

APRIL 2005

TASK #2

YEAR 12

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- Start each **NEW** section in a separate answer booklet.

Total Marks - 85 Marks

- Attempt Questions 1 9
- All questions are NOT of equal value.

Examiner: E. Choy

Total marks – 85 Attempt Questions 1 – 9 All questions are NOT of equal value

Answer each SECTION in a SEPARATE writing booklet.

		Section A	Manlar
Ouestio	n 1 (26 1	marks)	Marks
Questio			
(a)		Differentiate	
	(i)	$y = \left(5 - 2x\right)^{9};$	2
	(ii)	$y = x + \sqrt{x} \; .$	2
(b)		If $\int_{2}^{5} f(x) dx = 12$, find the value of $\int_{2}^{5} \frac{f(x)}{4} dx$	1
(c)		Find the second derivative of $(x^2 + 3)^{-2}$	2
(d)		Evaluate $\int_{1}^{4} \frac{dt}{\sqrt{t}}$	2
(e)		Find the equation of the normal to the curve $y = \frac{2}{x}$ at the point where $x = 1$.	3
(f)		Find the exact volume generated when the area under the straight line $y = x - 2$ from $x = 2$ to $x = 5$ is rotated about the <i>x</i> axis.	2
(g)		In a certain car factory, 20% of the engines have some defect. If 20 engines are examined find the probability of at least one of them being defective.	2

XB = 12, *XC* = 30, *BY* = 8, *YC* = 24

AX = a, DX = b, AB = c, DC = d.

Copy the diagram into your answer booklet

(i)	Find <i>a</i> and <i>b</i> ;	2
(ii)	Find $c: d$.	2
	In a raffle 20 tickets are sold and there are 2 prizes, 1^{st} and 2^{nd} prize. What is the probability that a man buying 5 tickets wins	
(i)	the first prize;	1
(ii)	a prize;	2
(iii)	at least one prize;	2
(iv)	All 2 prizes.	1

(i)

(a)

(b)

In the diagram above, the vertices of the triangle *ABC* are A(-3,0), B(-1,4) and *C*, where *C* lies on the *x* axis such that $\angle BAC = \angle ACB$.

(i)	Copy the diagram into your answer booklet. Find the coordinates of the midpoint of <i>AB</i> ;	1
(ii)	Find the gradient of <i>AB</i> and show that $\tan \theta = 2$;	2
(iii)	Show that the equation of <i>AB</i> is $y = 2x + 6$;	1
(iv)	Explain why <i>BC</i> has gradient -2 and hence find the equation of <i>BC</i> ;	2
(v)	Find the coordinates of <i>C</i> and hence the area of $\triangle ABC$;	2
(vi)	Find the length of <i>BC</i> and hence find the perpendicular distance from <i>A</i> to <i>BC</i> .	2

In the diagram below D and E are midpoints of BC and AD respectively and $DG \parallel BF$.

Copy the diagram into your answer booklet.

Prove AF = FG = GC.

4

End of Section A

Marks

Question 3 (7 marks)

The diagram below shows the points A(-a,0), B(a,0),

C(3a,0) and $D(0,\sqrt{3}a)$ on the number plane.

(ii) Show that $\triangle BCD$ is isosceles with BD = BC. 2

(iii) Show that
$$BD^2 = \frac{1}{3}CD^2$$
.

Question 4 (6 marks)

The diagram above shows the graph of the *derivative* of a certain function f(x).

(i)	Find the value(s) of x for which the function $f(x)$ has	2
	stationary points and determine the nature of the stationary points.	
(ii)	Find the value(s) of x for which the function is decreasing.	2
(iii)	Find the value(s) of x for which the function $f(x)$ is concave down.	2

Section B continues over the page

Marks

2

(a) Sketch the curve $y = 2^x$.

Let
$$J = \int_0^6 2^x dx$$

By using the *Trapezoidal rule* with 3 sub-intervals, find an approximation to *J* correct to 3 significant figures.

(The *exact* value of J is 90.9 correct to 3 significant figures)

(b) Evaluate
$$\int_{0}^{4} x \sqrt{x} \, dx$$
 2

Question 6 (5 marks)

The region under the graph $y = 3^{x+1}$ between x = 1 and x = 3 is rotated about the *x* axis.

Using *Simpson's rule* with five function values, estimate the volume of the solid formed.

Leave your answer correct to 3 decimal places.

End of Section B

4

5

Section C (Use a SEPARATE writing booklet)

Question 7 (3 marks)

The diagram below shows the graph of y = f(x). At what point(s) is f(x) **not** differentiable? Justify.

Question 8 (10 marks)

For the curve $y = 2x^3 - 9x^2 + 52$

(i)	Find the stationary points and determine their nature.	2
(ii)	Find any points of inflexion.	2
(iii)	Sketch the graph of the curve.	2
(iv)	Find the maximum and minimum values of the curve in the interval $-1 \le x \le 2$.	2
(v)	Find the value(s) of k for which the equation $2x^3 - 9x^2 + 52 = k$ has <i>three</i> distinct solutions.	2

Question 9 (8 marks)

In the diagram above, the curve $y = x^3 + x + 2$ cuts the *x* axis at A(-1,0). The tangent at another point *B*, parallel to the tangent at *A*, cuts the curve again at *C*.

