{5}=\frac{3}{6}$
$x=2.5$
4) B
5) C
$2^{5}=2^{4 x} \quad \log _{16} 32=x$
$5=4 x \quad$ or $\quad 32=16$
$x=\frac{5}{4} \quad \ln (32)=x \ln (16)$
$x=\frac{\ln (32)}{\ln (16)}$
$x=\frac{5}{4}$
6) A
7) C
$f(x)=3 x^{2}-\frac{1}{x^{2}}$
$=3 x^{2}-x^{-2}$
$\int f(x) d x=\int 3 x^{2}-x^{-2} d x$

$$
=x^{3}+x^{-1}+C
$$

d)

$$
\begin{aligned}
f(x) & =\frac{x^{2}+2}{x} \\
f(-x) & =\frac{(-x)^{2}+2}{-x} \\
& =-\frac{x^{2}+2}{x} \\
& =-f(x)
\end{aligned}
$$

e) $2 x-y+3=0$
$y=2 x+3$
$m_{1}=2$
$m_{2}=-\frac{1}{2}$, through $(1,2)$
$y-2=-\frac{1}{2}(x-1)$
$2 y-4=-x+1$
$x+2 y-5=0$
f) $(1-x)+(1-x)^{2}+(1-x)^{3}+$..
$r=(1-x)$
for limiting sum
$-1<r<1$
$-1<1-x<1$
$-2<-x<0$
$0<x<2$
g) $\int e^{(5 x+4)}-2 d x=\frac{1}{5} e^{(5 x+4)}-2 x+C$
8) D
9) $\mathrm{C} \quad 1-2+4-8+16-$.. $a=1, r=-2, S_{n}=2796203$

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

$2796203=\frac{1\left((-2)^{n}-1\right)}{-2-1}$
$-8388609=(-2)^{n}-1$
$-8388608=(-2)^{n}$
$(-1) 8388608=(-1)^{n}(2)^{n}$

$$
n=\frac{\ln (8388608)}{\ln (2)} \text { for } n \text { odd }
$$

10) B
11)

a) $\begin{aligned} {\left[\frac{\sqrt{\pi}-1}{\sin 30^{\circ}}\right.} & =1.544907702 \ldots \\ & \approx 1.54\end{aligned}$
b) $x^{2}-1-a x-a=(x-1)(x+1)-a(x+1)$ $=(x+1)(x-1-a)$
c) $y=4 \ln x$
$\frac{d y}{d x}=\frac{4}{x}$
at $x=e^{2}$
$\frac{d y}{d x}=\frac{4}{e^{2}}$
12)
i) $3 x-5 y-7=0$
at $x=4$
3(4) $-5 y-7=0$
$12-7=5 y$
ii) Area of $\triangle A B C=22.5$

$$
\begin{aligned}
22.5 & =\frac{1}{2}(5) B C \\
B C & =9 \\
A C & =\sqrt{5^{2}+(9+3)^{2}} \\
& =13 \text { units }
\end{aligned}
$$

$y=x^{2}-\sqrt{2} x-2$
i) $\alpha+\beta=\frac{-b}{a}$
$=\frac{-(-\sqrt{2})}{1}$
$=\sqrt{2}$
ii) $\alpha \beta=\frac{c}{a}$
$=\frac{-2}{1}$
iii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=(\sqrt{2})^{2}-2(-2)$
$=2+4$
c)

$$
\begin{aligned}
y & =\frac{x^{2}}{e^{3 x}} \\
\frac{d y}{d x} & =\frac{e^{3 x} 2 x-x^{2} 3 e^{3 x}}{e^{6 x}} \\
& =\frac{x e^{3 x}(2-3 x)}{e^{6 x}} \\
& =\frac{x(2-3 x)}{e^{3 x}}
\end{aligned}
$$

d)
i) $y=\sqrt{16-x^{2}}$

$$
=\left(16-x^{2}\right)^{\frac{1}{2}}
$$

$\frac{d y}{d x}=\frac{1}{2} \times\left(16-x^{2}\right)^{-\frac{1}{2}} \times-2 x$ $=\frac{-x}{\sqrt{16-x^{2}}}$
ii) $\int \frac{2 x}{\sqrt{16-x^{2}}} d x$
$=-2 \int \frac{-x}{\sqrt{16-x^{2}}} d x$
$=-2 \sqrt{16-x^{2}}+C$
13)
$T_{n}=a r^{n-1}$
$1000000=1 \times 2^{n-1}$
$1000000=\frac{2^{n}}{2}$
$2000000=2^{n}$

