

SYDNEYBOYS HIGH SCHOOL
 MoORE PARK, SURRY HILLS

APRIL 2005

TASK \#2

YEAR 12

Mathematics

General Instructions

- Reading time -5 minutes.
- Working time 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.

Total Marks - 85 Marks

- Attempt Questions 1-9
- All questions are NOT of equal value.

Examiner:
E. Choy

Total marks - 85
Attempt Questions 1-9
All questions are NOT of equal value

Answer each SECTION in a SEPARATE writing booklet.

Section A

Marks
Question 1 (26 marks)
(a) Differentiate
(i) $y=(5-2 x)^{9}$;

2
(ii) $y=x+\sqrt{x}$.
(b) If $\int_{2}^{5} f(x) d x=12$, find the value of $\int_{2}^{5} \frac{f(x)}{4} d x$
(c) Find the second derivative of $\left(x^{2}+3\right)^{-2}$
(d) Evaluate $\int_{1}^{4} \frac{d t}{\sqrt{t}}$
(e) Find the equation of the normal to the curve $y=\frac{2}{x}$ at the point where $x=1$.
(f) Find the exact volume generated when the area under the straight line $y=x-2$ from $x=2$ to $x=5$ is rotated about the x axis.
(g) In a certain car factory, 20% of the engines have some defect. If 20 engines are examined find the probability of at least one of them being defective.
(h) In the diagram below $A B\|X Y\| D C$.
$X B=12, X C=30, B Y=8, Y C=24$
$A X=a, D X=b, A B=c, D C=d$.

Copy the diagram into your answer booklet
(i) Find a and b; $\quad 2$
(ii) Find $c: d$.
(i) In a raffle 20 tickets are sold and there are 2 prizes, $1^{\text {st }}$ and $2^{\text {nd }}$ prize.
What is the probability that a man buying 5 tickets wins
(i) the first prize;
(ii) a prize; 2
(iii) at least one prize; $\quad 2$
(iv) All 2 prizes. $\mathbf{1}$
(a)

In the diagram above, the vertices of the triangle $A B C$ are $A(-3,0), B(-1,4)$ and C, where C lies on the x axis such that $\angle B A C=\angle A C B$.

Copy the diagram into your answer booklet.
(i) Find the coordinates of the midpoint of $A B$;
(ii) Find the gradient of $A B$ and show that $\tan \theta=2$;
(iii) Show that the equation of $A B$ is $y=2 x+6$;
(iv) Explain why $B C$ has gradient -2 and hence find the equation of $B C$;
(v) Find the coordinates of C and hence the area of $\triangle A B C$;
(vi) Find the length of $B C$ and hence find the perpendicular distance from A to $B C$.
(b) In the diagram below D and E are midpoints of $B C$ and $A D$ respectively and $D G \| B F$.

Copy the diagram into your answer booklet.
Prove $A F=F G=G C$.

End of Section A

Section B (Use a SEPARATE writing booklet)

Question 3 (7 marks)

The diagram below shows the points $A(-a, 0), B(a, 0)$, $C(3 a, 0)$ and $D(0, \sqrt{3} a)$ on the number plane.

(i) Show that $\triangle D A B$ is equilateral
(ii) Show that $\triangle B C D$ is isosceles with $B D=B C$.
(iii) Show that $B D^{2}=\frac{1}{3} C D^{2}$.

Question 4 (6 marks)

The diagram above shows the graph of the derivative of a certain function $f(x)$.
(i) Find the value(s) of x for which the function $f(x)$ has stationary points and determine the nature of the stationary points.
(ii) Find the value(s) of x for which the function is decreasing.
(iii) Find the value(s) of x for which the function $f(x)$ is concave down.

By using the Trapezoidal rule with 3 sub-intervals, find an approximation to J correct to 3 significant figures.
(The exact value of J is $90 \cdot 9$ correct to 3 significant figures)
(b) Evaluate $\int_{0}^{4} x \sqrt{x} d x$

Question 6 (5 marks)
The region under the graph $y=3^{x+1}$ between $x=1$ and $x=3$ is rotated about the x axis.

