Shore

Year 12

Term II Examination

May 2016

Mathematics

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A BOSTES Reference Sheet is provided
- Answer Questions $1-10$ on the Multiple Choice Answer Sheet provided
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Start each of Questions 11-16 in a new writing booklet
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked with your examination number and " N / A " on the front cover
(D) $x \leq 1$ or $x \geq 2$

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Multiple Choice Answer Sheet for Questions 1-10.
1 What is the value of $\frac{4.56^{3}-\sqrt{78}}{\sqrt{6.8^{2} \times 9.3^{6}}}$ correct to 2 significant figures?
(A) 0.01
(B) 0.02
(C) 0.015
(D) 0.016

2 Which of the following is a simplification of $4 m^{-2} \div \frac{1}{2} m^{-1}$?
(A) $\frac{8}{m^{3}}$
(B) $\frac{8}{m}$
(C) $\frac{2}{m^{3}}$
(D) $\frac{2}{m}$

3 Which of the following represents the solution to $|2 x-3| \leq 1$?
(A) $-2 \leq x \leq 2$
(B) $x \leq-2$ or $x \geq 2$
(C) $1 \leq x \leq 2$

Section I

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II Pages 7-14
90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section
$4 \quad$ What are the values of a and b if $\frac{3}{2+\sqrt{5}}=a+\sqrt{b}$?
(A) $a=3 \quad b=-6$
(B) $a=-6 \quad b=3$
(C) $a=-6 \quad b=45$
(D) $a=45 \quad b=-6$

5 Let $\log _{a} 2=p$ and $\log _{a} 3=q$.
Which of the following is the expression for $\log _{a} 24$?
(A) $3 p+q$
(B) $p^{3}+q$
(C) $3 p q$
(D) $p^{3} q$

6 The roots of $2 x^{2}-4 x+7=0$ are α and β. What is the value of $\alpha^{2}+\beta^{2}$?
(A) -3
(B) 4
(C) 11
(D) $10 \frac{1}{4}$

7 The graph of the function $y=f(x)$ is shown in the diagram.

Which of the following gives the exact value for $\int_{0}^{7} f(x) d x$?
(A) π
(B) 3
(C) 5
(D) $\pi+5$

8 In the diagram $A B\|C D\| E F . A C=3 \mathrm{~cm}, C E=9 \mathrm{~cm}, B F=20 \mathrm{~cm}$ and $D F=x \mathrm{~cm}$.

NOT TO
SCALE

What is the value of x ?
(A) 5
(B) $6 \frac{2}{3}$
(C) 10
(D) 15

9 Consider the graph of the gradient function $y=f^{\prime}(x)$ below.

Which one of the following statements is true for $y=f(x)$?
(A) There is a maximum turning point at $x=2$.
(B) There is a minimum turning point at $x=-3$.
(C) There is a horizontal point of inflexion at $x=2$.
(D) There is a point of inflexion at $x=0$.

10 Let $c=e^{x}$. Which expression is equal to $\log _{e}\left(c^{3}\right)$?
(A) $e^{3 x}$
(B) $3 x$
(C) $e^{x^{3}}$
(D) x^{3}

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Simplify $3 x-2(x-1)$
(b) Evaluate $\log _{3} 5$ correct to three decimal places.
(c) Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$.
(d) Find the primitive of $e^{5 x}+1$.
(e) Given $f(x)=x^{2}-3 x-30$, find the value(s) of x if $f(x)=10$.
(f) Find the domain and range of $y=\frac{2}{x-3}+1$.
(g) Find the equation of the parabola with focus $(-3,1)$ and directrix $y=-1$.
(h) Solve $\frac{2 x-1}{4}+1=\frac{x}{3}$.

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) Solve $\sqrt{3}+\tan x=0$ for $0^{\circ} \leq x \leq 360^{\circ}$.

