

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2010

HSC Mathematics Task 2

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Start each NEW SECTION in a separate answer booklet.
- Hand in three separate sections labelled A, B and C.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 72

- Attempt all questions 1-6.
- All answers are to be given in simplest exact form unless specified.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0
\end{aligned}
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

NOTE: $\ln x=\log _{e} x, x>0$

Section A

Question One [12 marks]

(a) Find a primitive of $3+x^{2}$.
(b) Find the value of $\log _{e} 6$ correct to two decimal places.
(c) Find the value of x in the following:
(i)

(ii)

(d) Find the exact value of:

$$
\cos \frac{\pi}{4}+\sin \frac{2 \pi}{3}
$$

(e) Differentiate
(i) $e^{-3 x}$
(ii) $\ln (x+4)$
(iii) $x \sin (x+2)$
(iv) $\frac{x}{\cos x}$

Question Two [12 marks]

(a) Find the equation of the tangent to the curve $y=3 \log _{e} x$ at the point $(1,0)$.
(b) Find
(i) $\int \sec ^{2} 3 x d x$
(ii) $\int \frac{4}{3+x} d x$
(iii) $\int(1-x)^{2} d x$
(iv) $\int_{0}^{\ln 4} e^{2 x} d x$
(c) The graph of $y=F(x)$ passes through $(4,1)$ and $F^{\prime}(x)=\frac{2}{\sqrt{x}}$, find $F(x)$.

End of Section A

Section B

(Start a NEW answer booklet)

Question Three [12 marks]

(a)
(i) Without using calculus draw a neat sketch of $y=3 \cos 2 x$ for $-\pi \leq x \leq \pi$.
(ii) On the same set of axes draw the line $y=x$.
(iii) How many solutions has the equation $3 \cos 2 x=x$?
(b) The following table lists the values of a function for five values of x.

x	2	3	4	5	6
$f(x)$	1.6	2.9	7.6	3.2	0.8

Use these five function values to estimate $\int_{2}^{6} f(x) d x$ by
(i) the trapezoidal rule.
(ii) Simpson's rule.
(c) The curves $y=x^{2}$ and $y^{2}=8 x$ intersect at the origin and the point B.

(i) Find the coordinates of B.
(ii) Find the area between the curves $y=x^{2}$ and $y^{2}=8 x$.

Question Four [12 marks]

(a) Solve $\cos \theta=-0.3$ for $0 \leq \theta \leq 2 \pi$.
[Give your answer in radians correct to two decimal places]
(b) Let $f(x)=2 x^{3}-3 x^{2}-12 x-15$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Find the coordinates of the point of inflexion.
(iii) Sketch the graph of $y=f(x)$ clearly indicating the stationary points and the point of inflexion.
(c) Show that $f(x)=\frac{1}{1+\tan x}$ is decreasing for all values of x for which it is defined.
(d)

The diagram shows the graph of the gradient function of the curve $y=f(x)$. For what values of x does $f(x)$ have a local minimum? Justify your answer.

End of Section B

Section C

(Start a NEW answer booklet)

Question Five [12 marks]

(a) Given $f(x)=\frac{1}{e^{x^{x^{2}}}}$, find
(i) $\quad f^{\prime}(x)$
(ii) $\quad f^{\prime \prime}(x)$
(b) ABCD is a square, M and N are the mid-points of BC and CD respectively.

(i) Prove that triangles ABM and BCN are congruent.
(ii) Prove that AM and BN are perpendicular.
(c)

Given that $\int_{0}^{5} f(x) d x=20$ and $\int_{0}^{7} f(x) d x=14$.
(i) What is the area of the shaded region?
(ii) What is the value of $\int_{5}^{7} f(x) d x$?
(d)

The area under the curve $y=1-\frac{1}{x}$ between $x=1$ and $x=2$ is rotated about the x-axis. Find in exact form the volume generated.

Question Six [12 marks]

(a) A sector of a circle has a perimeter of 21 cm and an area of $27 \mathrm{~cm}^{2}$.

(i) Use the information to form a pair of simultaneous equations.
(ii) Solve these equations to find all values of r and x, which satisfy the information.
(b)
(i) Find the minimum value of

$$
x+\frac{900}{x} \text { for } x>0 .
$$

[show all working]
(ii) A transport company operates a shipping service between port A and port B, at a constant speed of $v \mathrm{~km} / \mathrm{h}$. The distance between the ports is Skm .
For a given v, the cost per hour of running the ship is $\$\left(9000+10 v^{2}\right)$. Find the value of v which minimizes the cost of the trip.

