

Examination Number:

Set:

Shore

Year 12 Term II Examination 24 April 2015

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours ٠
- Write using black or blue pen ٠ Black pen is preferred
- Board-approved calculators may be used ٠
- A table of standard integrals is provided at the back of this paper
- Answer Questions 1–10 on the Multiple Choice Answer Sheet provided
- In Questions 11–16, show relevant mathematical reasoning and/or calculations
- Start each of Questions 11–16 in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Total marks - 100

- Pages 3-6 Section I
- 10 marks
- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 7–13

90 marks

- Attempt Questions 11–16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- What is the value of $\frac{\sqrt{3.84}}{2.65+7.7}$ correct to two decimal places? 1
 - (A) 0.19
 - (B) 0.61
 - (C) 5.28
 - (D) 8.44
- What are the conditions for the expression $ax^2 + bx + c$ to be positive definite? 2
 - (A) a > 0 and $\Delta > 0$
 - (B) c > 0 and $\Delta > 0$
 - (C) a > 0 and $\Delta < 0$
 - (D) c > 0 and $\Delta < 0$

(D)

Which of the following graphs represents the solution to |x-2| > 4? 3

4 The curve y = f(x) is decreasing and concave down.

Which one of the following applies to this curve?

- (A) f'(x) > 0 and f''(x) > 0
- (B) f'(x) > 0 and f''(x) < 0
- (C) f'(x) < 0 and f''(x) > 0
- (D) f'(x) < 0 and f''(x) < 0
- 5 A parabola has equation $x^2 = 8(y+2)$.

What are the coordinates of its vertex (V) and focus (F) respectively?

- (A) V(0,2) and F(0,0)
- (B) V(0,-2) and F(0,0)
- (C) V(0,2) and F(0,-4)
- (D) V(0,-2) and F(0,-4)
- 6 What is an equivalent expression for $4^x + 4^x + 4^x + 4^x$?
 - (A) 4^{4x}
 - (B) 16^{4x}
 - (C) 16^x
 - (D) 4^{x+1}

7 The diagram shows the region enclosed by $y = x^2 - 4$ and 2y = x - 2.

Which of the following pairs of inequalities describes the shaded region in the diagram?

- (A) $y \le x^2 4$ and $2y \le x 2$
- (B) $y \le x^2 4$ and $2y \ge x 2$
- (C) $y \ge x^2 4$ and $2y \le x 2$
- (D) $y \ge x^2 4$ and $2y \ge x 2$
- 8 Which of the following statements is true for the geometric sequence 24, 12, 6,.....?
 - (A) The fourth term is 0.
 - (B) The sum of the first four terms is 44.
 - (C) The sum of the series will never exceed 48.
 - (D) There are an infinite number of negative terms.

9 If
$$\sin \theta = -\frac{3}{5}$$
 and $\cos \theta < 0$, what is the value of $\tan \theta$?
(A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $-\frac{3}{4}$

(D)
$$-\frac{4}{3}$$

10 Which of the following graphs could have equation $y = 1 - 2^{-x}$?

End of Section I

Section II

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) Solve
$$\frac{2x-3}{8} - \frac{x-5}{6} = 1$$
. 2

(b) Fully factorise
$$x^3 - x^2 - 4x + 4$$
. 2

(c) Express
$$\frac{3-\sqrt{5}}{3+\sqrt{5}}$$
 as a simplified fraction with a rational denominator. 2

(d) Evaluate
$$\lim_{x \to 3} \frac{x-3}{x^2-9}$$
. 2

(e) How many sides does a regular polygon have if each interior angle is 168°?

(f) Evaluate
$$\sum_{k=2}^{5} (-1)^k \frac{1}{k}$$
. 2

- (g) The roots of the quadratic equation 3x² + 6x 2 = 0 are α and β.
 (i) Find the value of α + β.
 - (ii) Find the value of $\alpha^3 \beta^2 + \alpha^2 \beta^3$. 2

Question 12 (15 marks) Use a SEPARATE Writing Booklet

(a) Differentiate the following with respect to *x*.