2
(b) Differentiate the following with respect to x.
(i) $\quad \log _{e}\left(3 x^{2}-1\right)$.
(ii) $x^{2} e^{x}$.
(c) Find $\int x e^{5 x^{2}} d x$.
(d) Evaluate $\int_{1}^{3} \frac{2 x^{3}+x}{x^{2}} d x$.
(e) Find the equation of the normal to the curve $y=3 \log _{e} x$ at the point $(e, 3)$
(f) Simplify $\sqrt{\sec ^{2} A-1}$.

Question 13 (15 marks) Use a SEPARATE writing booklet
(a) In the diagram $A B C D$ forms a trapezium.

Line $A B$ has equation $y=2 x+8$ and is parallel to line $C D$.
Line $B C$ is parallel to the x-axis.

(i) Show that the equation of line $C D$ is $2 x-y-12=0$. 2
(ii) Show that the perpendicular distance from B to the line $C D$ is $4 \sqrt{5}$ units. 2
(iii) Find the co-ordinates of C.
(iv) If $A B=4 \sqrt{5}$ units, find the area of the trapezium $A B C D$.
(b) Find the values of k for which $x^{2}-2 k x+1=0$ has real and different roots.
(c) Consider the triangles $A B C, B A D$ and $B D C$ below $\angle A C B=90^{\circ}, \angle B D C=45^{\circ}, \angle B A D=30^{\circ}$ and $B C=D C=1 \mathrm{~cm}$.

NOT TO
SCALE
(i) Using triangle $A B C$ show that the length of $A D$ is $(\sqrt{3}-1) \mathrm{cm}$.

2
(ii) Find the length of $B D$.
(iii) Hence, or otherwise, show that $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Consider the series $4+7+10+\ldots+301$.
(i) How many terms are in the series? 2
(ii) Evaluate the sum of the series.
(b) Use Simpson's rule with 3 function values to find an approximation for $\int_{4}^{8} \frac{1}{\log _{e} x} d x$. Give your answer correct to 3 significant figures.
(c) Consider the function $y=2 x^{3}$.
(i) Draw a neat sketch of this function.
(ii) Find the area between the curve $y=2 x^{3}$, the x-axis and the lines $x=-1$ and $x=3$.
(d) The diagram shows a triangle $A B C$ with sides $A C=m$ and $B C=n$. The points D, E and F lie on the sides $A C, A B$ and $B C$ respectively so that $C D E F$ is a rhombus with sides of length x.

NOT TO SCALE
(i) Prove that $\triangle A D E$ is similar to $\triangle E F B$.
(ii) Find an expression for x in terms of m and n.

Question 15 (15 marks) Use a SEPARATE writing booklet
(a) Evaluate $\int_{0}^{3} \frac{x}{x^{2}+3} d x$. Express your answer in simplest form.
(b) Consider the curve given by $y=1+3 x-x^{3}$.
(i) Find the coordinates of the stationary point(s) and determine their nature.
(ii) Find any points of inflexion.
(iii) Hence, sketch the curve showing features found in parts (i) and (ii).
(c) The shaded region in the diagram is bounded by the curve $y=x^{2}-2 x$ and the line $y=3 x-4$.

(i) State the points of intersection of the line and the parabola.

1
(ii) Find the area of the shaded region.
(d) Consider the series $3+6 p+12 p^{2}+24 p^{3}+\ldots$
(i) For what values of p does this series have a limiting sum?
(ii) If the limiting sum of this series is $4 \frac{1}{2}$, find the value of p.

Question 16 (15 marks) Use a SEPARATE writing booklet
(a) The graph of $y=\sqrt{x-1}$ is shown below.

