

SYDNEY BOYS HIGHSCHOOL mode pari, surby iflls

2006
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time -90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 85

- Attempt questions I-6
- Hand up in 3 separate booklets clearly labelled Section A, Section B and Section C

Examiner: A. Fuller

SECTION A

Question 1 (13 marks)
(a) Convert 80° to radians in exact form.
(b) Convert $\frac{17 \pi}{12}$ radians to degrees.
(c) Differentiate the following:
(i) $4 x^{2}+5$
(ii) $\left(2 x^{3}-5\right)^{4}$
(iii) $\frac{3 x+1}{2 x-1}$
(iv) $x \sqrt{1-2 x}$
(d) Find a primitive of:
(i) $\frac{2}{x^{4}}$
(ii) \sqrt{x}
(e) Find $f^{\prime \prime}(2)$ if $f(x)=x^{5}$

Question 2 (15 marks)
(a) $\mathrm{A}(-1,5), \mathrm{B}(2,1)$ and $\mathrm{C}(4, k)$ are collinear. Find the value of k.
(b) Find $\int \frac{x^{2}+1}{x^{2}} d x$
(c) Evaluate $\int_{-1}^{1}(x-1)(x+1) d x$
(d) A die is tossed twice. The sum of the numbers which appear on the upmost face of the die is calculated. Using a table or otherwise:
(i) Find the probability that the sum is greater than 8.
(ii) It is known that a 4 appears on the die at least once in the two throws. Find the probability that the sum is greater than 8 .
(e) The vertices of a triangle are $\mathrm{A}(1,3), \mathrm{B}(8,2)$ and $\mathrm{C}(4,-1)$.
(i) Find the coordinates of D and E , the midpoints of AC and $A B$ respectively.
(ii) Hence, show that DE is parallel to CB .

SECTION B

Question 3 (14 marks)
(a) If $y=\left(x^{2}+4\right)(x-3)$, solve $\frac{d y}{d x}=4$.
(b) The diagram below is the graph of $y=3+3 \cos x$

(i) Copy this graph onto your answer sheet.
(ii) State the amplitude and period of $y=3 \sin 2 x$.
(iii) On the same graph as (i), sketch $y=3 \sin 2 x$ for $0 \leq x \leq 2 \pi$.
(iv) How many solutions are there to the equation

$$
3+3 \cos x=3 \sin 2 x ?
$$

(c) A class of 30 students contains 18 students who play cricket, 13 who play tennis and 5 who play both cricket and tennis. If one student is chosen at random find the probability that this student plays neither cricket nor tennis.
(d) The diagram below shows a paddock with one side bounded by a river. AE is a boundary fence 40 metres in length. AO , $B P, C Q, D R, E S$ are offsets measured from the fence to the river with lengths as shown. $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DE}$.

Use Simpson's rule with 5 function values as shown on the diagram to approximate the area of the paddock.
(e) The gradient function of a curve is $3 x^{2}-1$ and the curve passes through the point $(4,1)$. Find the equation of the curve.

Question 4 (13 marks)
(a) A girl has 5 tickets in a raffle where 100 tickets are sold. First prize is drawn discarded and then the second prize is drawn. Find the probability that she wins:
(i) first prize
(ii) second prize
(b) Consider the curve $y=x^{4}-4 x^{3}$
(i) Find the coordinates of the stationary points.
(ii) Determine the nature of these stationary points.
(iii) For what values of x is the curve concave up?
(iv) For what values of x is the curve decreasing?
(v) Hence sketch the curve.
(c) If the probability that an event E occurs is $\frac{1}{x}$, express the probability that E does not occur as a single fraction.

SECTION C

Question 5 (15 marks)
(a) A flower bed is made in the shape of a minor sector with angle ϑ and radius 2 metres.

(i) If the area of the flower bed is $1 \cdot 6 \mathrm{~m}^{2}$, find the angle ϑ to the nearest minute.
(ii) Find the perimeter of the flower bed to the nearest cm .
(b) ABCD is a parallelogram. The bisectors of angles ADC and BCD meet at P on the side $A B$. Prove that:

(i) $\quad \angle \mathrm{DPC}$ is a right angle.
(ii) $\triangle \mathrm{ADP}$ is isosceles.
(iii) $\mathrm{AB}=2 \mathrm{BC}$

The graph below of the function f consists of a quarter circle AB and two line segments BC and CE .

