

2007

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2
(Year 12 Half Yearly)

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- Hand in your answers in 3 separate bundles. Section A (Question 1), Section B (Question 2) and Section C (Question 3)

Total Marks - 60

- Attempt questions 1-3
- All questions are NOT of equal value.

Examiner: A Ward

This page is intentionally left blank

Section A - Start a new booklet.

Question 1 (20 marks).

a) The $n^{\text {th }}$ term of an arithmetic series is $12-4 n$. Find the first term, a and the common difference, d.
b) Differentiate with respect to x
(i) $\cos 2 x$
(ii) $e^{x^{2}+1}$
(iii) $\ln x^{5}$
(iv) $\frac{\sin x}{x^{2}}$
c) Convert $\frac{4 \pi}{3}$ radians to degrees.
d) Express 210° in radian measure.
e) Find $\cos \theta$ and $\sin \theta$, if $\tan \theta=\frac{-7}{24}$ and θ is reflex.
f) Find:
(i) $\int x^{2 n} d x$ where $n \neq-\frac{1}{2}$
(ii) $\int \sec ^{2}(2 x+3) d x$
g) Find the gradient of the curve $y=(x-3)\left(x^{2}+2\right)$ at the point (1,-6)
h) Find the length of the arc of a circle of radius 4 cm which subtends an angle of $\frac{\pi}{3}$ radians at the centre.
i) Find the equation of the tangent to the curve $y=x^{2}-3 x+2$ at the point where it cuts the y-axis.
j) The co-ordinates of the vertices A, B and C of the triangle ABC are ($-3,7$), $(2,19)$ and $(10,7)$ respectively. Prove that the triangle is isosceles.

End of Section A.

Section B - Start a new booklet.

Question 2 (20 marks).

a) The gradient function of a curve is $3 x^{2}-5 x+1$ and the curve itself passes through $(0,3)$. Find the equation of the curve.
b) Find:
(i) $\int e^{3 x+2} d x \quad 1$
(ii) $\int \frac{\cos x}{1+\sin x} d x$
c) Use Simpson's rule with 3 ordinates to find an approximate value for

$$
\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{x} d x .
$$

Express your answer as a fraction.
d) Given the curve with equation $y=x^{3}+5 x^{2}+3 x-9$, find the turning points and determine their nature.
e) Find the sum of geometric series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{4096}$
f) The curve $y=x^{2}+a x+b$ has a turning point at $(1,3)$. Find a and b.
g) If a and b are the first and last terms of an arithmetic series of $r+2$ terms. Find the second and $(r+1)^{\text {th }}$ term, expressing your answers as single fractions.
h) Show that the point $\mathrm{A}(-1,5)$ is the reflection (image) of point $\mathrm{B}(3,-3)$ in the line $2 y=x+1$.

End of Section B.

Section C - Start a new booklet.

Question 3 (20 marks).

a) (i) Sketch on the same axes the graphs of $y=-\cos 2 x$ and $y=\frac{x}{2}$ in the interval, $-\pi \leq x \leq \pi$
(ii) Hence, find the number of solutions to the equation $-\cos 2 x=\frac{x}{2}$, lying in the above interval.
b) A region R in the first quadrant is bounded by the y -axis, x -axis, the line $x=3$ and the curve $y^{2}=4-x$
(i) Draw a sketch showing the region R .
(ii) Calculate the area of region R .
(iii) Calculate the volume formed when R is rotated about the y-axis through one revolution.
c) An insurance policy pays the policy holder a percentage of his salary if he is unable to work. For the first month the payment is 100% of his salary, for the second month 97% and for the third month 94.15%. The percentages are calculated according to the formula:

$$
P_{n+1}=a P_{n}+b
$$

Where P_{n} is the percentage paid in month n, with a and b as constants.
(i) Find a and b.
(ii) Show that $P_{3}=100(0.95)^{2}+2(1+0.95)$ and that $P_{n}=100(0.95)^{n-1}+2\left(1+0.95+\ldots+0.95^{n-2}\right)$, where $n \geq 2$
(iii) Hence, given that the sequences of the percentages tends to a limit P, find the value of P.

End of Section C.

End of Examination.

This page is intentionally left blank

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$
i) a)

$$
\text { a) } \begin{aligned}
& T_{n}=12-4 n \\
& T_{1}=12-4(1) \\
& T_{1}=8 \\
& T_{2}=12-4(2) \\
& T_{2}=4 \\
& a=8 \\
& d=T_{2}-T_{1} \\
& d=4-8 \\
& d=-4
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& y=\cos 2 x \\
& y^{\prime}=-2 \sin 2 x
\end{aligned}
$$

ii) $y=e^{x^{2}+1}$

$$
\begin{aligned}
& y=e^{x} \\
& y^{\prime}=2 x e^{x^{2}+1} \\
& 5
\end{aligned}
$$

iii)

$$
\begin{aligned}
& y=\ln x^{5} \\
& y=5 \ln x \\
& y^{\prime}=\frac{5}{x}
\end{aligned}
$$

iv)

$$
\begin{aligned}
& y=\frac{\sin x}{x^{2}}, \quad u=\sin x \\
& y^{\prime}=\cos x
\end{aligned} v^{v}=v^{\prime}=2 x .
$$