$=20.931 \ldots$
\therefore last desposit on her 20th Birthday
b)
$\int_{0}^{4} x^{3}+\frac{1}{\sqrt{x}} d x$
$=\left[\frac{x^{4}}{4}+2 x^{\frac{1}{2}}\right]_{0}^{4}$
$=\left[\frac{(4)^{4}}{4}+2(4)^{\frac{1}{2}}\right]-\left[\frac{(0)^{4}}{4}+2(0)^{\frac{1}{2}}\right]$
$=(64+4)-0$
$=68$
ii)

i) $f(x)=x(x-3)^{2}$
$f^{\prime}(x)=2 x(x-3)+(x-3)^{2}$
$=(x-3)[2 x+x-3]$
$=(x-3)(3 x-3)$
$=3(x-3)(x-1)$
ii)
$f^{\prime}(x)=3(x-3)(x-1)$
$=3 x^{2}-12 x+9$
Stationary points at $f^{\prime}(x)=0$
$x=3$ and $x=1$
$f(1)=1(1-3)^{2}$
$=4$
$f(3)=3(3-3)^{2}$
$=0$
$f^{\prime \prime}(x)=6 x^{2}-12$
$f^{\prime \prime}(1)=6(1)^{2}-12$
$=-6$
<0
\therefore Maximum Turning point at $(1,4)$
$f^{\prime \prime}(x)=6 x^{2}-12$
$f^{\prime \prime}(3)=6(3)^{2}-12$
$=42$
>0
\therefore Minimum Turning point at $(3,0)$
c)

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{3-x}{x^{2}-9} & =\lim _{x \rightarrow 3} \frac{-(x-3)}{(x+3)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{-1}{(x+3)} \\
& =\frac{-1}{(3+3)} \\
& =-\frac{1}{6}
\end{aligned}
$$

d)
i) $P=50000(1+0.09)^{5}$ $=76931.19775$
≈ 76931
(ii) $100000=50000(1.09)^{n}$
$n=\frac{\ln (2)}{\ln (1.09)}$
$=8.043231 \ldots$
The population will first exceed 100000 in 2017
e) $A=\int_{2}^{5} \frac{4 x}{x^{2}-1} d x$
$=2 \int_{2}^{5} \frac{2 x}{x^{2}-1} d x$
$=2\left[\ln \left(x^{2}-1\right)\right]_{2}^{5}$
$=2[\ln (24)-\ln (3)]$
$=2 \ln 8$
$=6 \ln 2$ units 2
14)
a) $y^{2}-2 y=12 x-37$
i) $y^{2}-2 y+1=12 x-37+1$ $(y-1)^{2}=12 x-36$ $(y-1)^{2}=12(x-3)$
iii)

c) $\quad f^{\prime \prime}(x)=36 x+6$
$f^{\prime}(x)=\int f^{\prime \prime}(x) d x$
$=18 x^{2}+6 x+C_{1}$
$f^{\prime}(0)=0$
$0=18(0)^{2}+6(0)+C_{1}$
$C_{1}=0$
$f^{\prime}(x)=18 x^{2}+6 x$
$f(x)=\int f^{\prime}(x) d x$
$=6 x^{3}+3 x^{2}+C_{2}$
$f(0)=-1$
$-1=6(0)^{3}+3(0)^{2}+C_{2}$
$C_{2}=-1$
$\therefore f(x)=6 x^{3}+3 x^{2}-1$
d) $\quad|x+1|=|2 x-2|$
$|x+1|=|2 x-2|$
case 1
$x+1=2 x-2$
$x=3$

$$
\text { case } 2
$$

$x+1=-2 x+2$
$x=\frac{1}{3}$
test $x=\frac{1}{3}$
$\therefore x=3, x=\frac{1}{3}$
15)
i) $\angle A B C=90^{\circ}+18^{\circ}$
$=108^{\circ}$
ii) $A C^{2}=(30)^{2}+(20)^{2}-2 \times 30 \times 20 \cos 108^{\circ}$ $=1670.820393$.
$A C=40.87566 \ldots$
$\approx 41 \mathrm{~m}$
b) $\tan ^{2} x+1+\tan x \sec x=\frac{1+\sin x}{\cos ^{2} x}$

LHS $=\tan ^{2} x+1+\tan x \sec x$
$=\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{\sin x}{\cos x} \times \frac{1}{\cos x}$
$=\frac{1+\sin x}{\cos ^{2} x}$
$=$ RHS