The shaded region in the diagram is bounded by the curve $y=\sqrt{x-1}$,
the y-axis and the lines $y=0$ and $y=3$.
Find the volume of the solid of revolution formed when the shaded region is rotated about the y axis.
(b) Mr Smith borrowed $\$ 180000$ to buy a unit. The interest rate was 18% per annum, compounded monthly. He agreed to repay the loan in 20 years with equal monthly repayments. Let the monthly repayments be $\$ M$. The amount owing, $\$ A_{n}$, on the loan after the nth monthly repayment is given by the formula

$$
A_{n}=180000(1.015)^{n}-M\left(1+1.015+1.015^{2}+\ldots+1.015^{n-1}\right) \text { (Do not prove this) }
$$

(i) If the loan is repaid in full in 20 years show that $\$ M$, the monthly repayment 2 is $\$ 2777.96$.
(ii) Mr Smith decides to round this monthly repayment to the nearest

Question 16 (continued)

(c) An open rectangular box is to be formed by cutting squares of side length $x \mathrm{~cm}$ from each corner of a rectangular sheet of metal that has length 40 cm and width 15 cm and folding up the sides.

(i) Find expressions for the length and breadth of the box in terms of x.
(ii) Show that the volume of the box is given by $V=600 x-110 x^{2}+4 x^{3}$. 2
(iii) Find the value of x that gives the box its greatest volume.

Year 12 Term II Examination
MAY 2016.
Section 1.

1. $0.0157 \ldots \doteqdot 0.016$
2.

$$
\begin{align*}
4 m^{-2} \div \frac{1}{2} m^{-1} & =8 m^{-2--1} \\
& =8 m^{-1} \\
& =\frac{8}{m} \tag{B}
\end{align*}
$$

$$
\text { 3. } \begin{aligned}
-1 & \leqslant 2 x-3 \leq 1 \\
2 & \leqslant 2 x \leq 4 \\
& 1 \leqslant x \leqslant 2
\end{aligned}
$$

De critical values

$$
\begin{gathered}
\begin{array}{c}
2 x-3=1 \text { or } \quad 2 x-3=-1 \\
2 x=4 \text { or } 2 x=2 \\
x=2 \text { or } x=1
\end{array} \\
\text { Test } x=0 \quad|2(0)-3| \leqslant 1 \\
3 \leq 1 \text { False } \\
\therefore 1 \leq x \leq 2 .
\end{gathered}
$$

4. $\frac{3}{2+\sqrt{5}}=a+\sqrt{b}$

$$
\begin{aligned}
\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} & =\frac{6-3 \sqrt{5}}{2^{2}-(\sqrt{5})^{2}} \\
& =\frac{6-3 \sqrt{5}}{4-5} \\
& =\frac{6-3 \sqrt{5}}{-1} \\
& =-6+3 \sqrt{5} \\
a+\sqrt{6} & =-6+\sqrt{45} \\
\therefore a & =-6 b=45
\end{aligned}
$$

5.

$$
\begin{align*}
\log _{a} 24 & =\log _{a}(3 \times 8) \\
& =\log _{a} 3+\log _{a} 8 \\
& =\log _{a} 3+\log _{a} 2^{3} \\
& =\log _{a} 3+3 \log _{a} 2 \\
& =q+3 p \tag{A}
\end{align*}
$$

b. $2 x^{2}-4 x+7=0$

$$
\begin{aligned}
\alpha+\beta & =-\frac{b}{a} \\
& =\frac{4}{2} \\
& =\frac{2}{2}
\end{aligned}
$$

$$
\begin{align*}
\alpha \beta & =\frac{c}{a} \\
& =\frac{1}{2} \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =2^{2}-2 \times \frac{1}{2} \\
& =4-7 \\
& =-\frac{3}{=} \tag{A}
\end{align*}
$$

7. $\int_{0}^{7} f(x) d x=A_{\text {square }}+$ Area $_{\Delta}$ (b) $\log _{3} 5=\frac{\log _{2} 5}{\log _{e} 3}$

$$
\begin{align*}
& =4+-\frac{1}{2} \times 1 \times 2 \\
& =4-1 \\
& =3 \tag{B}
\end{align*}
$$