Using Simpson's rule with five function values, estimate the volume of the solid formed.

Leave your answer correct to 3 decimal places.

End of Section B

Section C (Use a SEPARATE writing booklet)

Question 7 (3 marks)
The diagram below shows the graph of $y=f(x)$.
At what point(s) is $f(x)$ not differentiable? Justify.

Question 8 (10 marks)
For the curve $y=2 x^{3}-9 x^{2}+52$
(i) Find the stationary points and determine their nature.
(ii) Find any points of inflexion.
(iii) Sketch the graph of the curve.
(iv) Find the maximum and minimum values of the curve in the interval $-1 \leq x \leq 2$.
(v) Find the value(s) of k for which the equation $2 x^{3}-9 x^{2}+52=k$ has three distinct solutions.

In the diagram above, the curve $y=x^{3}+x+2$ cuts the x axis at $A(-1,0)$. The tangent at another point B, parallel to the tangent at A, cuts the curve again at C.
(i) Show that the equation of the tangent at B is $y=4 x$.
(ii) Show that the point C has coordinates $(-2,-8)$.
(iii) Find the area enclosed by the arc $B A C$ on the curve $y=x^{3}+x+2$ and the tangent from B to C.

End of paper

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

APRIL 2005

TASK \#2

YEAR 12

Mathematics

Sample Solutions

Section	Marker
A	AF
B	RB
\mathbf{C}	RD

$$
\text { 1.a.i. } \begin{aligned}
y & =(5-2 x)^{9} \\
y^{\prime} & =9(5-2 x)^{8}-2 \\
& =-18(5-2 x)^{8}
\end{aligned}
$$

ii.

$$
\begin{aligned}
y & =x+x^{\frac{1}{2}} \\
y^{\prime} & =1+\frac{1}{2} x^{-\frac{1}{2}} \\
& =1+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

b.

$$
\text { b. } \begin{aligned}
\int_{2}^{5} f(x) d x & =12 \\
\therefore \int_{2}^{5} \frac{f(x)}{4} d x & =\frac{1}{4} \cdot \int_{2}^{5} f(x) d x \\
& =\frac{1}{4} \cdot 12 \\
& =3
\end{aligned}
$$

c.

$$
\begin{aligned}
y & =\left(x^{2}+3\right)^{-2} \\
y^{\prime} & =-2\left(x^{2}+3\right)^{-3} \cdot 2 x \\
& =-4 x\left(x^{2}+3\right)^{-3}
\end{aligned}
$$

$$
u=-4 x
$$

$$
v=\left(x^{2}+3\right)^{-3}
$$

$$
u^{\prime}=-4
$$

$$
\begin{aligned}
& v=\left(x+3\left(x^{2}+3\right)^{-4} \cdot 2 x\right. \\
& v^{\prime}=-2 r^{-4}
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime \prime} & =-4 x \cdot-6 x\left(x^{2}+3\right)^{-4}+-4\left(x^{2}+3\right)^{-3} \\
& =24 x^{2}\left(x^{2}+3\right)^{-4}-4\left(x^{2}+3\right)^{-3}
\end{aligned}
$$

$$
=-6 x\left(x^{2}+3\right)^{-4}
$$

d.

$$
\begin{aligned}
\int_{1}^{4} \frac{d t}{\sqrt{t}} & =\int_{1}^{4} t^{-\frac{1}{2}} d t \\
& =\left[2 t^{\frac{1}{2}}\right]_{1}^{4} \\
& =2(4)^{\frac{1}{2}}-2(1)^{\frac{1}{2}} \\
& =2
\end{aligned}
$$

e.

