

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2010

HSC Mathematics Task 2

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Start each **NEW SECTION** in a separate answer booklet.
- Hand in three separate sections labelled A, B and C.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 72

- Attempt all questions 1-6.
- All answers are to be given in simplest exact form unless specified.

Examiner: P.Bigelow

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$
NOTE:
$$\ln x = \log_e x, x > 0$$

Section A

Question One [12 marks]

- (a) Find a primitive of $3 + x^2$.
- (b) Find the value of $\log_e 6$ correct to two decimal places.
- (c) Find the value of *x* in the following: (i)

(ii)

(d) Find the exact value of:

$$\cos\frac{\pi}{4} + \sin\frac{2\pi}{3}$$

2

2

1

(i)
$$e^{-3x}$$

(ii) $\ln(x+4)$

(iii)
$$x\sin(x+2)$$

(iv)
$$\frac{x}{\cos x}$$

Question Two [12 marks]

(a)	Find the equation of the tangent to the curve $y = 3\log_e x$ at the point (1, 0).	2
(b)	Find (i) $\int \sec^2 3x dx$	8
	(ii) $\int \frac{4}{3+x} dx$	
	(iii) $\int (1-x)^2 dx$	
	$(iv) \int_0^{\ln 4} e^{2x} dx$	
(c)	The graph of $y = F(x)$ passes through (4, 1) and $F'(x) = \frac{2}{\sqrt{x}}$, find $F(x)$.	2

End of Section A

Section B

(Start a NEW answer booklet)

Question Three [12 marks]

(a)

4

- (i) Without using calculus draw a neat sketch of $y = 3\cos 2x$ for $-\pi \le x \le \pi$.
- (ii) On the same set of axes draw the line y = x.
- (iii) How many solutions has the equation $3\cos 2x = x$?
- (b) The following table lists the values of a function for five values of *x*.

x	2	3	4	5	6
f(x)	1.6	2.9	7.6	3.2	0.8

Use these five function values to estimate $\int_{2}^{6} f(x) dx$ by

- (i) the trapezoidal rule.
- (ii) Simpson's rule.

(c) The curves $y = x^2$ and $y^2 = 8x$ intersect at the origin and the point B.

- (i) Find the coordinates of B.
- (ii) Find the area between the curves $y = x^2$ and $y^2 = 8x$.

Question Four [12 marks]

(a) Solve $\cos \theta = -0.3$ for $0 \le \theta \le 2\pi$. [Give your answer in radians correct to two decimal places]

(b) Let
$$f(x) = 2x^3 - 3x^2 - 12x - 15$$
.

- (i) Find the coordinates of the stationary points and determine their nature.
- (ii) Find the coordinates of the point of inflexion.
- (iii) Sketch the graph of y = f(x) clearly indicating the stationary points and the point of inflexion.

2

(c) Show that $f(x) = \frac{1}{1 + \tan x}$ is decreasing for all values of x for which it is defined.

(d)

The diagram shows the graph of the gradient function of the curve y = f(x). For what values of x does f(x) have a local minimum? Justify your answer.

End of Section B

Section C

(Start a NEW answer booklet)

Question Five [12 marks]

- (a) Given $f(x) = \frac{1}{e^{x^2}}$, find (i) f'(x) **3**
 - (ii) f''(x)
- (b) ABCD is a square, M and N are the mid-points of BC and CD respectively. 4

- (i) Prove that triangles ABM and BCN are congruent.
- (ii) Prove that AM and BN are perpendicular.

- (i) What is the area of the shaded region?
- (ii) What is the value of $\int_5^7 f(x) dx$?

The area under the curve $y = 1 - \frac{1}{x}$ between x = 1 and x = 2 is rotated about the *x*-axis. Find in exact form the volume generated.

Question Six [12 marks]

(d)

(a) A sector of a circle has a perimeter of 21 cm and an area of 27 cm^2 .

- (i) Use the information to form a pair of simultaneous equations.
- (ii) Solve these equations to find all values of r and x, which satisfy the information.

3

- (b)
- (i) Find the minimum value of

$$x + \frac{900}{x}$$
 for $x > 0$.
[show all working]

(ii) A transport company operates a shipping service between port A and port B, at a constant speed of *v* km/h. The distance between the ports is S km.

