

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2006 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #2

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 85

- Attempt questions 1 6
- Hand up in 3 separate booklets clearly labelled Section A, Section B and Section C

Examiner: A. Fuller

SECTION A

Question 1 (13 marks)

(b) Convert
$$\frac{17\pi}{12}$$
 radians to degrees. [1]

(c) Differentiate the following:

(i)
$$4x^2 + 5$$

(ii)
$$(2x^3-5)^4$$
 [2]

(iii)
$$\frac{3x+1}{2x-1}$$
 [2]

$$(iv) \quad x\sqrt{1-2x} \tag{2}$$

(d) Find a primitive of:

(i)
$$\frac{2}{x^4}$$

(ii)
$$\sqrt{x}$$
 [1]

(e) Find
$$f''(2)$$
 if $f(x) = x^5$ [2]

Question 2 (15 marks)

(a)
$$A(-1,5)$$
, $B(2,1)$ and $C(4,k)$ are collinear. Find the value of k. [3]

(b) Find
$$\int \frac{x^2 + 1}{x^2} dx$$
 [2]

(c) Evaluate
$$\int_{-1}^{1} (x-1)(x+1) dx$$
 [3]

(d) A die is tossed twice. The sum of the numbers which appear on the upmost face of the die is calculated. Using a table or otherwise:

 (ii) It is known that a 4 appears on the die at least once in [2] the two throws. Find the probability that the sum is greater than 8.

(e) The vertices of a triangle are
$$A(1,3)$$
, $B(8,2)$ and $C(4,-1)$.

- (i) Find the coordinates of D and E, the midpoints of AC and AB respectively.
- (ii) Hence, show that DE is parallel to CB. [2]

SECTION B

Question 3 (14 marks)

(a) If
$$y = (x^2 + 4)(x - 3)$$
, solve $\frac{dy}{dx} = 4$. [3]

(b) The diagram below is the graph of $y = 3 + 3\cos x$

- (i) Copy this graph onto your answer sheet.
- (ii) State the amplitude and period of $y = 3\sin 2x$. [1]

(iii) On the same graph as (i), sketch $y = 3\sin 2x$ [2] for $0 \le x \le 2\pi$.

- (iv) How many solutions are there to the equation [1] $3+3\cos x = 3\sin 2x$?
- (c) A class of 30 students contains 18 students who play cricket, 13 who [2] play tennis and 5 who play both cricket and tennis. If one student is chosen at random find the probability that this student plays neither cricket nor tennis.

(d) The diagram below shows a paddock with one side bounded by a river. AE is a boundary fence 40 metres in length. AO, BP, CQ, DR, ES are offsets measured from the fence to the river with lengths as shown. AB = BC = CD = DE.

Use Simpson's rule with 5 function values as shown on the diagram to approximate the area of the paddock.

(e) The gradient function of a curve is $3x^2 - 1$ and the curve passes [2] through the point (4,1). Find the equation of the curve.

Question 4 (13 marks)

- (a) A girl has 5 tickets in a raffle where 100 tickets are sold.
 First prize is drawn discarded and then the second prize is drawn.
 Find the probability that she wins:
 - (i) first prize [1]
 - (ii) second prize [2]

(b) Consider the curve $y = x^4 - 4x^3$

(i)	Find the coordinates of the stationary points.	[2]
(ii)	Determine the nature of these stationary points.	[2]
(iii)	For what values of x is the curve concave up?	[1]
(iv)	For what values of x is the curve decreasing?	[1]
(v)	Hence sketch the curve.	[2]

(c) If the probability that an event E occurs is $\frac{1}{x}$, express the [2] probability that E does not occur as a single fraction.

SECTION C

Question 5 (15 marks)

(a) A flower bed is made in the shape of a minor sector with angle \mathcal{G} and radius 2 metres.

(i) If the area of the flower bed is $1 \cdot 6m^2$, find the angle \mathscr{G} [2] to the nearest minute.

[2]

- (ii) Find the perimeter of the flower bed to the nearest cm.
- (b) ABCD is a parallelogram. The bisectors of angles ADC and BCD meet at P on the side AB. Prove that:

(iii) AB = 2BC [2]

The graph below of the function f consists of a quarter circle AB and two line segments BC and CE.

(i) Evaluate
$$\int_0^8 f(x) dx$$
. [2]

- (i) For what value(s) of x satisfying 0 < x < 8 is the function f not differentiable?
- (d) The diagram below shows the graph of the gradient function [2] of a curve. For what value(s) of x does f(x) have a local maximum? Justify your answer.

Question 6 (15 marks)

1

1

A

1

В

(a) The diagram below shows the graphs of the functions

X

- (i) Find the equation of the tangent and the equation of the normal to the curve $y = -2x^2 + 6x + 3$ at the point A(2,7).
- (ii) The tangent cuts the x axis at B. The normal cuts the x axis at C as shown in the diagram. Find the values of B and C. Hence, find the area of $\triangle ABC$.
- (c) In the diagram below AC is parallel to FD and BF is parallel to CE. B lies on AC, D lies on CE and F lies on AE. AF = 6cm, FE = 14cm and AB = 7cm.

