SYDNEY BOYS' HIGH SCHOOL

MOORE PARK, SURRY HILLS

HALF-YEARLY EXAMINATION May 2002

MATHEMATICS

Time allowed - Ninety Minutes Examiner: A.M.Gainford

DIRECTIONS TO CANDIDATES

- ALL questions may be attempted.
- · All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- · Approved calculators may be used.

SHS Half Yearly 2002

- Start each Section on a new page. Section A (Q1, Q2, Q3, Q4), Section B (Q5, Q6, Q7, Q8), Section C (Q9, Q10, Q11).
- If required, additional paper may be obtained from the Examination Supervisor upon request.

Question	SectionA 1	Marks 6
(a	Evaluate $\frac{\pi+2}{\pi-2}$ correct to one decimal place.	
(b	Simplify $a(1-b) - b(1-a)$.	
(0	Write $\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}$ in the form $a\sqrt{2}+b\sqrt{3}$.	
Question		6
(8	Express 0. 18 as a common fraction in lowest terms.	
(l	Prove that no regular polygon has an internal angle of 132°.	
(Solve for x: $(x+4)^2 = 9$.	
Question	n 3	6
(Simplify $\left(\frac{4}{3}\right)^{\frac{5}{2}} \times 2^{-3} \times \sqrt{\frac{27}{64}}$,
(b) Express $\frac{\sqrt{3}+1}{\sqrt{3}}$ with rational denominator.	
. (By expressing it in its simplest form, show that $\frac{1}{\sqrt{7}-2} - \frac{1}{\sqrt{7}+2}$ is rational.	
Questio	n 4	. 6
. 1	Factorise completely:	
. ((a) $4ab^2 - 6ab$	
•	(b) $4m^2 - 9$	

SectionA

 $x^2 - 2x - 15$

SHS Half Yearly 2002

Marks

Section B

Question 5

The value of a computer system is depreciating at a rate of 30% each year. Its current value is \$3500.

- What will be its value in one year's time? (a)
- What was its value one year ago? (b)
- Express the total two year loss as a percentage of the current value. (c)

Question 6

For the points A(1, 6) and B(3, 8):

- Find the coordinates of M, the midpoint of AB.
- Find the equation of the line through M, perpendicular to AB.
- Write the equation of the line AB. (c)

Question 7

Graph on separate number lines the solutions to the following:

- 2x+3<5x+9
- $-1 \le x < 2$ (b)
- $|x-2| \leq 3$ (c)

Question 8

- Show that the lines y = 2x 1 and 2x y + 3 = 0 are parallel.
- Find the perpendicular (shortest) distance between the two lines in Part (a). (b)
- By completing the square on x, or otherwise, find the minimum value of the (c) quadratic expression $x^2 + 8x + 9$.

Section C

Question 9

6

6

6

Factorise completely:

- $12x^2 + 5x 3$ (a)
- 2xy + 6x y 3
- (c)

Question 10

Given that AB | CD and angles are as marked, find the measure of \(\angle BEC \). (Give reasons)

8

Find the equation of the line with gradient - 1, which passes through the (b) intersection of the lines 2x-5y+19=0 and 2x+3y-5=0.

Question 11

In the figure AB = AC; $\angle BAC = \angle BPA = \angle CRA = 90^{\circ}$; $\angle BAP = \alpha$. Prove that:

- $\angle ACR = \alpha$.
- Triangles ABP and CAR are congruent.
- Triangles BPQ and CRQ are similar.

SHS Half Yearly 2002