For a given v, the cost *per hour* of running the ship is $\$(9000+10v^2)$.

Find the value of *v* which minimizes the cost of the trip.

End of Section C End of Exam

Question One:

- a) $\int 3 + x^2 \, dx = 3x + \frac{x^3}{3} + C$
- b) $\log_e 6 = 1.79$

c)

(i)
$$\frac{x-1}{x+2} = \frac{4}{5}$$

 $5x - 5 = 4x + 8$
 $x = 13$

(ii)
$$x + 7 = \frac{1}{2}(3x)$$

 $2x + 14 = 3x$
 $x = 14$

d)
$$\cos\frac{\pi}{4} + \sin\frac{2\pi}{3} = \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}$$

e)

. .

(i)
$$\frac{d}{dx}(e^{-3x}) = -3e^{-3x}$$

(ii)
$$\frac{d}{dx}\ln(x+4) = \frac{1}{x+4}$$

(iii)
$$\frac{d}{dx}[x\sin(x+2)] = \sin(x+2) + x\cos(x+2)$$

(iv)
$$\frac{d}{dx} \left[\frac{x}{\cos x} \right] = \frac{\cos x + x \sin x}{\cos^2 x}$$

Question Two:

a)
$$y = 3 \log_e x$$

 $y' = \frac{3}{x}$
At $x = 1$,
 $y' = \frac{3}{1} = 3$
The equation of the tangent is
 $y - 0 = 3(x - 1)$
 $\therefore y = 3x - 3$

b)

(i)
$$\int \sec^2 3x \, dx = \frac{1}{3} \tan 3x + C$$

(ii)
$$\int \frac{4}{3+x} dx = 4 \ln(3+x) + C$$

(iii)
$$\int (1-x)^2 \, dx = -\frac{(1-x)^3}{3} + C$$

(iv)
$$\int_{0}^{\ln 4} e^{2x} dx = \left[\frac{1}{2}e^{2x}\right]_{0}^{\ln 4}$$
$$= \frac{1}{2}e^{2\ln 4} - \frac{1}{2}e^{0}$$
$$= 8 - \frac{1}{2}$$
$$= 7\frac{1}{2}$$

•

c)
$$F(x) = \int \frac{2}{\sqrt{x}} dx$$
$$= 2 \int x^{-1/2} dx$$
$$= 2 \times 2x^{1/2} dx$$
$$= 2 \times 2x^{1/2} + C$$
$$F(x) = 4\sqrt{x} + C$$
$$At (4, 1),$$
$$1 = 4\sqrt{4} + C$$
$$1 = 4 \times 2 + C$$
$$\therefore C = -7$$
$$\therefore F(x) = 4\sqrt{x} - 7$$

Section B $\chi = 2$ when x = 2 $y = 2^2$ Question 3 a)i 9 2.4 y=300522 \mathcal{O} . (15x - x2)dx s, أ۱ -7 -712 T12 $\boldsymbol{\kappa}$ $\frac{1}{2}$ $\overline{\mathbb{B}}_{\mathfrak{X}}^{\dot{\mathfrak{Y}}_2} - \mathfrak{X}^2$ dr $\frac{\overline{83^{3/2}}}{3/2}$ 1) <u>7=x</u> 3 Ö $4\sqrt{2} x^{3i_2}$ -2 m 3 $\widehat{}$ 3 0 452, 2312 $\int f(x) dx = h = 6 - 2 = 1$ *р)*; <u>2³</u> 0 - (3 3 $\frac{-1}{2} = \frac{1}{2} \left[(1.6+0.8) + 2(2.9+7.6+3.2) \right]$ 452×8 <u>8</u> 3 -----3 = 14-9 $\frac{16}{3} - \frac{8}{3}$ 0 ii (fa) dx 8 units2 3 2 $\frac{-1}{3} \left[(1.6 + 0.8) + 4(2.9 + 3.2) \right]$ +2(7.6) _____14____ 2 $\frac{y = x^2}{y^2 = \partial x}$ C)ĭ $(x^2)^2 = 8x$ T'= 8x 24-82 =0 $\chi(\chi^3 - R) = O$ $\frac{x^3 - 8 = 0}{x^3 = 8}$ ŝ- X=○,