End of Section C
 End of Exam

2010 HSC Mathematics Task 2-Section A:

Question One:

a) $\int 3+x^{2} \cdot d x=3 x+\frac{x^{3}}{3}+C$
b) $\log _{e} 6=1.79$
c)
(i) $\quad \frac{x-1}{x+2}=\frac{4}{5}$

$$
5 x-5=4 x+8
$$

$$
x=13
$$

(ii) $\quad x+7=\frac{1}{2}(3 x)$

$$
2 x+14=3 x
$$

$$
x=14
$$

d) $\cos \frac{\pi}{4}+\sin \frac{2 \pi}{3}=\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}$
e)
(i) $\frac{d}{d x}\left(e^{-3 x}\right)=-3 e^{-3 x}$
(ii) $\frac{d}{d x} \ln (x+4)=\frac{1}{x+4}$
(iii) $\frac{d}{d x}[x \sin (x+2)]=\sin (x+2)+x \cos (x+2)$
(iv) $\frac{d}{d x}\left[\frac{x}{\cos x}\right]=\frac{\cos x+x \sin x}{\cos ^{2} x}$

Question Two:

a) $y=3 \log _{e} x$

$$
\begin{aligned}
& y^{\prime}=\frac{3}{x} \\
& \text { At } x=1 \\
& y^{\prime}=\frac{3}{1}=3
\end{aligned}
$$

The equation of the tangent is

$$
\begin{gathered}
y-0=3(x-1) \\
\therefore y=3 x-3
\end{gathered}
$$

b)
(i) $\int \sec ^{2} 3 x \cdot d x=\frac{1}{3} \tan 3 x+C$
(ii) $\int \frac{4}{3+x} \cdot d x=4 \ln (3+x)+C$
(iii) $\int(1-x)^{2} \cdot d x=-\frac{(1-x)^{3}}{3}+C$
(iv) $\int_{0}^{\ln 4} e^{2 x} \cdot d x=\left[\frac{1}{2} e^{2 x}\right]_{0}^{\ln 4}$

$$
=\frac{1}{2} e^{2 \ln 4}-\frac{1}{2} e^{0}
$$

$$
=8-\frac{1}{2}
$$

$$
=7 \frac{1}{2}
$$

c) $F(x)=\int \frac{2}{\sqrt{x}} \cdot d x$

$$
\begin{aligned}
& =2 \int x^{-1 / 2} \cdot d x \\
& =2 \times 2 x^{1 / 2}+C \\
F(x) & =4 \sqrt{x}+C \\
\text { At }(4,1) & , \\
1 & =4 \sqrt{4}+C \\
1 & =4 \times 2+C \\
\therefore C & =-7 \\
\therefore F(x) & =4 \sqrt{x}-7
\end{aligned}
$$

Question 4
a) $\cos \theta=-0.3$
for $0 \leqslant \theta \leqslant 2 \pi$

S	A	$\theta=1.88,4.41(2 \mathrm{dp})$
∇	C	

b) $f(x)=2 x^{3}-3 x^{2}-12 x-15$
i) $f^{\prime}(x)=6 x^{2}-6 x-12$
st pts. $f^{\prime}(x)=0$

$$
\begin{aligned}
0 & =6 x^{2}-6 x-12 \\
0 & =x^{2}-x-2 \\
0 & =(x-2)(x+1) \\
\therefore x & =2, \quad x=-1 \\
\therefore f(x) & =-35 \quad f(x)=-8
\end{aligned}
$$

x	1	2	3	\therefore local	
$f^{\prime}(x)$	-12	0	24		minimum
x	1	-	1		
x	-2	-1	0	\therefore local	
$f^{\prime}(x)$	24	0	-12		maximum
	1	-	1		2

ii) $f^{\prime \prime}(x)=12 x-6$
$f^{\prime \prime}(x)=0$ for p.o.i

$$
\begin{array}{r}
0=12 x-6 \\
\therefore 0=2 x-1 \\
\therefore 2 x=1 \\
x=1 / 2
\end{array}
$$

when $x=1 / 2$

$$
f(x)=-21^{1 / 2}
$$

$\therefore\left(1 / 2,-21^{1 / 2}\right)$ is a possible point of inflexion

x	0	$1 / 2$	1
$f^{\prime \prime}(x)$	-6	0	+6

Since concavity changes $\left(1 / 2,-2 l^{1 / 2}\right)$ is a horizontal point of inflexion. 2
iii)

C)

$$
\begin{aligned}
f(x) & =(1+\tan x)^{-1} \\
f^{\prime}(x) & =-1(1+\tan x)^{-2} \times \sec ^{2} x \\
& =\frac{-\sec ^{2} x}{(1+\tan x)^{2}}
\end{aligned}
$$

as anything squared is always positive you have

$$
f^{\prime}(x)=-x \pm
$$

which will always be negative $\therefore f(x)$ is decreasing for all values of x for which it is defined.
d)

$x<2$ gradient is positive
$x=2, x=6$ zero gradient :. stationary point $2<x<6$ gradient is negative $x>6$ gradient is positive

$\therefore f(x)$ is a local minimum when $x=6$
OR for local minimum gradient needs to go from negative to positive ie this happens (a) $x=6$.

