

Examination Number:

Set:

Shore

Year 12 **Term II Examination May 2016**

Mathematics

General Instructions

- Reading time 5 minutes ٠
- ٠ Working time – 3 hours
- Write using black pen ٠
- Board-approved calculators may be used
- A BOSTES Reference Sheet is provided
- Answer Questions 1–10 on the Multiple ٠ Choice Answer Sheet provided
- In Questions 11–16, show relevant mathematical reasoning and/or calculations
- Start each of Questions 11-16 in a new writing booklet
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

	2	Which of the following is a simplification of $4m^{-2} \div \frac{1}{2}m^{-1}$?
		(A) $\frac{8}{m^3}$
Total marks – 100		(B) $\frac{8}{m}$
 Section I Pages 3–6 10 marks Attempt Questions 1–10 Allow about 15 minutes for this section 		(C) $\frac{2}{m^3}$ (D) $\frac{2}{m}$
 Section II Pages 7–14 90 marks Attempt Questions 11–16 Allow about 2 hours 45 minutes for this section 	3	Which of the following represents the solution to $ 2x-3 \le 1$? (A) $-2 \le x \le 2$ (B) $x \le -2$ or $x \ge 2$ (C) $1 \le x \le 2$ (D) $x \le 1$ or $x \ge 2$

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet for Questions 1-10.

- What is the value of $\frac{4.56^3 \sqrt{78}}{\sqrt{6.8^2 \times 9.3^6}}$ correct to 2 significant figures? 1
 - (A) 0.01 (B) 0.02

 - (C) 0.015
 - (D) 0.016
- Which of the following is a simplification of $4m^{-2} \div \frac{1}{2}m^{-1}$?

- 3 -

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

- 4 What are the values of *a* and *b* if $\frac{3}{2+\sqrt{5}} = a + \sqrt{b}$?
 - (A) $a = 3 \ b = -6$
 - (B) $a = -6 \ b = 3$
 - (C) $a = -6 \ b = 45$
 - (D) $a = 45 \quad b = -6$

5 Let $\log_a 2 = p$ and $\log_a 3 = q$.

Which of the following is the expression for $\log_a 24$?

(A) 3p+q

(B) $p^{3} + q$

(C) 3*pq*

(D) $p^{3}q$

- 6 The roots of $2x^2 4x + 7 = 0$ are α and β . What is the value of $\alpha^2 + \beta^2$?
 - (A) –3

(B) 4

(C) 11

(D) $10\frac{1}{4}$

7 The graph of the function y = f(x) is shown in the diagram.

8 In the diagram $AB \parallel CD \parallel EF$. AC = 3 cm, CE = 9 cm, BF = 20 cm and DF = x cm.

What is the value of *x*?

(A) 5 (B) $6\frac{2}{3}$ (C) 10 (D) 15 9 Consider the graph of the gradient function y = f'(x) below.

Which one of the following statements is true for y = f(x)?

- (A) There is a maximum turning point at x = 2.
- (B) There is a minimum turning point at x = -3.
- (C) There is a horizontal point of inflexion at x = 2.
- (D) There is a point of inflexion at x = 0.
- 10 Let $c = e^x$. Which expression is equal to $\log_e(c^3)$?
 - (A) e^{3x}
 - (B) 3*x*
 - (C) e^{x^3}
 - (D) x^{3}

Section II

90 marks Attempt Questions 11–16 Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) Simplify 3x - 2(x-1). 1

2

(b) Evaluate $\log_3 5$ correct to three decimal places.

(c) Evaluate
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$
. 2

- (d) Find the primitive of $e^{5x} + 1$. 2
- (e) Given $f(x) = x^2 3x 30$, find the value(s) of x if f(x) = 10. 2
- (f) Find the domain and range of $y = \frac{2}{x-3} + 1$.
- (g) Find the equation of the parabola with focus (-3,1) and directrix y = -1. 2

(h) Solve
$$\frac{2x-1}{4} + 1 = \frac{x}{3}$$
. 2

End of Section I

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) Solve $\sqrt{3} + \tan x = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

- (b) Differentiate the following with respect to *x*.
 - (i) $\log_e(3x^2-1)$. 2
 - (ii) $x^2 e^x$. 2
- (c) Find $\int x e^{5x^2} dx$.

(d) Evaluate
$$\int_{1}^{3} \frac{2x^3 + x}{x^2} dx.$$

(e) Find the equation of the normal to the curve $y = 3 \log_e x$ at the point (e, 3).