8. $\frac{x}{20}=\frac{9}{12}$

$$
x=\frac{9}{12} \times 20
$$

9. C

Question II.
(a)

$$
\begin{aligned}
& 3 x-2(x-1) \\
= & 3 x-2 x+2 \\
= & x+2
\end{aligned}
$$

(c) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$

$$
\begin{array}{r}
12 \tag{D}\\
-\quad 15 \\
\hline
\end{array}
$$

10. $\log _{e}\left(c^{3}\right)=\log _{e}\left(e^{x}\right)^{3}$

$$
\begin{aligned}
& =\log _{e} e^{3 x} \\
& =3 x \log _{2} x
\end{aligned}
$$

$$
\begin{align*}
& =3 x \log x \tag{B}\\
& =3 x
\end{align*}
$$

1	D	C	A
2	B	7	B
3	C	8	D
4	C	9	C
5	A	10	B

$$
\begin{align*}
& =1.4649 \ldots \tag{2}\\
& \vdots 1.465(3 \mathrm{~d} p)
\end{align*}
$$

$$
\begin{align*}
& =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)} \tag{2}\\
& =2^{2}+2(2)+4 \\
& =12
\end{align*}
$$

(h)

$$
\begin{align*}
\frac{2 x-1}{4}+1 & =\frac{x}{3} \\
3(2 x-1)+12 & =4 x \tag{2}\\
6 x-3+12 & =4 x \\
2 x & =-9 \\
x & =-4 \frac{1}{2}
\end{align*}
$$

(d) $\begin{aligned} \frac{d y}{d x} & =e^{5 x}+1 \\ y & =\frac{e^{5 x}}{5}+x+c\end{aligned}$
(e)

$$
\begin{aligned}
& f(x)=10 \\
& x^{2}-3 x-30=10 \\
& x^{2}-3 x-40=0 \\
& (x-8)(x+5)=0 \\
& x=8 \text { or }-5
\end{aligned}
$$

(f) Domain: all real $x, x \neq 3$

Range: all real $y, y \neq 1$
(g) $(x+3)^{2}=4 y \quad V=(-3,0)$

Question 12.
(a) $\sqrt{3}+\tan x=0$
$\tan x=-\sqrt{3}$
related $L=60^{\circ}$.

$$
\begin{align*}
& x=180^{\circ}-60^{\circ}, 360^{\circ}-60^{\circ} \\
& x=120^{\circ} \text { o, } 300^{\circ} \tag{2}
\end{align*}
$$

(b) i)

$$
\begin{aligned}
y & =\log \left(3 x^{2}-1\right) \\
\frac{d y}{d x} & =\frac{1}{3 x^{2}-1} \times 6 x \\
& =\frac{6 x}{3 x^{2}-1}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=x^{2} e^{x} \quad\left[\begin{array}{ll}
u=x^{2} & v=e^{x} \\
u^{\prime}=2 x & v^{\prime}=e^{x} \\
y^{\prime}=v u^{\prime}+u v^{\prime} \\
=e^{x} \times 2 x+x^{2} \times e^{x} & 12 \\
=2 x e^{x}+x^{2} e^{x} & \\
=x e^{x}(2+x)
\end{array}\right.
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& \int_{13}^{3}\left(\frac{2 x^{3}}{x^{2}}+\frac{1}{x}\right) d x \\
= & \int_{1}^{3}\left(2 x+\frac{1}{x}\right) d x \\
= & {\left[\frac{2 x^{2}}{2}+\ln x\right]_{1}^{3} } \\
= & {\left[x^{2}+\ln x\right]_{1}^{3} } \\
= & {\left[\left(3^{2}+\ln 3\right)-\left(1^{2}+\ln 1\right)\right] } \\
= & 9+\ln 3-1 \\
= & 8+\ln 3 .
\end{aligned}
$$

2
(f)
(e)

$$
\begin{aligned}
y & =3 \log _{e} x \\
\frac{d y}{d x} & =3 \times \frac{1}{x} \\
& =\frac{3}{x}
\end{aligned}
$$