(i) Evaluate $\int_{0}^{8} f(x) d x$.
(i) For what value(s) of x satisfying $0<x<8$ is the function f not differentiable?
(d) The diagram below shows the graph of the gradient function of a curve. For what value(s) of x does $f(x)$ have a local maximum? Justify your answer.

Question 6 (15 marks)

(a) The diagram below shows the graphs of the functions

$$
y=-x^{2}+7 x-6 \text { and } y=x+2 .
$$

(i) Show that the value of A and B is 2 and 4 respectively.
(ii) Calculate the area of the shaded region.
(iii) Write down a pair of inequalities that specify the shaded region.
(b)

(i) Find the equation of the tangent and the equation of the normal to the curve $y=-2 x^{2}+6 x+3$ at the point $\mathrm{A}(2,7)$.
(ii) The tangent cuts the x axis at B . The normal cuts the x axis at C as shown in the diagram. Find the values of B and C. Hence, find the area of $\triangle \mathrm{ABC}$.
(c) In the diagram below AC is parallel to FD and BF is parallel to CE . B lies on $A C, D$ lies on $C E$ and F lies on $A E . A F=6 \mathrm{~cm}, F E=14 \mathrm{~cm}$ and $\mathrm{AB}=7 \mathrm{~cm}$.

(i) Find BC.
(ii) Find the ratio of BF to DE .

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$
(i) $80 \times \frac{\pi}{180}=\frac{4 \pi^{9}}{9} \cdot \left\lvert\, \begin{aligned} & 2006 \\ & 24 \\ & \operatorname{TASK} 2\end{aligned}\right.$
(b) $\frac{17 \pi}{12}=255^{\circ}$
(c)

$$
\text { i) } p_{0}\left(4 x^{2}+5\right)=8 x
$$

11)

$$
\begin{aligned}
\frac{d}{d x}\left(\left(2 x^{3}-5\right)^{4}\right) & =4 \times 6 x^{2} \times\left(2 x^{3}-5\right)^{3} \\
& =24 x^{2}\left(2 x^{3}-5\right)^{3}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{d}{d x} \cdot\left(\frac{3 x+1}{2 x-1}\right) & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{(2 x-1)(3)-(3 x+1)(2)}{(2 x-1)^{2}} \\
& =\frac{6 x-3-6 x-2}{(2 x-1)^{2}} \\
& =\frac{-5}{(2 x-1)^{2}}
\end{aligned}
$$

N|ww

Q1 (c) (iv).

$$
\begin{aligned}
\frac{d}{d x}(x \sqrt{1-2 x}) & =v u^{2}+u v^{\prime} \\
& =\sqrt{1-2 x}+x\left(\frac{1}{2}(1-2 x)^{\frac{1}{2}}(-2)\right) \\
& =\sqrt{1-2 x}-\frac{x}{\sqrt{1-2 x}} \\
& =\frac{1-2 x-x}{\sqrt{1-2 x}} \\
& =\frac{1-3 x}{\sqrt{1-2 x}}
\end{aligned}
$$

d)

$$
\text { i) } \begin{aligned}
\int \frac{2}{x^{4}} \cdot d x & =\int 2 x^{-4} \cdot d x \\
& =\frac{2}{-3} x^{-3}+C \\
& =\frac{-2}{3 x^{3}}+C
\end{aligned}
$$

Qi)

$$
\text { d) } \begin{aligned}
\text { 11) } \begin{aligned}
\int \sqrt{x} \cdot d_{2} & =\int x^{\frac{1}{2}} d x . \\
& =\frac{2}{3} x^{3 / 2}+C
\end{aligned} .
\end{aligned}
$$

e)

$$
\begin{aligned}
f(x) & =x^{5} \\
f^{\prime}(x) & =\frac{x^{6}}{6} \\
f^{\prime \prime}(x) & =\frac{x^{7}}{7 \times b} \\
& =\frac{x^{7}}{42} \\
f^{\prime \prime}(2) & =\frac{2^{7}}{42} \\
& =3.05 \quad(2 \mathrm{dp})
\end{aligned}
$$

$$
f(x)=x^{5}
$$

$$
f^{\prime}(x)=5 x^{4}
$$

$$
f^{\prime \prime}(x)=20 x^{3}
$$

$$
f^{\prime \prime}(2)=20(2)^{3}
$$

QUESTION(2)
a) $A(-1,5) B(2,1)$.