(f) Simplify $\sqrt{\sec^2 A - 1}$.

1

2

2

3

3

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) In the diagram *ABCD* forms a trapezium.

Line *AB* has equation y = 2x + 8 and is parallel to line *CD*.

Line *BC* is parallel to the *x*-axis.

	(i)	Show that the equation of line <i>CD</i> is $2x - y - 12 = 0$.	2
	(ii)	Show that the perpendicular distance from <i>B</i> to the line <i>CD</i> is $4\sqrt{5}$ units.	2
	(iii)	Find the co-ordinates of <i>C</i> .	1
	(iv)	If $AB = 4\sqrt{5}$ units, find the area of the trapezium <i>ABCD</i> .	3
(b)	Find	the values of k for which $x^2 - 2kx + 1 = 0$ has real and different roots.	2

Question 13 continues on the following page

Question 13 (continued)

(c) Consider the triangles *ABC*, *BAD* and *BDC* below. $\angle ACB = 90^{\circ}$, $\angle BDC = 45^{\circ}$, $\angle BAD = 30^{\circ}$ and BC = DC = 1 cm.

- (i) Using triangle ABC show that the length of AD is $(\sqrt{3} 1)$ cm.
- (ii) Find the length of *BD*.

(iii) Hence, or otherwise, show that
$$\sin 15^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$$
.

2

1

Question 14 (15 marks) Use a SEPARATE writing booklet

- (a) Consider the series 4+7+10+...+301.
 - (i) How many terms are in the series? 2

2

1

2

3

- (ii) Evaluate the sum of the series.
- (b) Use Simpson's rule with 3 function values to find an approximation for 2 $\int_{4}^{8} \frac{1}{\log_{e} x} dx.$ Give your answer correct to 3 significant figures.
- (c) Consider the function $y = 2x^3$.
 - (i) Draw a neat sketch of this function.
 - (ii) Find the area between the curve $y = 2x^3$, the *x*-axis and the lines x = -1 **3** and x = 3.
- (d) The diagram shows a triangle *ABC* with sides AC = m and BC = n. The points *D*, *E* and *F* lie on the sides *AC*, *AB* and *BC* respectively so that *CDEF* is a rhombus with sides of length *x*.

- (i) Prove that $\triangle ADE$ is similar to $\triangle EFB$.
- (ii) Find an expression for x in terms of m and n.

End of Question 13

Question 15 (15 marks) Use a SEPARATE writing booklet

(a) Evaluate
$$\int_{0}^{3} \frac{x}{x^2 + 3} dx$$
. Express your answer in simplest form. 3

- (b) Consider the curve given by $y = 1 + 3x x^3$.
 - (i) Find the coordinates of the stationary point(s) and determine their nature.

2

2

2

1

2

1

2

- (ii) Find any points of inflexion.
- (iii) Hence, sketch the curve showing features found in parts (i) and (ii).(Do not find the *x* intercepts).
- (c) The shaded region in the diagram is bounded by the curve $y = x^2 2x$ and the line y = 3x 4.

(i) State the points of intersection of the line and the parabola.

- (ii) Find the area of the shaded region.
- (d) Consider the series $3 + 6p + 12p^2 + 24p^3 + ...$
 - (i) For what values of p does this series have a limiting sum?
 - (ii) If the limiting sum of this series is $4\frac{1}{2}$, find the value of *p*.

Question 16 (15 marks) Use a SEPARATE writing booklet

4

The shaded region in the diagram is bounded by the curve $y = \sqrt{x-1}$, the y-axis and the lines y = 0 and y = 3.

Find the volume of the solid of revolution formed when the shaded region is rotated about the *y* axis.

(b) Mr Smith borrowed \$180 000 to buy a unit. The interest rate was 18% per annum, compounded monthly. He agreed to repay the loan in 20 years with equal monthly repayments. Let the monthly repayments be \$*M*. The amount owing, \$*A_n*, on the loan after the *n*th monthly repayment is given by the formula

 $A_n = 180\ 000(1.015)^n - M(1+1.015+1.015^2+...+1.015^{n-1})$ (Do not prove this)

- (i) If the loan is repaid in full in 20 years show that \$*M*, the monthly repayment **2** is \$2777.96.
- (ii) Mr Smith decides to round this monthly repayment to the nearest 3\$1000. How long will it take him to repay the loan, to the nearest month?