When $x=e$

$$
\begin{align*}
& \frac{d y}{d x}=\frac{3}{e}=\cdot m_{T} \tag{2}\\
& \therefore m_{N}=-\frac{e}{3} \\
& \text { eqn of normal. }(e, 3)=\left\lvert\, \frac{2 \times 0+-1 \times 8-12 \mid}{\sqrt{4+1}}\right. \\
& y-3=-\frac{e}{3}(x-e) \\
& 3 y-9=\frac{1-20 \mid}{\sqrt{5}} \\
& e x+e x+e^{2} \\
&=\frac{20}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\
&=\frac{20 \sqrt{5}}{5} \\
&=4 \sqrt{5} \text { units. }
\end{align*}
$$

$$
\begin{align*}
\text { (ii) } & 2 x-y-12=0 \\
a & =2 \quad b=-1 \quad c=-12 \\
B & (0,8) \\
p d= & \frac{\left|a x_{1}+b y, c\right|}{\sqrt{a^{2}+b^{2}}} \tag{2}\\
= & \left\lvert\, \frac{|2 \times 0+-1 \times 8-12|}{\sqrt{4+1}}\right. \\
= & \left\lvert\, \frac{|20|}{\sqrt{5}}\right. \\
& \left.=\frac{20}{\sqrt{5}}\right) \times \frac{\sqrt{5}}{\sqrt{5}} \\
& =\frac{20 \sqrt{5}}{5} \\
& =\frac{4 \sqrt{5} \text { units. }}{}
\end{align*}
$$

(iii) $A+c, y=8$
subinto $2 x-y-12=0$

$$
\begin{gathered}
2 x-8-12=0 \\
2 x=20 \\
x=10 \\
\therefore \quad c=(10,8)
\end{gathered}
$$

(iv

$$
\begin{align*}
y+4 & =2(x-4) \tag{3}\\
y+4 & =2 x-8 \\
0 & =2 x-y-12 \\
& =\sqrt{36+144} \tag{2}\\
& =\sqrt{180} \\
& =3 \sqrt{20} \\
& =3 \times 2 \sqrt{5} \\
& =6 \sqrt{5}
\end{align*}
$$

test $:=0 \quad 0-1>0$
$-1>0$ False
$\therefore \quad k<-1$ or $k>1$
(c) in $\triangle A B C$
(i)

$\tan 30^{\circ}=\frac{1}{A C}$

$$
\begin{aligned}
A C & =\frac{1}{\tan 30^{\circ}} \\
& =\frac{1}{\frac{1}{\sqrt{3}}}
\end{aligned}
$$

$$
=\sqrt{3}
$$

$$
\begin{aligned}
\therefore A D & =A C-D C \\
& =(\sqrt{3}-1) \mathrm{cm}
\end{aligned}
$$

(ii)

$$
\begin{align*}
x^{2} & =1^{2}+1^{2} \\
& =2 \\
x & =\sqrt{2} \\
B D & =\sqrt{2} \tag{1}
\end{align*}
$$

sine rule:

$$
\begin{aligned}
& \therefore \frac{\sin 15^{\circ}}{\sqrt{3}-1}=\frac{\sin 30^{\circ}}{\sqrt{2}} \\
& \sin 15^{\circ}=\frac{\frac{1}{2}}{\sqrt{2}}(\sqrt{3}-1) \\
& \sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

Question 14.

$$
\begin{align*}
(i) a & =4 \quad d=3 \quad T_{n}=301 \\
T_{n} & =a+(n-1) d \tag{2}\\
301 & =4+(n-1)^{3} \\
301 & =4+3 n-3 \\
300 & =3 n \\
100 & =n
\end{align*}
$$

There are 100 terms
(ii) $S_{100}=$?
(2)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[a+1] \\
S_{100} & =\frac{100}{2}[4+301] \\
& =15250
\end{aligned}
$$