$$
\begin{aligned}
& y=\frac{2}{x} \\
& y=2 x^{-1} \\
& y^{\prime}=-2 x^{-2} \\
& y^{\prime}=-\frac{2}{x^{2}}
\end{aligned}
$$

when $x=1$

$$
\begin{aligned}
y^{\prime}=m_{T} & =\frac{-2}{(1)^{2}} \\
m_{T} & =-2 \\
m_{N} & =\frac{1}{2} \quad\left(m_{1} \times m_{2}=-1\right)
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-2=\frac{1}{2}(x-1)
$$

$$
2 y-4=x-1
$$

$$
x-2 y+3=0
$$

$$
\begin{aligned}
V & =\pi \int_{2}^{5}(x-2)^{2} d x \\
& =\pi \int_{2}^{5}\left(x^{2}-4 x+4\right) d x \\
& =\pi\left[\frac{x^{3}}{3}-2 x^{2}+4 x\right]_{2}^{5} \\
& =\pi\left[\frac{(5)^{3}}{3}-2(5)^{2}+4(5)-\left(\frac{(2)^{3}}{3}-2(2)+4(2)\right)\right] \\
& =9 \pi \text { units }^{3}
\end{aligned}
$$

g. Probability that none are defective 0.8^{20}

$$
\begin{aligned}
\text { Probability that at least one is defective } & =1-0.8^{20} \\
& =0.98847 \\
& \approx 98.85 \%
\end{aligned}
$$

$$
\text { hi. } \quad \begin{aligned}
& \triangle X Y C \text { III } \triangle A B C \\
& \frac{24}{32}=\frac{30}{30+a} \\
& 30+a=30 \times \frac{4}{3} \\
& 30+a=40 \\
& a=10
\end{aligned}
$$

$\triangle A B \times \| \triangle X D C$

$$
\frac{30}{a}=\frac{b}{12}=\frac{d}{c}
$$

$$
\frac{30}{10}=\frac{6}{12}
$$

$$
b=36
$$

ii.

$$
\begin{aligned}
\frac{\alpha}{c} & =\frac{30}{10} \\
\frac{c}{d} & =\frac{1}{3} \\
\therefore c: \alpha & =1: 3
\end{aligned}
$$

$$
i . i \frac{5}{20}=\frac{1}{4}
$$

ii. $\frac{5}{20} \times \frac{15}{19}+\frac{15}{20} \times \frac{5}{19}=\frac{15}{38} \quad\left(\begin{array}{l}\text { probability of getting is prize only) } \\ \text { or and prize only }\end{array}\right.$
iii. $1-\frac{15}{20} \times \frac{14}{19}=\frac{17}{38} \quad(1-p($ no prize $))$
iv. $\frac{5}{20} \times \frac{4}{19}=\frac{1}{19}$

$$
\text { 2.a.i. } \begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-3+(-1)}{2}, \frac{0+4}{2}\right) \\
& =(-2,2) \\
\text { ii. } m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-0}{-1-(-3)} \\
& =\frac{4}{2} \\
& =2
\end{aligned}
$$

$\sin x \tan \theta=m$

$$
\therefore \tan \theta=2
$$

iii.

$$
\begin{aligned}
y-y_{i} & =m\left(x-x_{1}\right) \\
y-0 & =2(x-(-3)) \\
y & =2 x+6
\end{aligned}
$$

$$
\text { iv. } m_{B C}=\tan (180-0)
$$

$$
=-\tan \theta
$$

$$
=-2
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-4=-2(x-(-1))
$$

$$
y-4=-2 x-2
$$

$$
y=-2 x+2
$$

v. Let $y=0$

$$
\begin{gathered}
0=-2 x+2 \\
2 x-2 \\
x=1
\end{gathered}
$$

\therefore coordinates of C are $(1,0)$
Hence, area of $\triangle A B C=\frac{1}{2} \times 4 \times 4$