Question 16 continues on the following page

Question 16 (continued)

(c) An open rectangular box is to be formed by cutting squares of side length x cm from each corner of a rectangular sheet of metal that has length 40 cm and width 15 cm and folding up the sides.

(i)Find expressions for the length and breadth of the box in terms of x.1(ii)Show that the volume of the box is given by $V = 600x - 110x^2 + 4x^3$.2(iii)Find the value of x that gives the box its greatest volume.3

END OF PAPER

YEAR 12	, TERMIT EXAMINATION		
	A4 2016.	-2	
1. $0 \cdot 0157 = 0 \cdot 016$ (D) 2. $4m^{-2} \div 1 m^{-1} = 8m^{-2} - 1$ $= 8m^{-1}$ = 8 (B) $31 \le 2\chi - 3 \le 1$ $2 \le 2\chi \le 4$	5. $\log_{2} 24 = \log_{3} (3 \times 8)$ $= \log_{3} 3 + \log_{8} 8$ $= \log_{3} 3 + \log_{2} 2^{3}$ $= \log_{3} 3 + 3\log_{2} 2$ = 9 + 3p (A) b. $2x^{2} - 4x + 7 = 0$ $x + 8 = -\frac{5}{2}$	9. C. 10. $\log_{e}(c^{3}) = \log_{e}(e^{2})^{3}$ $= \log_{e}e^{3x}$ $= 3x \log_{e}e^{3x}$ =	(d) $dy = e^{5x} + 1$ [2] $y = e^{5x} + x + c$ (e) $f(x) = 10$ [2] $3c^2 - 3x - 30 = 10$ $x^2 - 3x - 40 = 0$ (x - 8)(x + 5) = 0 x = 8 or -5
$1 \leq 2 \leq 2$ Critical values $2x - 3 = 1 \text{ or } 22 - 3 = -1$ $2x = 4 \text{ or } 2x = 2$ $x = 2 \text{ or } 2 = 1$ Test $x = 0$ $[2(0) - 3] \leq 1$ $3 \leq 1 \text{ false}$ $\therefore 1 \leq 2 \leq 2$	$= 4$ $= \frac{2}{2}$ $\lambda \beta = \frac{c}{\alpha}$ $= \frac{1}{2}$ $\lambda^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $= \frac{2^{2} - 2x1}{2}$ $= 4 - 7$ $= -3 (A)$ $= -3 (A)$ $= 7$ $= -3 (A)$	$\begin{array}{c} 2 & p \\ 3 & c \\ 3 & c \\ 3 & c \\ 6 & p \\ 4 & c \\ 5 & A \\ 10 & B \end{array}$ $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	(f) Domain: all real x, $x \neq 3$ Range: all real y, $y \neq 1$ [2] (g) $(x+3)^2 = 4y$ $V = [-30]$ [2] (h) $2x-1 + (= \frac{x}{3} + \frac{x+2}{3} + \frac{y}{3} + \frac{y}{3}$
4. 3 = $a + \sqrt{b}$ 2+ $\sqrt{5}$ 3. $\times 2 - \sqrt{5} = \frac{6 - 3\sqrt{5}}{2^2 - (\sqrt{5})^2}$ = $\frac{6 - 3\sqrt{5}}{4 - 5}$ = $\frac{6 - 3\sqrt{5}}{-1}$ = $-6 + 3\sqrt{5}$ -1 = $-6 + 3\sqrt{5}$ $a + \sqrt{6} = -6 + \sqrt{45}$ $\therefore a = -6 + 5 $	$= 4 + -\frac{1}{2} \times 1 \times 2$ = 4 - 1 = 3 (B) 8. $\frac{x}{20} = \frac{9}{12}$ $x = \frac{9}{20} \times 20$ 12 = 15 (D)	$= 1.4649$ $= 1.465 (3dp)$ (c) lim $x^{3}-8$ $x \rightarrow 2$ $x-2$ $= 1im (x-2)(x^{2}+2x+4)$ $x \rightarrow 2$ $(x-2)_{1}$ $= 2^{2}+2(2) + 4$ $= 12$	$g_{L} = -4\frac{1}{2}$