(c)

(d)

in $\triangle A D E$ and $\triangle E F B$
$\angle D A E=\angle F E B$ ' (corresponding $\angle s$, $A \subset \|$ EFl)
$\angle D E A=\angle F B F$ (corresponding $\angle s$,
$E D \| B C)$
$\therefore \triangle A D E$ III $\triangle E F B$ (equiangular)
(ii) $\therefore \frac{x}{m-x}=\frac{n-x}{x}$ (matching sides is proportion)

$$
\begin{align*}
x^{2} & =(m-x)(n-x) \\
x^{2} & =m n-m x-n x+x^{2} \\
0 & =m n-m x-n x \tag{13}\\
& =m n-x(m+n) \\
x(m-n) & =m n \\
x & =\frac{m n}{m+n}
\end{align*}
$$

Question 15.
(a)

$$
\begin{aligned}
\int_{0} \frac{x}{x^{2}+3} d x & =\left[\frac{1}{2} \ln \left(x^{2}+3\right)\right]_{0} \\
& =\frac{1}{2} \ln \left(3^{2}+3\right)-\frac{1}{2} \ln (0+3) \\
& =\frac{1}{2} \ln 12-\frac{1}{2} \ln 3 \\
& =\frac{1}{2}\left[\ln \frac{12}{3}\right]^{2} \\
& =\frac{1}{2} \ln 4 \\
& =\ln \frac{1}{2} \times 2 \ln 2
\end{aligned}
$$

(b) $\quad y=1+3 x-x^{3}$
(i)

Stat. pts when $\frac{d y}{d x}=0$

$$
\begin{aligned}
3-3 x^{2} & =0 \\
3 & =3 x^{2} \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

Stat pts $(-1,-1)$ and $(1,3)$

$$
\begin{aligned}
x=-1 \quad y & =1+(3 x-1)-(-1)^{3} \\
& =1-3+1 \\
& =-1 \\
x=1 \quad y & =1+3-1 \\
& =3 .
\end{aligned}
$$

\therefore Min. turning pt at $(-1,-1)$
when $x=1 \quad \frac{d y}{d x}=-6 \times 1$

$$
=-6<0
$$

\therefore Max. turning pt $(1,3)$.
(ii) pts of inflection when $\frac{d^{2} y}{d x^{2}}=0$ and change of concavity $d x^{2}$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =-6 x \\
-6 x & =0 \\
\therefore x & =0
\end{aligned}
$$

x	$-\frac{1}{2}$	0	$\frac{1}{2}$
$d^{2} y$	3	0	-3
$d x^{2}$			

\therefore pt of inflexion at $(0,1)$

(d)

$$
\begin{aligned}
& 3+6 p+12 p^{2}+\cdots \\
& r=2 p
\end{aligned}
$$

For a limiting sum

$$
\begin{align*}
&-1 \leqslant r \leqslant 1 \\
&-1 \leqslant 2 p \leqslant 1 \\
&-\frac{1}{2} \leqslant p \leqslant \frac{1}{2} \tag{1}
\end{align*}
$$

(ii)

$$
\begin{align*}
S_{0} & =\frac{a}{1-r} \\
4 \frac{1}{2} & =\frac{3}{1-2 p} \tag{2}\\
1-2 p & =\frac{3}{4 \frac{1}{2}}
\end{align*}
$$

$$
\begin{aligned}
-2 p & =\frac{3}{4 \frac{1}{2}}-1 \\
p & =\frac{1}{6}
\end{aligned}
$$

Question 16.