SECTIONC
Question 5
(a)

$$
\begin{aligned}
\varphi(x) & =\frac{1}{e^{x^{2}}} \\
& =e^{-x^{2}}
\end{aligned}
$$

(i) $f^{\prime}(x)=e^{-x^{2}} \cdot-2 x=-2 x e^{-x^{2}}$
(ii)

$$
\begin{align*}
f^{\prime \prime}(x) & =e^{-x^{2}} \cdot-2+(-2 x) \cdot(-2 x) e^{-x^{2}} \\
& =-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}} \\
& =\left(4 x^{2}-2\right) e^{-x^{2}} \tag{2}
\end{align*}
$$

(b)

(i) $\quad A B=B C$ (sides of square)

$$
B M=\frac{1}{2} B C=\frac{1}{2} C D=C N \quad(B C=C D \text { sider on squae) }
$$

$$
\angle A B M=\angle B C N=90^{\circ} \quad(\text { angis of sopuas })
$$

$$
\therefore \triangle A B M=\triangle B C N \text { (SAS) }
$$

(ii)

$$
\begin{aligned}
\angle P B M & =\angle N B C \text { (common) } \\
\angle P M B & =\angle A M B(\text { comm }) \\
& =\angle B N C(\text { comesp-ig } \angle \text { in } \equiv D s)
\end{aligned}
$$

$\therefore \triangle B P M$ III $\triangle B C N$ (aquizoub)
$\therefore \angle B P M=\angle B C N=90^{\circ}$ (comejncy $\angle i$ in III Δ_{j}) \therefore An \perp BN
(c)

$$
\int_{3}^{5} f(x) d x=20 \quad \int_{3}^{7} f(x) d x=14
$$

(i) Ane $=6$ unitv 2
(ii) $\int_{3}^{7} f(x) d x=-6$
(d)

$$
\begin{align*}
V_{i} & =\pi \int_{i}^{2}\left(1-\frac{1}{x}\right)^{2} d x \\
& =\pi \int_{1}^{2}\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right) d x \\
& =\pi\left[x-2 \ln x-\frac{1}{x}\right]_{1}^{2} \tag{3}\\
& =\pi\left\{\left[2-2 \ln 2-\frac{1}{2}\right]-[1-0-1]\right\} \\
& =\pi\left[\frac{3}{2}-2 \ln 2\right] \text { anity }
\end{align*}
$$

Quastion 6
(i)
(i)

$$
\begin{gathered}
P=2 r+x r=21 \\
A=\frac{1}{2} r^{2} x=27 \\
\therefore x=\frac{54}{r^{2}} \\
\therefore 2 r+\frac{54}{r^{2}} \cdot r=21 \\
\therefore 2 r+\frac{54}{r}=21 \\
\therefore 2 r^{2}-21 r+54=0 \\
\therefore 2 r^{2}-9 r-12 r+54=0 \\
\therefore r(2 r-9)-6(2 r-9)=0 \\
\therefore(2 r-9)(r-6)=0 \\
\therefore r=4 \frac{1}{2} \quad r=6 \\
\therefore x=2 \frac{2}{3} \quad x=1 \frac{1}{2}
\end{gathered}
$$

(b)
(i)

$$
\begin{aligned}
& v=x+\frac{900}{x} \\
& v^{\prime}=1-\frac{900}{x^{2}} \\
& v^{\prime \prime}=\frac{1800}{x^{3}}
\end{aligned}
$$

For min value $v^{\prime}=0, v^{\prime \prime}>0$

$$
\text { If } v^{\prime}=0, \quad \begin{aligned}
1-\frac{900}{x^{2}} & =0 \\
\therefore x^{2} & =900 \\
x & =30 \quad(\text { as } x>0)
\end{aligned}
$$

When $x=30, v^{\prime \prime}>0$
\therefore min volue when $x=30$

$$
\begin{aligned}
\min \text { volme } & =30+\frac{400}{30} \\
& =60
\end{aligned}
$$

(ii)

$$
\begin{aligned}
T & =\frac{\text { istece }}{\text { speced }} \\
& =\frac{S}{r}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cojt} & =T \times\left(9000+10 . v^{2}\right) \\
& =\frac{5}{2}\left(9000+10 r^{2}\right) \\
& =105\left(r+\frac{900}{2}\right)
\end{aligned}
$$

min cost occirt when $5=30$ (wsig)
(i))