(i)	Show that the equation of the tangent at <i>B</i> is $y = 4x$.	3
(ii)	Show that the point <i>C</i> has coordinates $(-2, -8)$.	2
(iii)	Find the area enclosed by the arc BAC on the curve	3

End of paper

 $y = x^3 + x + 2$ and the tangent from *B* to *C*.

Marks

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

APRIL 2005

TASK #2

YEAR 12

Mathematics

Sample Solutions

Section	Marker
Α	AF
В	RB
С	RD

1. a.i.
$$y = (5-2x)^{9}$$

 $y' = 9(5-2x)^{8} - 2$
 $z = -18(5-2x)^{8}$
ii. $y = x + x^{\frac{1}{2}}$
 $y' = 1 + \frac{1}{2}x^{-\frac{1}{2}}$
 $z = 1 + \frac{1}{2\sqrt{3x}}$
b. $\int_{2}^{5} f(x)dx = 12$
 $\int_{2}^{5} f(x)dx = 12$
 $\int_{2}^{5} f(x)dx = \frac{1}{4}\int_{2}^{5} f(x)dx$
 $= -\frac{1}{4}\cdot 12$
 $z = 3$
c. $y = (x^{2}+3)^{-2}$
 $y' = -2(x^{2}+3)^{-3}$
 $z = -4x(x^{2}+3)^{-3}$
 $y' = -3(x^{2}+3)^{-4}$
 $y' = -3(x^{2}+3)^{-4}$
 $y' = -3(x^{2}+3)^{-4}$
 $z = -4x(x^{2}+3)^{-4}$
 $y' = -3(x^{2}+3)^{-4}2x$
 $z = -6x(x^{2}+3)^{-4}2x$
 $z = -6x(x^{2}+3)^{-4}2x$
 $z = -6x(x^{2}+3)^{-4}$
d. $\int_{1}^{9} \frac{dt}{\sqrt{t}} = \int_{1}^{9} \frac{t^{-5}}{2}dt$
 $= \left[2t^{\frac{1}{2}}\right]_{1}^{9}$
 $= 2(4)^{\frac{1}{2}} - 2(1)^{\frac{1}{2}}$
 $= 2$

e.
$$y = \frac{2}{x}$$

 $y = 2x^{-1}$
 $y' = -2x^{-2}$
 $y' = -\frac{2}{x^{2}}$
when $x = 1$
 $y' = m_{T} = -\frac{2}{(1)^{2}}$
 $m_{T} = -2$
 $y = 2$
 $\frac{m_{N}}{2} = \frac{1}{2}$ $(m, m_{1} = -1)$
 $y - y_{1} = m(x - x_{1})$
 $y - 2 = \frac{1}{2}(x - 1)$
 $2y - 4 = x - 1$
 $x - 2y + 3 = 0$
f. y
 $y' = \frac{1}{2}$
 $y' =$

h.i.
$$\Delta x^{VC} \parallel \Delta ABC$$

$$\frac{24}{32} = \frac{30}{30+a}$$

$$30+a=30 \times \frac{4}{3}$$

$$30+a=40$$

$$\frac{a=10}{a=10}$$

$$\Delta ABx \ln \Delta xDC$$

$$\frac{30}{a} = \frac{b}{12} = \frac{d}{c}$$

$$\frac{30}{10} = \frac{b}{12}$$

$$\frac{b=36}{10}$$
ii. $\frac{d}{c} = \frac{30}{10}$

$$\frac{c}{c} = \frac{1}{3}$$
i. $\frac{c}{c} : d = 1:3$
i. $\frac{5}{20} = \frac{1}{4}$
ii. $\frac{5}{20} \times \frac{15}{19} + \frac{15}{20} \times \frac{5}{19} = \frac{15}{158}$ (probability of gotting 1st prize ordy)
iii. $1 - \frac{15}{20} \times \frac{14}{19} = \frac{17}{38}$
(1 - P(no prize))
i. $\frac{5}{20} \times \frac{4}{19} = \frac{1}{19}$

2.a.i.
$$\left(\frac{x_{1}+x_{1}}{2}, \frac{y_{1}+y_{2}}{2}\right) = \left(\frac{-3+(-1)}{2}, \frac{0+4}{2}\right)$$

 $= \left(-2, 2\right)$
ii. $m_{z} = \frac{y_{z}-y_{1}}{x_{2}-x_{1}}$
 $= \frac{4-0}{-1-(-3)}$
 $= \frac{4}{2}$
 $= 2$
Since $tan \theta = m$
 $\therefore tan \theta = 2$
iii. $y-y_{1} = m(x-x_{1})$
 $y=0 = 2(x-(-3))$
 $y=2x+6$
iv. $m_{g_{z}} = tan(180-0)$
 $= -tan \theta$
 $= -2$
 $y-y_{1} = m(x-x_{1})$
 $y-4 = -2(x-(-1))$
 $y-4 = -2(x-(-1))$
 $y-4 = -2x+2$
 $y = -2x+2$
 $y = -2x+2$
V. let $y=0$
 $0 = -2x+2$
 $x = 1$
 \therefore coordinates of c are $(1, 0)$
Hence, area of $\Delta ABC = \frac{1}{2} \times 4x 4$
 $= \frac{8}{2}$ mits²