Two pt.

$$
\begin{aligned}
& \frac{y-1}{x-2}=\frac{5-1}{-1-2} \\
& -3(y-1)=4(x-2) \\
& -3 y+3=4 x-8 \\
& y=\frac{4 x-11}{-3} \\
& C(4, k) \\
& y=\frac{4(4)-11}{-3} \\
& =\frac{3}{3}+\frac{5}{-3}=\frac{5}{3} \\
& =1 \text {. }
\end{aligned}
$$

00 K is 1 and $C(4,-5)$.

Question 2.
b).

$$
\begin{aligned}
& \int \frac{x^{2}+1}{x^{2}} \cdot d x \\
= & \int 1+\frac{1}{x^{2}} \cdot d x \\
= & \int 1+x^{-2} \cdot d x \\
= & x+\frac{+5 x^{-1}}{-1} \cdot d x \\
= & x-\frac{1}{x}+C
\end{aligned}
$$

c).

$$
\begin{aligned}
& \int_{-1}^{1}(x-1)(x+1) \cdot d x \\
= & \int_{-1}^{1} x^{2}-1 d x \\
= & {\left[\frac{x^{3}}{3}-x\right]_{-1}^{1} } \\
= & {\left[\frac{1}{3}-1\right]-\left[-\frac{1}{3}+1\right] } \\
= & -\frac{2}{3}-\frac{2}{3} \\
= & -\frac{4}{3}=-\frac{1}{3}
\end{aligned}
$$

QUESTION (2) (d).
i)

	1	2	3	4	5	6.
4	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	$9)$	(10)
5	6	7	8	9	10	1.1
6	7	8	9	(10)	14	12.

$$
\begin{aligned}
& P(\text { sum }>8)=\frac{10}{36}=\frac{5}{18} . \\
& P(1,4 a \text { sum }>8)=\frac{4}{3 \phi}|f|
\end{aligned}
$$

(e) $A(1,3) B(8,2) \quad C(4,-1)$.

$$
\begin{aligned}
\text { midpoint } A B= & =\left(\frac{9}{2}, \frac{5}{2}\right) \\
\text { Midpoint } A C=D & =\left(\frac{4+1}{2}, \frac{3-1}{2}\right) \\
& =\left(\frac{5}{2}, 1\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{grad} D E=\frac{5 / 2-1}{9 / 2-5 / 2}=\frac{3 / 2}{2}=\frac{3}{4} . \\
& \operatorname{grad} C B=\frac{2--1}{8-4}=\frac{3}{4} .
\end{aligned}
$$

Question 3
a) If $y=\left(x^{2}+4\right)(x-3)$, solve $d y / d x=4$.

$$
y=x^{3}-3 x^{2}+4 x-12
$$

$d y / d x=3 x^{2}-6 x+4$

$$
\begin{aligned}
\therefore \quad 4 & =3 x^{2}-6 x+4 \\
0 & =3 x^{2}-6 x \\
0 & =3 x(x-2) \\
3 x & =0, x-2=0 \\
x & =0, \quad x=2
\end{aligned}
$$

b) i)
iii)

ii) $y=3 \sin 2 x$. amplitude $=3$

$$
\text { period }=\frac{2 \pi}{2}=\pi
$$

iv) There are 2 solutions.
C) class.

$$
\begin{aligned}
P(\text { neither }) & =4 / 30 \\
& =2 / 15
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{array}{c|c|c|c|c|c|}
x & 0 & 10 & 20 & 30 & 40 \\
\hline f(x) & 20 & 14 & 12 & 7 & 8 \\
\hline
\end{array} \\
& \begin{aligned}
& h=\frac{40-0}{4}=\frac{40}{4}=10 \\
& \int_{0}^{40} f(x) d x \doteq 10 / 3[(20+8)+4(14+7)+2(12)] \\
& \doteq 10 / 3[28+4(21)+2(12)] \\
&=4531 / 3 \mathrm{~m}^{2}
\end{aligned}
\end{aligned}
$$

e) $f(x)=3 x^{2}-1 \quad$ Pt. point $(4,1)$

$$
\begin{aligned}
& f(x)=\int f^{\prime}(x) \\
&=\int 3 x^{2}-1 \\
&=x^{3}-x+C \\
& f(4)= \therefore \quad 1=4^{3}-4+C \\
& \quad 1=64-4+C \\
& 1=60+C \\
& \quad c=-59
\end{aligned} \quad \begin{aligned}
\therefore \quad f(x) & =x^{3}-x-59
\end{aligned}
$$