$$
=8 \text { unit }^{2}
$$

$$
\text { vi. } \begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{i}\right)^{2}} \\
d_{B C} & =\sqrt{(-1-1)^{2}+(4-0)^{2}} \\
& =\sqrt{20} \\
& =2 \sqrt{5} \text { units }
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle A B C=8 & =\frac{1}{2} \times 255 \times h \\
h & =\frac{8}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\
h & =\frac{8 \sqrt{5}}{5} \text { units }
\end{aligned}
$$

which is the perpendicular distance from A to $B C$ b. since $A E=E D$ (E is the midpoint of $A D$)

$$
A F=F C_{i} \quad \text { (equal intercepts } B F \| D C_{i} \text {) }
$$

since $B D=D C$ (D is the midpoint of $B C$)

$$
\begin{aligned}
F G & =C_{i} \text { (equal intercepts } B F \| D G \text {) } \\
\therefore A F & =F G=G C
\end{aligned}
$$

(i) $\triangle D A B$ is equilateral

$$
\begin{aligned}
& d(A D)=\sqrt{(0-a)^{2}+(\sqrt{3} a-0)^{2}}=\sqrt{a^{2}+3 a^{2}}=\sqrt{42^{2}}=2 a . \\
& d(A B)=|-a|+a=2 a \\
& d(B D)=\sqrt{(a-0)^{2}+(0-\sqrt{3} a)^{2}}=\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}=2 a .
\end{aligned}
$$

since $d(A B)=d(A D)=d(B D)=2 a, \triangle D A B$ isepulateras:

$$
(2)
$$

3 (ii) $\triangle B C D$ is isosceles with $B D=B C$.

$$
\begin{aligned}
& d(B C)=3 a-a=2 a \\
& d(B D)=\sqrt{(a-0)^{2}+(0-\sqrt{3} a)^{2}}=\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}=2 a . \\
& \text { note } d(c D)=\sqrt{(3 a-3)^{2}+(0-\sqrt{3} a)^{2}}=\sqrt{9 a^{2}+3 a^{2}}=\sqrt{12 a} /(2) \\
& \text { since } d(B C)=d(B D), \triangle B C D \text { is isosceles }
\end{aligned}
$$

(iii)

$$
\begin{align*}
& (B D)^{2}=\frac{1}{3}(C D)^{2} \\
& (2 a)^{2}=\frac{1}{3} \cdot(\sqrt{12}, a)^{2} \\
& 4 a^{2}=\frac{1}{3} \times 12 \times a^{2}=4 a^{2} \tag{2}
\end{align*}
$$

94 (i) at $x=0,(0, y) \frac{1}{2}$ nominal pt du thexcion at $x=5,\left(\frac{1}{2}, y\right) \frac{1}{2}$ max stat point
$\left\lceil_{x}=3\right.$ is an inflewono ρt, where $\left.f^{\prime \prime}(x)=0\right]$
(ii) function decreasing when $x>5$
(iii) Function concave down $x<0, x>3(2)$

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)\right] \quad h=\frac{b-a}{n}
$$

So $J=\int_{0}^{6} 2^{x} d x=\frac{2}{2}\left[\left(2^{0}+2^{6}\right)+2\left(2^{2}+2^{4}\right)\right] \quad h=\frac{6-0}{3}$

$$
=[1+64+2(4+16)]
$$

$$
\begin{equation*}
=\quad 65+40=105 u \tag{3}
\end{equation*}
$$

(b)

$$
\begin{aligned}
& \int_{0}^{4} x \sqrt{x} d x=\int_{0}^{4} x^{1} x^{\frac{1}{2}} d x=\int_{0}^{4} x^{\frac{3}{2}} d x \\
& \Rightarrow\left.\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\right]_{0}^{4} \\
&\left.=\frac{2 x^{\frac{1}{2}}}{5}\right]_{0}^{4} \\
&=\frac{2}{5}\left[x^{2} \sqrt{x}\right]_{0}^{4}
\end{aligned}=\frac{2}{5}(16 \times 2-0)
$$

and $A \geqslant \int_{a}^{b} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\cdots\right)+2\left(y_{2}+y_{4}+\cdots\right]\right.$.