Vi.
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $d_{BC} = \sqrt{(-1 - 1)^2 + (4 - 0)^2}$
 $= \sqrt{20}$
 $= 2\sqrt{5}$ units

Area of AABC = $8 = \frac{1}{2} \times 255 \times h$ $h = \frac{8}{55} \times \frac{15}{55}$ $h = \frac{815}{5}$ units which is the perpendicular distance from A to BC b. since AE = ED (E is the midpoint of AD) AF = FG (equal intercepts BF//DG) since BD = DC (D is the midpoint of BC) FG = GC (equal intercepts BF//DG) $\therefore AF = FG = GC$

^y () (0, 13a) 3 Copy diagram X (-a,o) 0 $\begin{pmatrix} B \\ (a, \infty) \end{pmatrix}$ (3a, 0)(1) DAB 15 equilateral $d(AD) = \sqrt{(0-a)^2 + (\sqrt{3}a - 0)^2} = \sqrt{a^2 + 3a^2} = \sqrt{4a^2} = \lambda a^2$ d(AB) = |-a| + a = 2a $d(BD) = \sqrt{(a-D)^2 + (D-J3a)^2} = \sqrt{a^2 + 3a^2} = \sqrt{4a^2} = \lambda a^2$ Since d(AB) = d(AB) = d(BD) = 2a, $\Delta DAB is equilation?$

3 (ii) ABCD is isosceles with BD=BC. d(BC) = 3a - a = 2a $d(BD) = \sqrt{(a-o)^{2} + (0 - \sqrt{3}a)^{2}} = \sqrt{a^{2} + 3a^{2}} = \sqrt{4a^{2}} = 1a.$ note $d(cD) = \sqrt{(3a-o)^{2} + (0 - \sqrt{3}a)^{2}} = \sqrt{9a^{2} + 3a^{2}} = \sqrt{12}a / (2)$ since d(BC) = d(BD), $\triangle B(D)$ is isoscelles (iii) $(BD)^{2} = \frac{1}{3}(CD)^{2}$ $(2a)^2 = \frac{1}{3} \cdot (\sqrt{12}, a)^2$ 3) $4a^2 = \frac{1}{3} \times 12 \times a^2 = 4a^2$ (ii) Junction decreasing when x>5. (111) Junction concave down 2 4 0, 2-3 (2)

y= 2[∞] Y Ø5. (a) y2 54 4 $h = \frac{b-a}{n}$ $\int_{a} \frac{f(x) \, dx}{f(x) \, dx} = \frac{h}{2} / \frac{h}{2}$ $\left[\left(\frac{y_{0} + y_{n}}{y_{0} + y_{n}} \right) + 2\left(\frac{y_{1} + y_{2} + \dots + y_{n-1}}{y_{n-1}} \right) \right]$ $h = \frac{b - 0}{3}$ So $\int = \left(\begin{array}{c} b \\ \lambda \\ dx \end{array} \right) =$ $\frac{2}{2}\left[(2^{2}+2^{6})+2(2^{2}+2^{4})\right]$ [1+64+2(4+16)] 65+40 = 105 u = 65+ $\frac{7}{x \int x \, dx} = \int x \, x \, dx = \int x \, dx$ (b)3+1 2+1 <u>X</u> <u>3</u>+1 Þ ه له $= 2 \underline{\chi}_{-}^{2 \frac{1}{2}}$ 4 $\frac{2}{5}\left[\alpha, \int x\right]_{0}^{2} = \frac{2}{5}\left(\frac{16}{2}\times 2 - 0\right)$ 7 $=\frac{64}{5}=12.8$

 $y=3^{x+1}$ P6 1 $\hat{\Pi}^{1}$ Ľ 15 2 25 3. 19 91 92 13 BA - 9 $V = T \int_{0}^{2} dx$ and $A \stackrel{=}{=} \int_{a}^{b} F(x) dx = \frac{h}{3} \left[\frac{y_0 + y_1}{y_0 + y_1} + 4 \frac{y_1 + y_2 + \dots}{h} + \frac{y_1 + y_2 + \dots}{h} \right]_{a}^{b}$ $V = \pi \cdot \frac{1}{3} \left[\frac{(3^2)^2}{(3^2)^2 + (3^4)^2 + 4((3^{2\cdot5})^2 + (3^{3\cdot5})^2) + 2((3^3)^2) \right]$ $= \frac{\pi}{6} \begin{bmatrix} 4 & 8 & 5 & 7 & 6 \\ 3 + 3 & + 4 \times 3 & + 4 \times 3 & + 2 \times 3 \end{bmatrix}$ = <u>I</u> [81 + 6561 + 972 + 8748 + 1458 $= \frac{\pi \times 17820}{L}$ 3 = 9330.530 u