$$
y=3 e^{x}
$$

$$
y^{2}=\left(3 e^{x}\right)^{2}
$$

$$
=9 e^{2 x}
$$

$$
V=\pi \int_{1}^{3} 9 e^{2 x} d x
$$

$$
=\pi\left[\frac{9 e^{2 x}}{2}\right]_{1}^{3}
$$

$$
=\pi\left[\frac{9 e^{2(3)}}{2}-\frac{9 e^{2(1)}}{2}\right]
$$

$$
=\frac{9 \pi\left(e^{6}-e^{2}\right)}{2} \text { units }^{2}
$$

$$
=\frac{9 \pi e^{2}\left(e^{4}-1\right)}{2} \text { units }^{2}
$$

d) $\quad \triangle A D E \equiv \triangle B D E$
$A D=B D$ (Given)
$D E=D E$ (Common)
$\angle \mathrm{ADE}=\angle \mathrm{BDE}=90^{\circ}$
$\therefore \triangle A D E \equiv \triangle B D E$ (SAS)
ii) $\angle C A E=\angle E A D(\mathrm{AE}$ bisects $\angle \mathrm{BAC})$ let $\angle C A E=\alpha$
$\angle E A D=\angle E B D$ (matching angles in congruent triangles) $3 \alpha=90^{\circ}$ (Angle sum of a triangle $A B C$)
$\alpha=30^{\circ}$
$\angle A B C=30^{\circ}$
iii) let $A B=2$
$\sin 30^{\circ}=\frac{A C}{2}$
$A C=1$
$C B=\sqrt{2^{2}-1^{2}}$
$=\sqrt{3}$
$D B=1$
$\cos 30^{\circ}=\frac{1}{E B}$
$E B=\frac{2}{\sqrt{3}}$
$C B: E B$
$\sqrt{3}: \frac{2}{\sqrt{3}}$
3:2
$A_{13}=50000(1.0075)^{13}-M$
$A_{14}=\left[50000(1.0075)^{13}-M\right](1.0075)-M$
$A_{14}=50000(1.0075)^{14}-M(1+1.0075)$
$A_{15}=50000(1.0075)^{15}-M\left(1+1.0075+1.0075^{2}\right)$
ii)

$$
\begin{aligned}
A_{/ 2} & =50000(1.0075)^{72}-M\left(1+1.0075+\ldots+1.0075^{59}\right) \\
A_{/ 2} & =0 \\
M & =\frac{50000(1.0075)^{72}}{1+1.0075+\ldots+1.0075^{59}} \\
1+1.0075+\ldots+1.0075^{59} & =\frac{1\left(1.0075^{60}-1\right)}{0.0075} \\
M & =\frac{50000\left(1.0075^{72}\right)}{1.0075^{60}-1} \times 0.0075 \\
M & =\frac{375\left(1.0075^{72}\right)}{1.0075^{60}-1} \\
& =\$ 1135.28
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) } \\
& A C=\sqrt{(10-x)^{2}-x^{2}} \\
& =\sqrt{100-20 x+x^{2}-x^{2}} \\
& =\sqrt{100-20 x} \\
& \text { Area } \triangle A B C=\frac{1}{2} x \sqrt{100-20 x} \\
& =\frac{x}{2} \sqrt{100-20 x} \\
& \text { ii) } \quad A=\frac{x}{2} \sqrt{100-20 x} \\
& =\frac{x(100-20 x)^{\frac{1}{2}}}{2} \\
& \frac{d A}{d x}=\frac{-10 x}{\sqrt{100-20 x}}+\frac{\sqrt{100-20 x}}{2} \\
& =\frac{-10 x+(100-20 x)}{2 \sqrt{100-20 x}} \\
& \text { Stat points at } \frac{d A}{d x}=0 \\
& 0=\frac{-10 x+(100-20 x)}{2 \sqrt{100-20 x}} \\
& 0=100-30 x \\
& x=\frac{10}{3} m \\
& \text { Therefore max area when } x=\frac{10}{3} m
\end{aligned}
$$

```
c) \({ }^{\text {i) }}\)
\(y=\sqrt{x}\)
\(y=m x\)
\(y=m x\)
\(0=\sqrt{x}-m x\)
\(=x\left(x^{-\frac{1}{2}}-m\right)\)
\(x=0\)
\(\therefore y=0\)
    \(x^{-\frac{1}{2}}=m\)
    \(x=m^{-2}\)
        \(=\frac{1}{m^{2}}\)
        \(y=\sqrt{\frac{1}{m^{2}}}\)
        \(=\frac{1}{m}\)
ii) \(\quad \therefore\) The graphs intersect at \((0,0)\) and \(\left(\frac{1}{m^{2}}, \frac{1}{m}\right)\).
    \(A=\int_{0}^{\frac{1}{m^{2}}}(\sqrt{x}-m x) d x\)
    \(=\left[\frac{2 x^{\frac{3}{2}}}{3}-\frac{m x^{2}}{2}\right]_{0}^{\frac{1}{m^{2}}}\)
    \(=\left[\frac{2\left(\frac{1}{m^{2}}\right)^{\frac{3}{2}}}{3}-\frac{m\left(\frac{1}{m^{2}}\right)^{2}}{2}\right]-0\)
    \(=\frac{2\left(\frac{1}{m^{3}}\right)}{3}-\frac{\left(\frac{1}{m^{3}}\right)}{2}\)
    \(=\left(\frac{2}{3 m^{3}}\right)-\left(\frac{1}{2 m^{3}}\right)\)
    \(=\frac{1}{6 m^{3}}\) units \(^{2}\)
```