_4 =

- 3-

$(b(i) y = \log (3x^2 - i)$ 2	(c) y = 310gex 3
	dy = 3 × 1
$\frac{dy}{dx} = \frac{1}{3x^2 - 1} \times 6x$	$dy = 3 \times 1$ dx = 3
= 6%	x
$3x^{2}-1$.	When $x = c$
52-1.	
2 × [$\frac{dy}{dx} = \frac{3}{e} = \frac{m}{r}$
(ii) $y = x^{2}e^{x}$ $u = x^{2}$ $v = e^{x}$ $u' = 2x$ $v' = e^{x}$	x in a c
· u = 2 × v = e	x MN = - C
y ≈ vu +uv	
$z e^{2} \times 2x + x^{2} \times e^{2}$	Eqn of normal. (e,3)
$=2xe^{x}+z^{2}e^{x}$	$y - 3 = -\frac{e}{3}(x - e)$
$z x e^{\chi} (2 + \chi)$	$3y - 9 = -ex + e^2$
	ex + 3y-9-e2 =0
(c) $\int x e^{5x^2} dx = \frac{1}{10} e^{5x^2} + c$	
-	$(f) \sqrt{\sec^2 A - 1} = \sqrt{\tan^2 A}$
3	= tanA.
$d = \left(\frac{2x^3}{4} + 1 \right) dx$	Ittan A = Sec ² A
$\frac{d}{dx} \int \frac{2x^3 + 1}{x^2} dx$	$\therefore \sec^2 A - 1 = \tan^2 A$
- ((2x+1)dx	
$= \int (2x + \frac{1}{x}) dx$	Question 13.
$= \left[\frac{2x^2}{2} + \ln x\right]^3$	
2 20 7 10 2	() MAB = 2 The = 2 (mone)
[n ² n 1 3	Egn (D). [2]
$z \left[x^2 + \ln x \right]^2$	
2 2 1 2 1 1	y + 4 = 2(x - 4)
$= \left[(3^{2} + \ln 3) - (1^{2} + \ln 1) \right]$	y + 4 = 2x - 8
$= 9 + \ln 3 - 1$	0 = 2x - y - 12
= 8+1n3.	

(ii) 2x-y-12=0	$\therefore A = \pm h(a+b)$
a=2 b=-1 c=-12	$ \begin{array}{c} \therefore A = 1 h (a+b) \\ + rop = 2 \\ - 1 \times 4 \sqrt{5} (4 \sqrt{5} + 6 \sqrt{5}) \end{array} $
B (0,8)	= 255 × 1055
	= 100 units 2.
pd = [ax, +by, +c] [2]	
Q2+62	(b) real + diff roots when \$>0
= 2×0 + -1×8-12	
4'a 1	$\Delta = b^2 - 4ac$
= [-20]	$= (-2k)^2 - 4(i)$
15	$= 4k^2 - 4$
= 20 × 15 15 15	
1 10	$:-4k^2-4>0$
= 20.5	K2-170
	(K-1) (K+1)>0
= 455 units.	K=±1
	K P P >
(in) A+<, y=8 .	-1 0 1
Subinto 2x-4-12=0	test := 0 0-170
2x -8-12=0	-170 False
2x = 20	
x=10	i. KK-1 or K>1
:. C = (10,8)	18
2	C) IN DABC
$(i^{i}) d_{pc} = \sqrt{(10-4)^2 + (8+4)^2}$	(i) I
= 136+144	30° 1
= 1180	tan 30 = Ac
= 3\[\]20	AC = 1 tan 30° [2]
= 3×25	= 1
= 6 5	τ _α
	= \3
	AD = AC - DC
	$=(\sqrt{3}-1)$ cm