(i)
$$\frac{1}{2\sqrt{x}}$$
 2

(ii)
$$xe^{x^2}$$
 2

(b) (i) Find
$$\int \frac{1}{(4x-1)^4} dx$$
. 2

(ii) Find
$$\int \sqrt{e^x} dx$$
. 2

2

2

3

- (c) Solve the inequality $2x^2 3x 2 \ge 0$.
- (d) Find the gradient, in simplest form, of the tangent to the curve $y = e^{3x}$ at the point where $x = \log_{a} 2$.

(e) Simplify
$$\frac{2\cos^2 x - 2}{2\sin x \cos x}$$
.

Question 13 (15 marks) Use a SEPARATE Writing Booklet

- (a) Solve $2\sin^2 \theta 1 = 0$ for $0^\circ \le \theta \le 360^\circ$. 3
- (b) Find the area between the curve $y = x^2 2x$, the x axis and the lines **3** x = 1 and x = 3.
- (c) In the diagram below, *line 1* has the equation 4x-3y=0, *line 2* has equation 3x+4y-75=0, *line 3* intersects with *line 1* at the point D(3,4) and *line 4* passes through the origin, *O*.

(i)	Show that <i>line 1</i> and <i>line 2</i> are perpendicular.	2
(ii)	Determine the equation of <i>line 3</i> , which passes through point $D(3,4)$ and is parallel to <i>line 2</i> .	2
(iii)	Show that the perpendicular distances from the origin, <i>O</i> , to <i>line 2</i> and <i>line 3</i> are 15 units and 5 units respectively.	2
(iv)	<i>Line 4</i> intersects <i>lines 2</i> and <i>3</i> at points <i>B</i> and <i>A</i> respectively. Determine the ratio $OB : OA$.	1
(v)	<i>C</i> is the point of intersection of <i>lines 1</i> and 2. Show that $\triangle OBC$ and $\triangle OAD$ are similar.	2

Que	stion 15 (15 marks) Use a SEPARATE Writing Booklet				
(a)	Consider the series $1 + (1 - x) + (1 - x)^2 + (1 - x)^3 + \dots$	2			
	For what values of <i>x</i> will this series have a limiting sum?				
(b)	Consider the curve $f(x) = x^4 - 8x^2 + 16$.				
	(i) Prove that the function is even.	1			
	(ii) Show that $f'(x) = 4x(x-2)(x+2)$.	2			
	(iii) Find the stationary points and determine their nature.	3			
	(iv) Sketch the curve showing all important features.	2			
	(v) Find the values of x for which the curve is increasing.	1			
(c)	The area between the curve $y = (x-3)^2$ and the line $y = 4$ is rotated about the <i>x</i> axis as indicated in the diagram.	4			
	Find the exact volume of the solid of revolution.				

Question 16 (15 marks) Use a SEPARATE Writing Booklet

(a)	(i) Simplify $\log_a b^2 \times \log_b a$.	2		
	(ii) Solve $\log_2(x-2) + \log_2(x+2) = 5$ for $x > 2$.	2		
(b)	Bob borrows \$30 000 from the bank to buy a new car. The loan plus interest and charges are to be repaid at the end of each month in equal monthly instalments of B over 5 years. Interest is charged at 6% per annum and is charged on the balance owing at the beginning of each month. Furthermore, a bank charge of \$20 is added to the account balance at the end of each month.			
	Let A_n be the amount owing at the end of <i>n</i> months.			
	(i) Write down an expression for A_1 .	1		
	(ii) Show that the amount owing after 2 months is given by	2		
	$A_2 = \$30\ 000 \times 1.005^2 - (B - 20)(1 + 1.005)$			
	(iii) Find Bob's monthly instalment, \$B, correct to the nearest cent.	3		

Question 16 (continued)

(c) A cylinder is inscribed inside a cone of radius 9 cm and height 25 cm.

(i) Use similar triangles to show that the height h of the cylinder is given by 1

$$h = \frac{25(9-r)}{9}$$

where *r* is the radius of the cylinder.