$$
\begin{align*}
\quad \begin{array}{l}
h=\frac{b-a}{n} \\
V
\end{array} & =\frac{\frac{1}{2}}{3}\left[\left(3^{2}\right)^{2}+\left(3^{4}\right)^{2}+4\left(\left(3^{2.5}\right)^{2}+\left(3^{3.5}\right)^{2}\right)+2\left(\left(3^{3}\right)^{2}\right)\right] \\
& =\frac{\pi}{6}\left[3^{4}+3^{8}+4 \times 3^{5}+4 \times 3^{7}+2 \times 3^{6}\right] \\
& =\frac{\pi}{6}[81+6561+972+8748+1458] \\
& =\frac{\pi}{6} \times 17820 \\
& =9330.530 \mu^{3}
\end{align*}
$$

$Q 7$

Not differentiable:

A $\lim _{x \rightarrow 0^{-}} f(x)$ does not exist
D $\lim _{x \rightarrow x_{0}} f^{\prime}(x) \neq \lim _{x \rightarrow x_{D}} f^{\prime}(x)$
E (possibly) unless $\lim _{x \rightarrow x_{E}^{+}} f^{\prime}(x)=0$
QB $\quad y=2 x^{3}-9 x^{2}+52$
(i)

$$
\begin{aligned}
& y^{\prime}=6 x^{2}-18 x \\
& y^{\prime}=12 x-18
\end{aligned}
$$

For st pts: $y^{\prime}=0 \therefore 6 x(x-3)=0$
$\therefore x=0$ or $x=3<2$
When $x=0 y^{4}=-18 \therefore(0,52)$ max TP
When $x=3 y^{\prime \prime}=18 \quad \therefore(3,25)$ minT
(ii) For pt of inf: Consider $y^{\prime \prime}=0$

$$
\begin{aligned}
& \therefore 12 x-18=0 \\
& \therefore x=1.5
\end{aligned}
$$

x	1	1.5	2
y^{4}	-6	0	6
concavity	down	-	$u p$

\therefore Charge of concavity \therefore
$\therefore(1.5,38.5)$ is pt of inflexion
(iii)

(iv) When $x=-1, y=41$

When $x=2, y=32$
\therefore For $-1 \leq x \leq 2$
min value $=32$, max value $=52$
(v) For $2 x^{3}-9 x^{2}+52=k$ to hare

3 solutions, $25<k<52<2\rangle$

$$
\begin{aligned}
& \text { AFB, } \quad \begin{array}{l}
\text { (i) } y^{\prime}=3 \\
\therefore x^{2}+1=4 \\
\therefore 3 x^{2}=3 \\
\therefore x=1, ~
\end{array}
\end{aligned}
$$

\therefore Bis $(1,4)$
En of tangent at $B: y-4=4(x-1)$ $y-4=4 x-4$ $y=4 x$.
(ii) For C: $4 x=x^{3}+x+2$

$$
x^{3}-3 x+2=0
$$

when $x=-2: x^{3}-3 x+2$

$$
\begin{align*}
& =-8+6+2 \\
& =0
\end{align*}
$$

$\therefore(-2,-8) v$ a $p t$ of interscetim

$$
\therefore c \text { is }(-2,-8)
$$

(iii)

$$
\begin{aligned}
& \text { Area }=\int_{-2}^{1}\left(x^{3}+x+2-4 x\right) d x \\
&=\int_{-2}^{1}\left(x^{3}-3 x+2\right) d x \\
&=\left[\frac{1}{4} x^{4}-\frac{3}{2} x^{2} 5-2 x\right]_{-2}^{1} \\
&=\left[\frac{1}{4}-\frac{3}{2}+2\right]-[4-6-4] \\
&=\left[+\frac{3}{4}\right]-[-6] \\
&=6 \frac{3}{4}
\end{aligned}
$$