(i) Find BC.

(ii) Find the ratio of BF to DE.

END OF TEST

[2]

[2]

[4]

[2]

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE: $\ln x = \log_e x, x > 0$

 $80 \times \frac{\pi}{180} = \frac{4\pi}{9} \begin{bmatrix} 2006 \\ 201 \\ 7 \end{bmatrix} \begin{bmatrix} 2006 \\ 201 \\ 7 \end{bmatrix} \begin{bmatrix} 2006 \\ 201 \\ 7 \end{bmatrix}$ **(** $\frac{17 \pi}{12} = 255^{\circ}$ **(b)** (c) i) $d(4x^2+5) = 8x$ 11) $d_{x}((2x^{3}-5)^{4}) = 4 \times bx^{2} \times (2x^{3}-5)^{3}$ $= 24x^{2}(2x^{3}-5)^{3}$ $\lim_{x \to 0} \frac{d}{dx} \cdot \left(\frac{3x+1}{2x-1}\right) = \frac{vu' - uv'}{v^2} .$ $= \frac{(2x-1)^3}{(2x-1)^2} - \frac{(3x+1)^2}{(2x-1)^2}$ $= \underbrace{bx - 3 - bx - 2}_{(2x-1)^2}.$ $= \frac{-5}{(2x-1)^2}$ MARY

Q1 (c) (iv).

$$\frac{d}{dx} \left(x \sqrt{1 - 2x} \right) = Vu' + uv'$$

$$= \sqrt{1 - 2x} + x \left(\frac{1}{2} \left(1 - 2x \right)^{\frac{1}{2}} \left(-2 \right) \right)$$

$$= \sqrt{1 - 2x} - \frac{x}{\sqrt{1 - 2x}}$$

$$= \frac{1 - 2x - x}{\sqrt{1 - 2x}}$$

$$=\frac{1-3x}{\sqrt{1-2x}}$$

d) i)
$$\int \frac{2}{x^4} \cdot dx = \int 2x^{-4} \cdot dx$$

= $\frac{2}{-3}x^{-3} \cdot +C$
= $-\frac{2}{-3x^3} + C$

ہ ۱

 (Q^{\dagger}) d) (I) $\int \sqrt{x} dx = \int x^{\pm} dx$. $=\frac{2}{3}x^{3/2}+C$

 $f(x) = x^5$ $f'(\infty) = 5x^4$ $f''(x) = 20x^3$ $f''(2) = 20(2)^3$ 160

QUESTION(2)

a) A(1,5) B(2,1). Two pt. $M_{-} = \frac{y-1}{x-2} = \frac{5-1}{-1-2}.$ -3(y-1) = 4(x-2)-3y+3 = 4x-8 $4 = \frac{3y}{-3}$ $y = \frac{4x - 11}{-3}$ $\dot{y} = 4(4) - H$ - 3 $C(4,\kappa)$ = -3 + 5 = 5-3 = 3

oo Kisl and C(4]).

OUESTION(2)(d).

i)

$$P(sum > 8) = \frac{12}{36} = \frac{5}{18}$$

 $P(1,48 sum > 8) = \frac{5}{18}$

e)
$$A(1,3) B(8,2) C(4,-1).$$

Midpoint $AB = \frac{E}{2} = (\frac{9}{2}, \frac{5}{2})$
Midpoint $AC = D = (\frac{4+L}{2}, \frac{3-1}{2})$
 $= (\frac{5}{2}, 1).$

 $\begin{array}{rcl} \mbox{DE} & \mbox{grad} & \mbox{DE} & = & \frac{5/2 - 1}{9/2 - 5/2} = & \frac{3/2}{2} = & \frac{3}{4} \\ \end{array}$ grad $CB = \frac{R - -1}{8 - 4} = \frac{3}{4}$.

Overtion 3 a) If $y = (x^2 + 4)(x - 3)$, solve $\frac{dy}{dx} = 4$. $y = x^3 - 3x^2 + 4x - 12$ $\frac{dy}{dx} = 3x^2 - 6x + 4$ $...4 = 30x^2 - 6x + 4$ $O = 3x^2 - 6x$ O = 3x(x - 2)) 3x=0, x-2=0x=0, x=2b);) 3+ 300000 G Б Ìii) 3 2 311/2 T12 Źπ $\frac{1}{3} \frac{3}{2x}$ -- 2 - 3 y=3sin2x. amplitude = 3 ii) $\frac{\text{period}}{2} = \frac{2\pi}{2} = \pi$ iv) There are 2 solutions.