(ii) Show that the volume V of the cylinder is given by 1

$$V = \frac{25\pi}{9} \left(9r^2 - r^3\right).$$

(iii) Hence find the maximum possible volume of the cylinder. 3

End of paper

Question 16 continues on page 13

BLANK PAGE

20 712 Mid-Yea	Exam Solutions 2015		
(D) 0.1893 = 0.19 (A)	Question 11	(e) Each Ext. L = 180° - 168°	Question 12
© a>0, \$<0 C	$\binom{a}{8} \frac{2x-3}{8} - \frac{x-5}{6} = 1$	$= \frac{12}{12}$ No of sides = $\frac{360}{100}$	(a) (i) $y = \frac{1}{2\sqrt{5x}}$
3 x-2 7 4 $x-2 < -4 or x-2 7 4$	3(2x-3) - 4(x-5) = 24 6x-9 - 4x+20 = 24 2x + 11 = 24 [2]	$\frac{12}{(f_{2})} = \frac{30}{2} [2]$	$\frac{dy}{dx} = -\frac{1}{4} \times \frac{-\frac{3}{2}}{2} \qquad [2]$
	$2\pi = 13$ $\pi = 6 \frac{1}{2}$	$k = 2 \qquad k = 2$ $= (-1)^{2}, \perp + (-1)^{3}, \frac{1}{2} + (-1)^{4}, \frac{1}{4}$	$\left(\begin{array}{c} 0^{\mu} & \overline{4\sqrt{x^3}} \end{array}\right)$
f'(n) < 0	(b) $3c^{3} - 3c^{2} - 43c + 4$ = $3c^{2} (3c - 1) - 4 (3c - 1)$	$+(1)^{5}, \frac{1}{5}$	y' = Vu' + uv'
$(5) \qquad \qquad \underbrace{a=2}_{V(o_{1}-2)} \qquad (B)$	$= (x^{2}-4)(x-i)$ = $(x-2)(x+2)(x-i)$ (2]	$= \frac{13}{60} \qquad [2]$	$= e_{x} (1 + 2x^{2})$ $= e^{x^{2}} (1 + 2x^{2}) [2]$
$\frac{1}{6} \frac{1}{4^{n}+4^{n}+4^{n}+4^{n}} = 4x4^{x}$	$\begin{array}{c} (c) & 3 - \sqrt{5} \\ 3 + \sqrt{5} & 3 - \sqrt{5} \\ \end{array}$	(g) $3x^{2}+6x-2=0$ (i) $\alpha+\beta=\frac{-6}{3}$	(b) (i) $\int (4\pi - 1)^{-3} d\pi d\pi$ = $(4\pi - 1)^{-3} + C$
$\frac{=\varphi^{k+1}}{(2)} \bigcirc$	$= \frac{14-655}{14-655}$	$= -2$ $(ii) \alpha^{3}\beta^{2} + \alpha^{2}\beta^{3}$	-3×4
C y z x - 2 C	$= \frac{7-3\sqrt{5}}{2}$	$= \alpha^{2}\beta^{2}(\alpha + \beta)$ $= (\alpha + \beta)^{2}(\alpha + \beta)$	$= \frac{(11+1)}{-12} + c \qquad [2]$
(8) 24, 12, 6, $S_{0} = \frac{24}{1-\frac{1}{2}}$	(d) $\lim_{x \to 3} \frac{2c-3}{x^2-9}$	$= \left(\frac{-2}{3}\right)^{2} \times -2 \qquad [2]$	$\frac{12(4x-1)^2}{(i)}$
= 48 (9) 3 5 5 50 000 4 4070 (9) 4	$= \lim_{x \to 3} \frac{x - x}{(x - 3)(x + 3)}$ $= \lim_{x \to 3} \frac{1}{x + 3} [2]$	9	$= \int (e^{x})^{\frac{1}{\nu}} dx$
$\frac{4e_{\mu}\sigma = \frac{3}{4}}{y = 1 - 2^{-\kappa}}$			$= \frac{2e^{\frac{2i}{2}} + c}{(or 2\sqrt{e^{i}} + c)}$ (2)