$$
\begin{array}{ll}
V=\pi \int^{2} d y & y=\sqrt{x-1} \\
=\pi \int_{0}^{3}\left(y^{2}+1\right)^{2} d y & \begin{array}{l}
y^{2}=x-1
\end{array} \\
=\pi \int_{0}^{3}\left(y^{4}+2 y^{2}+1\right) d y & \begin{array}{l}
y^{2}+1=x \\
=\pi\left[\frac{y^{5}}{5}+\frac{2 y^{3}}{3}+y\right]^{2} \\
=\left(y^{2}+1\right)^{2} \\
\\
=\pi
\end{array} \\
=\pi\left[\left(\frac{3}{5}+\frac{2(3)^{3}}{3}+3\right)\right. & \\
=\frac{348 \pi}{5} \text { units }^{3} . &
\end{array}
$$

(b) $A_{240}=180000(1.015)^{240}-M\left(1+1.015+\cdots+1.015^{239}\right)$
/sn, $n=240 \quad a=1 \quad r=1.015$
$A_{240}=0$ after $20 y r s$.

$$
\begin{align*}
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \tag{2}\\
& S_{240}=\frac{1.015^{240}-1}{0.015}
\end{align*}
$$

$$
\begin{aligned}
& \therefore 0=180000(1.015)^{240}-M\left(\frac{1.015^{240}-1}{0.018}\right) \\
& M\left(\frac{\left.1.015^{240}-1\right)}{0.015}=180000(1.015)^{240}\right. \\
& M=180000(1.015)^{240} \div \frac{1.015^{240}-1}{0.015} \\
& =\$ 2777.96
\end{aligned}
$$

$$
M=\$ 3000
$$

(ii) From (i) $A_{n}=180000(1.015)^{n}-3000\left(\frac{1.015^{n}-1}{0.015}\right)$
$A_{n}=0$

$$
0=180000(1.015)^{n}-200000\left(1.015^{n}-1\right)
$$

$$
0=180000(1.015)^{n}-200000(1.015)^{n}+200000
$$

$$
\begin{aligned}
& x=\frac{90}{6} \text { or } x=\frac{20}{6} \\
& x=15 \text { or } x=3 \frac{1}{3}
\end{aligned}
$$

$$
0=-20000(1.015)^{n}+200000
$$

$20000(1.045)^{n}=200000 \quad(\div 20000)$

$$
1 \cdots 015^{n}=10
$$

$$
\begin{gathered}
x=15 \quad \frac{d^{2} v}{d x^{2}}=-200+24 \times 15 \\
\therefore \quad \therefore \operatorname{Min}
\end{gathered}
$$

$$
\log _{e}(1-015)^{n}=\log _{e} 10
$$

$$
n \log _{e}(1-15)=\log _{e} 10
$$

$$
n=\frac{\log _{e} 10}{\log _{e}(1.015)}
$$

\therefore Max volume when $x=3 \frac{1}{3} \mathrm{~cm}$.

$$
=155 \mathrm{mths} \text { (nearest moth) }
$$

(c)

(i) length $=40-2 x$
breadth $=15-2 x$
When

$$
\text { When } x=3 \frac{1}{3} \quad \begin{aligned}
\frac{d^{2} v}{d x^{2}} & =-200+24 \times 3 \frac{1}{3} \\
& =-120<0 \quad \therefore \max
\end{aligned}
$$

$$
=154.65
$$

(ii)

$$
\begin{align*}
V & =16 h \\
& =x(40-2 x)(15-2 x) \\
& =x\left[600-80 x-30 x+4 x^{2}\right] \\
& =60 x-110 x^{2}+4 x^{3} \tag{2}
\end{align*}
$$

(iii)

$$
\begin{align*}
& \frac{d v}{d x}=600-220 x+12 x^{2} \\
& \frac{d^{2} v}{d x^{2}}=-200+14 x \tag{3}
\end{align*}
$$

Stat pts when $\frac{d v}{d x}=0$

$$
\begin{aligned}
& 600-220 x+12 x^{2}=0 \quad(\div 4) \\
& 3 x^{2}-55 x+150 \\
x= & \frac{55 \pm \sqrt{55^{2}-4(3) 150}}{6} \\
= & \frac{55 \pm 35}{6}
\end{aligned}
$$