Question 4
Ci) i)

$$
\begin{aligned}
P(\text { st prize }) & =5 / 100 \\
& =1 / 20
\end{aligned}
$$

ii) $P(2 n d$ prize $)=P($ lIst a $2 n d$ prize $)+P($ not st bu

$$
\begin{aligned}
& \text { and prize) } \\
& =(5 / 100 \times 4 / 90)+(95 / 100 \times 5 / 90) \\
& =1 / 20 .
\end{aligned}
$$

b)

$$
\begin{aligned}
& y=x^{4}-4 x^{3} \\
& y^{\prime}=4 x^{3}-12 x^{2} \quad y^{\prime \prime}=12 x^{2}-24 x
\end{aligned}
$$

i) $S p @ y^{\prime}=0$

$$
\begin{aligned}
& 0=4 x^{3}-12 x^{2} \\
& 0=4 x^{2}(x-3) \\
& 4 x^{2}=0, x-3=0 \\
& x=0, x=3
\end{aligned}
$$

When $x=0, y=0$
$\therefore S P @(0,0)$
when $\begin{aligned} x=3, y & =3^{4}-4 \times 3^{3} \\ & =-27\end{aligned}$

$$
\therefore s p @(3,-27)
$$

ii) $y^{\prime \prime}=0$ helps determine nature of
st. pts.

$$
\begin{aligned}
y^{\prime \prime}(0) & =0-0 & y^{\prime \prime}(3) & =12 \times 3^{2}-24 \times 3 \\
& =0 & & 36
\end{aligned}
$$

- possible pt of inflexion $\therefore(3,-27)$ is a local minima check y^{\prime} for sign of derivative.

x	-1	0	1
y^{\prime}	-16	0	-8

$\therefore(0,0)$ is a pt of
inflexion. inflexion.
iii) $y^{\prime \prime}>0$ fer concave $x^{2} ; \therefore 12 x^{2}-24 x>0$ $x^{2}-2 x>0 \quad \therefore \quad x>2, \quad x<0$ $x(x-2)>0 \quad \therefore$ the curve is concave up for $x>2, \quad x<0$.
iv) $f^{\prime}(x)<0$ for curve decreasing.
$4 x^{3}-12 x^{2}<0$
$x^{2}(x-3)<0$
$x^{2}<0, x<3$.
\therefore the curve is decreasing for $x<3, x \neq 0$
C) $P(E)=1 / x$
$P($ not $E)=1-1 / x$

$$
=\frac{x-1}{x}
$$

Q4b) v)

Solution to section (c)

Question (5).
(a)

$$
\begin{aligned}
& A=\frac{1}{2} r^{2} \theta \\
& 1.6=2 \theta \\
& \therefore \theta=0.8
\end{aligned}
$$

$$
\begin{aligned}
{[z]^{\text {le } 0.8^{c}} } & =\frac{180}{\pi} \times 0.8 \\
& \doteq 45^{\circ} 50^{\prime} *
\end{aligned}
$$

(ii)

$$
[2]
$$

$$
\text { ii) } \begin{aligned}
l & =r \theta \\
& =2 \times 0.8 \\
& =1.6 \\
\therefore \rho & =l+2 r=5.6 \mathrm{~m} \\
& =560 \mathrm{~cm}
\end{aligned}
$$

(i) In parma+ $A B C D$,
$\angle A D C+\angle B C D=180^{\circ}$ (couterior $\angle s$ are supp (ementary, $A D \| B C)$

$$
\begin{aligned}
& 2 a+2 x=180 \\
& a+x=90^{\circ} .
\end{aligned}
$$

$$
\angle D P C=180^{\circ}-(a+x)
$$

$$
\text { (Angle sum of } \triangle D P C \text {) }
$$

$$
1 \cdot e \angle P C=180^{\circ}-90^{\circ}
$$

(ii)

$$
\angle P D C=\angle A P D=a^{\circ}
$$

(alternate $\angle S, A P \| D C$).

$$
\therefore \angle A D P=\angle A P D=a^{\circ}
$$

1.e $\triangle A D P$ is isosceles.
(iii) Similary (from (ii).