C class. 13 5 4 $P(neither) = \frac{4}{30}$ = $\frac{2}{15}$ (b 10 20 30 40 20 $\frac{h = 40 - 0}{4} = \frac{40}{4} = \frac{10}{4}$) ($f(x)dx \stackrel{i}{=} \frac{10}{3} \left[(20+8) + 4(14+7) + 2(12) \right]$ = 10/3 [28 + 4(21) + 2(12)]453 1/3 m² e) $f(x) = 3x^2 - 1$ P.t. point (4, 1) f(x) = Sf'(x))_____ $= \int 3x^2 - 1 \\ = x^3 - x + C$ f(4) = 1 \therefore $1 = 4^{3} - 4 + C$ 1 = 64 - 4 + C1 = 60 + CC = -59:, $f(x) = x^3 - x - 59$

Overtion 4 (a) i) $P(1st prize) = \frac{5}{100} = \frac{1}{20}$ = P(1st a 2nd prize) + P(not bt b ii) P (2nd prize) $2nd prize) = (5/100 \times 4/99) + (95/100 \times 5/99)$ = 1/20. b) $y = x^{4} - 4x^{3}$ $y' = 4x^3 - 12x^2$ $y'' = 12x^2 - 24x$ when x = 0, y = 0 \therefore SP @ (0, 0) when x = 3, $y = 3^{4} - 4x3^{3}$ = -27i) SP @ y'=0 $O = 4x^3 - 12x^2$ $O = 4x^2(x-3)$ $4x^2 = 0$, x - 3 = 0 $\chi = O$, $\chi = 3$ ii) y"= 0 helps determine nature of st. pts. y''(0) = 0 - 0= 0 = 0 $y''(3) = 2x^{3^2} - 24x^3 = 36$ - possible pt of inflexion ... (3, -27) is a local minimu check y' for sign of derivative. iii) y'' > 0 for concave up; : $12x^2 - 24x > 0$ $x^2 - 2x > 0$: x > 2, z < 0 $\alpha(x-2)$.". the curve is concave up for α >2, α <0. infacto for aurve decreasing. $4x^3 - 12x^2 < 0$: the curve is decreasing $x^{2}(x-3) < 0$ for x < 3, $x \neq 0$ $x^{2} < 0, x < 3$

, , , , , , , , , , , , , , , , , , ,	C) $P(E) = \frac{1}{x}$ $P(not E) = \frac{1 - \frac{1}{x}}{x}$
	$= \frac{\alpha - 1}{\alpha}$ Q4b)v
	-27
· · · · · · · · · · · · · · · · · · ·	
)	

Solution to Section (c) AB $Q \underline{uestion(5)}$. (a) (1) In parmt. ABCD. = AP + PB $\angle ADC + \angle BCD = 180^{\circ}$ = A D + B C(conterior 2 s are = 2BCSupplementary, AD (1BC) $\therefore 2a + 2k = 180$ (i) $\int_{a}^{b} f(n) dx$ $a+x=90^{\circ}$ $= D P C = (80^{\circ} - (a+k))$ $\begin{bmatrix} 2 \end{bmatrix}^{(.e)} & 0.8' = \frac{(80)}{\pi} \times 0.8 \\ \doteq 45^{\circ} 50' \\ \end{bmatrix}$ $= \frac{1}{4} (\pi \times 2^2) + 2^2 + \frac{1}{2} (2) \times 2$ (Augle sum of DDPC) $-\frac{1}{2}(2) \times 2$ [2] $1.2 \ 20\ PC = 180^{\circ} - 90^{\circ} = 90^{\circ} \quad [2]$ (ii) l = +0 $= \pi + 4 (7 \cdot 1az)$ = 2×0.8 (11) IN $\triangle AP \Delta$. [2] (ii) k = 4 f (s [1] = 1.6 p = 1 + 2r = 5.6m= 560 cm. * $< POC = < APO = a^{\circ}$ not differentiable. (alternate 25, AP 11 PC) $\therefore \triangle A O P = \angle A P D = a^{\circ}$ $(d) \quad A \neq x = 5 \qquad [2].$ (b) A P B (b) A lie & ADP is isosceles. f'(5) = 0f'(5-E) >0 (for small (III) Similary (from (ii) $f'(5+\epsilon) < 0$ positive ϵ) • BP = BC, (ΔBPC is isosceles and AD = AP (proven) ... By the 1st derivative • but AD = BCtest f(x) has a local (opposite sides og a parm equal). [2] maximum at (5,0).

$$\begin{array}{c} \underbrace{Question(6)}{(a) \ y = -x^{2} + 7x - 6} \\ y = x + 2 \\ (a) \ y = x + 2 \\ (b) \ y = -x^{2} + 7x - 6 = x + 2 \\ (c) \ x^{2} - 6x + 8 = 0 \\ (x - 4)(x - 2) \\ (x - 4)(x - 4) \\ (x - 4)(x - 2) \\ (x - 4)(x - 4) \\ (x - 4)(x -$$

[2]