	-6-	
	(d) A M-z D z c	(b) $y = 1 + 3x - x^3$
1	×	i) $dy = 3 - 3x^2$ 2
	x7 x 7x	
_	EFF (2)	$d^2 y = -6x$ dx^2
	n-22	drc2
_	×β	Stat. pts when dy =>
alla	In ADE and DEFB	dre
2)	LDAE = < FEB "(corresponding LS,	3-322=0
-	ACILEF)	$3 = 3z^2$
-	LDEA = LFBF (Corresponding LS,	$\chi^2 = ($
	EDINBO	$x = \pm 1$
t-1 1n8,	i. DADE III DEF8 (equiangular)	stat pts (-1, -1) and (1,3)
	(ii) ··· > > n-~ (matching sides)	$x = -1$ $y = 1 + (3x - 1) - (-1)^{3}$
×	(ii) ··· <u>sc</u> <u>n-x</u> (matching sides) <u>m-x</u> = <u>x</u> of similar Δs <u>in proportion</u>)	= (-3+1
	$\pi^2 = (m - \alpha)(n - \alpha)$	= -1
1	xt = mn - mx - nx+xt	x=1 y=1+3-1
	0 = mn - mx - nx [3]	= 3.
_	= mn - x(m + n)	
	2(m-n) = mn	When $x = -1$ dy $= -6x-1$
	$\alpha = mn$	When $x = -1$ dy $= -6x-1$ disc $= 6 > 0$
	m+n	Min. turning pt at (-1, -1)
²	The second	in the second processing the
1	Question 15.	when $x=1$ dy $=-6\times1$
}	3 3	when $x=1$ dy $=-6\times1$ dr $=-6$ Ko
	(a) $\int \frac{x}{x^2+3} dx = \left[\frac{1}{2} \ln(x^2+3)\right]$	Max. twning pt (1,3).
_	= 1/1 (32+3) - 1/2 In(0+	
	$= \frac{1}{2} \ln (3 + 3) = $	3) r
	= 1 In 12 - 1 In 3 11	
	= 1 [] 3]	
	= 1 in +	
	$= \frac{1}{2} \left[\ln \frac{12}{3} \right]^{2}$ $= \frac{1}{2} \ln 4$ $= \frac{2}{12} \times 2 \ln 2$ $= \ln 2$	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2p = \frac{3}{4\frac{1}{2}}$ $p = \frac{1}{6}$ $fion 16$ $= \pi \int x^{2} dy$ $y = \sqrt{x-1}$ $y^{2} = x-1$ $\int (y^{2}+1)^{2} dy$ $y^{2} = x-1$ $y^{2} = (y^{2}+1)^{2}$ $(y^{4} + 2y^{2}+1)dy$ $= y^{4} + 2y^{2}+1$ $\int (y^{4} + 2y^{2}+1)dy$ $= y^{4} + 2y^{2}+1$ $\int (y^{5} + 2y^{3} + y) \Big _{0}$ $T \left((\frac{3}{2} + 2(3)^{3} + 3) - (9 + 2(0) + 0)\right)$
$= \left[\frac{(5(4)^2 - 4(4) - 4^3) - (\frac{5}{2} - 4 - \frac{5}{3})}{2} \right] = T$ $= \frac{(0_{11}) - 1}{2} = \frac{1}{3} + 1$	$ \begin{array}{rcl} & & & & & & & & \\ $

- 9 -	
M = \$3000	
(i) From (i) A = 180 000 (1.015) - 3000 (1.015 1-	
0.015	
$A_{n}=0$ $0 = 180000 (1.015)^{n} - 200000 (1.015^{n}-$	
$0 = 180000 (1.015)^{n} - 200000 (1.015)^{n}$	+ 200 000
$0 = -20000 (1.015)^{n} + 200 000$	
20 000 (1.015)" = 200 000 (+ 20 000) 1.0015" = 10	
log (1-015)" = loge 10	
$n \log(105) = \log_{2} 10$	12
$N = \log_e \log_e$	لعا
10ge(1.015)	
= 154-65	
= 155 mths (nearest mth)	
(c) x (i) length = $40-2x$	Ē
breadth = 15-2x	
40-2×	
	<i>x</i>
(ii) V=16h	
$= \infty (40 - 2x) (15 - 2x)$	
$= x \left[600 - 80x - 30x + 4x^{2} \right]$	
$= 630 \times - 110 \times^2 + 4 \times^3$	2
$(\hat{u}i) dv = 600 - 220 \times + 12 \times^2$	
dre	
$\frac{d^2 v}{d\kappa^2} = -200 \pm 14\kappa$	3
. daz	
Stat pts when $dv = 0$ $600 - 220x + 12x^2 = 0$	(+4)
$dx = 3x^2 - 55x + 150 = 0$	
$\kappa = 55 \pm \sqrt{55^2 - 4(3)150}$	
$= \frac{55 \pm 35}{6}$	

-10 -
$\mathcal{X} = \frac{90}{6} \text{or} \mathcal{X} = \frac{20}{6}$
$x = 15 \text{ or } x = 3\frac{1}{3}$
When $x = 15$ $d^2 V = -200 + 24 \times 15$ $dx^2 = 160 > 0$
= 160 >0
$(1) \tan x = 3\frac{1}{3}$ $d^2 V = -200 \pm 24 \times 3\frac{1}{3}$
When $x = 3\frac{1}{3}$ $d^2 v = -200 + 24 \times 3\frac{1}{3}$ $d\kappa^2 = -120 < 0$; Max :. Max volume when $x = 3\frac{1}{3}$ cm.
:. Max volume when 2 = 33 cm.