- $B P=B C \cdot\left(\triangle B P C\right.$ is $\left.\begin{array}{c}\Delta \text { isosceles }\end{array}\right)$
and $A D=A P$ (proven).
- but $A D=B C$

Copposite sides of a farm equal 1).

$$
\begin{aligned}
& A B \\
= & A P+P B \\
= & A D+B C . \\
= & 2 B C .
\end{aligned}
$$

(c)
(i) $\int_{0}^{8} f(x) d x$

$$
=\frac{1}{4}\left(\pi \times 2^{2}\right)+2^{2}+\frac{1}{2}(2) \times 2
$$

$$
\begin{equation*}
-\frac{1}{2}(2) \times 2 \tag{2}
\end{equation*}
$$

$=\pi+4 \quad(7.142)$
(ii) $A t$
not differentiable
(d)

At $x=5$
$f^{\prime}(5)=0$
$f^{\prime}(5-\varepsilon)>0$ (for $\begin{aligned} & \text { for } \\ & \text { small }\end{aligned}$
$f^{\prime}(5+\varepsilon)<0$.
small
positives)
\therefore By the st derivative test $f(x)$ has a local max (mun at (5,0).

Question (6).
(a)

$$
\begin{aligned}
& y=-x^{2}+7 x-6 \\
& y=x+2 \\
&-x^{2}+7 x-6=x+2
\end{aligned}
$$

(i)

$$
\begin{gather*}
x^{2}-6 x+8=0 \\
(x-4)(x-2)=0 \\
\therefore x=2, y=4 \\
x=4, y=6 \\
(2,4)(4,6) \tag{2}
\end{gather*}
$$

lie $A=2$ and $B=4$.
(ii)

$$
\begin{aligned}
& A=\int\left(\left(-x^{2}+7 x-6\right)-x-2\right] \\
& =\int_{2}^{4}\left(-x^{2}+6 x-8\right) d x \\
& =\left[-\frac{x^{3}}{3}+3 x^{2}-8 x\right]_{2}^{4} \\
& =\left[-\frac{64}{3}+48-32\right]-\left[\frac{-8}{3}+12-16\right] \\
& =-\frac{56}{3}+16+4 \quad[2] \\
& =4 / 3 .
\end{aligned}
$$

(iii) $-x^{2}+6 x-8>0$ $x^{2}-6 x+8<0$

$$
(x-4)(x-2)<0
$$

$$
\begin{equation*}
2<x<4 \tag{2}
\end{equation*}
$$

(b)

$$
y=-2 x^{2}+6 x+3
$$

$A(2,7)$

$$
\begin{aligned}
& \quad \frac{d y}{d x}=-4 x+6 \\
& \left.\therefore \frac{d y}{d x}\right|_{x=2}=-2 \\
& \therefore y-7=-2(x-2) \\
& \therefore 2 x+y-11=0[+g+] \\
& y-7=\frac{1}{2}(x-2) \\
& 2 y-14=x-2 \\
& \therefore x+2 y+12=0 \\
& \therefore \text { (uormal) }
\end{aligned}
$$

$$
\begin{aligned}
& 2 x=11 \quad x=\frac{11}{2} \\
& B\left(\frac{11}{2}, 0\right) \quad x=-12 \\
& \therefore \text { Area }=\frac{1}{2} \times 17 \frac{1}{2} \times 7 .
\end{aligned}
$$

(c)
(i)

$$
\begin{gather*}
\text { Let } B C=x . \\
\frac{7}{7+x}=\frac{6}{20} 10 \\
70=21+3 x . \tag{2}\\
x=93 x . \\
x=49 / 3 .
\end{gather*}
$$

(ii)

$$
\begin{aligned}
B F & : D E \\
7 & =\frac{49}{3} \\
21 & =49 \\
3 & =7
\end{aligned}
$$