c) $\frac{4 \pi}{3} \times \frac{180}{\pi}=240^{\circ}$
d) $210 \times \frac{\pi}{180}=\frac{7 \pi}{6}$
e)

$$
\begin{aligned}
& \cos \theta=\frac{24}{25} \\
& \sin \theta=-\frac{7}{25}
\end{aligned}
$$

f)i) $\int x^{2 n} d x$, where $n \neq-\frac{1}{2}$

$$
=\frac{x^{2 n+1}}{2 n+1}+c
$$

ii)

$$
\begin{aligned}
& \int \sec ^{2}(2 x+3) d x \\
= & \frac{1}{2} \tan (2 x+3)+C
\end{aligned}
$$

9)

$$
\begin{aligned}
& y=(x-3)\left(x^{2}+2\right) \\
& y=x^{3}+2 x-3 x^{2}-6 \\
& y^{\prime}=3 x^{2}+2-6 x
\end{aligned}
$$

when $x=1$

$$
m_{T}=3(1)^{2}+2-6(1)
$$

$$
m_{T}=-1
$$

$$
\begin{aligned}
& l=r \theta \\
& l=4\left(\frac{\pi}{3}\right) \\
& l=\frac{4 \pi}{3} \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& y=x^{2}-3 x+2 \\
& y^{\prime}=2 x-3 \\
& \quad \text { when } x
\end{aligned}
$$

when $x=0$
$m_{T}=-3 \quad$ point $(0,2)$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-2=-3(x-0)$
$y-2=-3 x$
$y=-3 x+2$ or $3 x+y-2=0$
j) $A(-3,7), B(2,19), C(10,7)$

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A B & =\sqrt{(2+3)^{2}+(19-7)^{2}} \\
& =13 \\
B C & =\sqrt{(2-10)^{2}+(19-7)^{2}} \\
& =\sqrt{208} \\
A C & =\sqrt{(10+3)^{2}+(0)^{2}} \\
& =13
\end{aligned}
$$

since $A B=A C$
$\triangle A B C$ is isosceles.

2007 Mathematics Assessment 2: Solutions- Section B

2. (a) The gradient function of a curve is $3 x^{2}-5 x+1$ and the curve itself passes through $(0,3)$. Find the equation of the curve.

$$
\text { Solution: } \begin{aligned}
& \quad \frac{d y}{d x}=3 x^{2}-5 x+1 \\
& y=x^{3}-\frac{5 x^{2}}{2}+x+3 . \\
& \text { At }(0,3) 3=c \\
& \therefore y=x^{3}-\frac{5 x^{2}}{2}+x+3
\end{aligned}
$$

(b) Find:
i. $\int e^{3 x+2} d x$,

Solution: $\int e^{3 x+2} d x=\frac{e^{3 x+2}}{3}+c$.
ii. $\int \frac{\cos x}{1+\sin x} d x$.

Solution: $\int \frac{\cos x}{1+\sin x} d x=\ln (1+\sin x)+c$.
(c) Use Simpson's rule with 3 ordinates to find an approximate solution for

$$
\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{x} d x
$$

Express your answer as a fraction.

$$
\text { Solution: } \begin{aligned}
\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{x} d x & \approx \frac{1}{3} \times \frac{1}{2}\left(2+4 \times 1+\frac{2}{3}\right) \\
& \approx \frac{1}{6} \times \frac{20}{3} \\
& \approx \frac{10}{9}
\end{aligned}
$$

(d) Given the curve with equation $y=x^{3}+5 x^{2}+3 x-9$, find the turning points and determine their nature.

Solution: $\quad \frac{d y}{d x}=3 x^{2}+10 x+3$,

$$
=(3 x+1)(x+3)
$$

$$
=0 \quad \text { when } x=-\frac{1}{3},-3 \text {. }
$$

$$
\frac{d^{2} y}{d x^{2}}=6 x+10
$$

$$
=8 \text { when } x=-\frac{1}{3} \text {, }
$$

$$
=-8 \quad \text { when } x=-3 .
$$

\therefore Maximum turning point at $(-3,0)$. Minimum turning point at $\left(-\frac{1}{3},-10 \frac{16}{27}\right)$ or $\left(-\frac{1}{3},-\frac{286}{27}\right)$.
(e) Find the sum of the geometric series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{4096}$.

Solution:

$$
\begin{aligned}
a & =1 \\
r & =\frac{1}{2} \\
\left(\frac{1}{2}\right)^{n-1} & =\left(\frac{1}{2}\right)^{12} \\
\therefore n & =13 \\
\text { So sum } & =\frac{1-\left(\frac{1}{2}\right)^{13}}{1-\frac{1}{2}} \\
& =2 \times\left(\frac{8192-1}{8192}\right) \\
& =\frac{8191}{4096}
\end{aligned}
$$

(f) The curve $y=x^{3}+a x+b$ has a turning point at $(1,3)$.