Question 4 $0 \frac{1}{2}$ Ì X f'(a) - 6+6 \bigcirc a) $\cos \Theta = -0.3$ Since concavity changes (12, -21'12) is a horizontal $\text{for } 0 \leq \Theta \leq 2\pi$ $S/A \Theta = 1.88, 4.41 (2dp) point of inflexion.$ 2 ີ່ເພື່ b) $f(x) = 2x^3 - 3x^2 - 12x - 15$ i) $f(x) = 6x^2 - 6x - 12$ <u> --3 -2</u> -1 2 3 st pts. f'(x) = C-10 -15 $0 = 6a^2 - 6a - 12$ $O = x^2 - x - 2$ O = (X - 2)(X + 1) $(1 + tanx)^{-1}$ C) f(x) = $f'(x) = -1 (1 + tanx)^2 - sec^2 x$ $\therefore x=2, x=-1$ f(x) = -35 f(x) = -8 $\frac{-Sec^2x}{(1+tanx)^2}$ X 2 3 - local as anything squared is always positive you have f'(x) = |x| = 024 minimum |-2|-1|0| ; local X fai 1241 n f'(x) = -x + t-12 maximum 9 which will always be negative 3. f(x) is decreasing for all values of x for which it is defined. ii) f''(x) = 12x - 6f''(x) = 0 for p. 0. i 0 = 12x - 6j. O = 2x = 1 -2x = 1x=12 when x = 1/2 $f(x) = -21^{1/2}$: (12, -2112) is a possible point of inflexion

d)2 6 . gradient is positive $\chi \angle 2$ x=2, x=6 zero gradient is stationary point $2\langle z < 6$ gradient is negative x > 6 gradient is positive 222<6 possible graph of f(z) G 4 6 2 \therefore f(x) is a local minimum when x = 6for local minimum godient needs to go from negative to positive ie this happens OR 0 x=6.

SECTIONC

$$= -2e^{-\pi^{2}} + 4\pi^{2}e^{-\pi^{2}}$$

$$= (4\pi e^{2} - 2)e^{-\pi^{2}}$$

A

D

(i)
$$AB = BC$$
 (sider of square)
 $BM = \frac{1}{2}DC = \frac{1}{2}CD = CN$ ($BC = CD$ sider of square)
 $\angle ABM = \angle BCN = PO^{\circ}$ ($argls + square$)
 $\angle ABM = \Delta BCN$ (SAS)
(i) $\angle PBM = \angle ABC$ ($Common$)
 $\angle PMB = \angle AMB$ ($Common$)
 $= \langle PNC$ ($commerging \Delta r$ in $\equiv \Delta s$)

$$(d) \quad V_{i} = T_{i} \int_{1}^{2} \left(1 - \frac{1}{2}\right)^{2} dx$$

$$= T_{i} \int_{1}^{2} \left(1 - \frac{2}{2x} + \frac{1}{2x}\right) dx$$

$$= T_{i} \int_{1}^{2} x - 2 \ln x - \frac{1}{2} \int_{1}^{2} 3$$

$$= T_{i} \left[\left[2 - 2 \ln z - \frac{1}{2}\right] - \left[1 - 0 - 1\right] \right]$$

$$= T_{i} \left[\left[\frac{3}{2} - 2 \ln 2\right] \text{ anist}^{3}$$

(b) (i)
$$V = \chi + \frac{960}{\chi}$$

 $V = 1 - \frac{900}{\chi^2}$

$$V^{\mu} = \frac{1800}{2^{3}}$$

For min value
$$V' = 0$$
, $V'' > 0$
 $FF = V' = 0$, $1 - \frac{900}{\pi^2} = 0$
 $= \chi^2 = 900$
 $\chi = 30$ (ar $\chi > 0$)

in min volue when
$$\chi = 30$$

min volue = $30 + \frac{900}{30}$
= 60

$$\begin{array}{l} (ii) \quad T = \frac{Differe}{speech} \\ = \frac{5}{\sqrt{s}} \end{array}$$

$$Golf = T \times (9000 + 10 x^{2})$$

= $\frac{s}{r} (9000 + 10 x^{2})$
= $10 s (r + \frac{900}{r})$

min cost occurs when r = 30 (using (i))