Find a and b.

$$
\text { Solution: } \begin{aligned}
y & =x^{3}+a x+b, \\
\text { i.e. } 3 & =1+a+b, \\
a+b & =2 . \\
\frac{d y}{d x} & =2 x+a, \\
\text { i.e. } 0 & =2+a, \\
a & =-2 . \\
-2+b & =2, \\
b & =4 .
\end{aligned}
$$

(g) If a and b are the first and last terms of an arithmetic series of $r+2$ terms, find the second and $(r+1)^{\text {th }}$ terms, expressing your answers as single fractions.

Solution: $t_{1}=a, \quad t_{r+2}=b$,

$$
\text { i.e. } b=a+(r+2-1) d
$$

$$
\therefore d=\frac{b-a}{r+1} .
$$

$$
t_{2}=a+\frac{r}{b-a},
$$

$$
=\frac{a r+a+b-a}{r+1}
$$

$$
=\frac{a r+b}{r+1}
$$

$$
t_{r+1}=b-\frac{b-a}{r+1}
$$

$$
=\frac{b r+b-b+a}{r+1}
$$

$$
=\frac{a+b r}{r+1}
$$

(h) Show that the point $A(-1,5)$ is the reflection (image) of point $B(3,-3)$ in the line $2 y=x+1$.

Solution: \quad Slope of $2 y=x+1$ is $\frac{1}{2}$.

$$
\text { Slope of } \begin{aligned}
A B & =\frac{5+3}{-1-3} \\
& =-2
\end{aligned}
$$

Distance of A from the line $=\frac{|-1-2(5)+1|}{\sqrt{1+2^{2}}}$,

$$
=\frac{10}{\sqrt{5}}
$$

Distance of B from the line $=\frac{|3-2(-3)+1|}{\sqrt{1+4}}$,

$$
=\frac{10}{\sqrt{5}}
$$

\therefore The line is the perpendicular bisector of $A B$,
i.e. A is the reflection of B in the line.

Queston 3.
(a) (i)

(b) (1)

(ii) $\int_{0}^{3} \sqrt{4-x} d x$.

$$
\begin{aligned}
& =\int_{0}^{3}(4-x)^{\frac{1}{2}} d x . \\
& =-\frac{2}{3}\left[(4-x)^{3 / 2}\right]_{0}^{3}
\end{aligned}
$$

((II) $V=\pi \int_{0}^{1} 3^{2} d y+\pi \int_{1}^{2} x^{2} d y$.
$=-\frac{2}{3}\left(11^{\frac{3}{2}}-4^{\frac{3}{2}}\right)$
$=\pi \int_{0}^{1} 9 d y+\pi \int_{1}^{2}\left(4-y^{2}\right)^{2} d y$
$=-\frac{2}{3}(1-8)$
$=\frac{14}{3} \mu^{2}$.
$=\pi[9 y]_{0}^{1}+\pi \int_{1}^{2}\left(16-8 y^{2}+y^{4}\right) d y$.
$=9 \pi+\pi\left[16 y-\frac{8 y^{3}}{3}+\frac{y}{5}\right]_{1}^{2}$
$=9 \pi+\pi\left[32-\frac{64}{3}+\frac{32}{5}-\left(16-\frac{8}{3}+\frac{1}{5}\right)\right]$
$=9 \pi+\pi\left[16-\frac{56}{3}+\frac{31}{5}\right]$
$=9 \pi+\pi \frac{240-280+93}{15}$
$=9 \pi+\frac{53 \pi}{15}$

$$
=\frac{188}{15} \pi \mathrm{~m}^{3} .
$$

c (i)

$$
\begin{align*}
& 97=100 a+b \tag{1}\\
& 94.15=97 a+b
\end{align*}
$$

(1) - 0

$$
\begin{aligned}
2.85 & =3 a \\
a & =0.95
\end{aligned}
$$

Sututitute in (1)

$$
\begin{aligned}
& 97=100 \times 0.95+b \\
& 97=95+b . \\
& \therefore b=2 .
\end{aligned}
$$

(11) $\quad P_{2}=100 \times 0.95+2$.

$$
\begin{aligned}
P_{3} & =P_{2} \times 0.95+2 \\
& =(100 \times 0.95+2) 0.95+2 \\
& =100(0.95)^{2}+2 \times 0.95+2 \\
& =100(0.95)^{2}+2(1+0.95) \\
P_{4} & =100(0.95)^{3}+2\left(1+0.95+0.95^{2}\right)
\end{aligned}
$$

ete.

$$
P_{n}=100(0.95)^{n-1}+2\left(1+0.95+0.45^{2}+\cdots+0.95^{n-2}\right)
$$

sukied is ture $1 \times-n \geqslant 2$.
(111) Nan $P_{n}=100(0.95)^{n-1}+\frac{2\left(1-0.95^{n-1}\right)}{1-0.95 .}$

$$
\begin{aligned}
P_{n} & =100(0.95)^{n-1}+\frac{2\left(1-0.95^{n-1}\right)}{1 / 20} \\
& =100(0.95)^{n-1}+40\left(1-0.95^{n-1}\right)
\end{aligned}
$$

newas "n $\rightarrow \infty \quad 0.95^{n-1} \rightarrow 0$ and $P_{n} \rightarrow P=40$.

