

SYDNEYBOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2011
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 70

- Attempt questions 1 - 3
- All questions are not of equal value.
- Unless otherwise directed give your answers in simplest exact form.

Examiner: A.M.Gainford

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec ^{a x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

START A NEW BOOKLET

Question 1. (22 marks)

Marks

(a)

Evaluate $\left(\frac{49}{16}\right)^{-\frac{3}{2}}$, as a common fraction in simplest form.
(b) (i) Express 1.352 radians in degrees, correct to the nearest minute.
(ii) Find $\sin 5$, correct to four significant figures.
(c) Differentiate
(i) $3 x^{2}-5 x+7$
(ii) $\frac{3}{x^{4}}$
(iii) $\quad\left(x^{2}-1\right)^{5}$
(iv) $\quad x^{2}(1-x)^{4}$
(d) Consider the function $y=3 \sin 2 x$.
(i) State the amplitude and period of the function.
(ii) Sketch the graph of the function in the domain $0 \leq x \leq 2 \pi$
(e) (i) Find $\int\left(3 x^{2}+4 x-7\right) d x$
(ii) Evaluate $\int_{0}^{3}\left(2 x^{2}+x\right) d x$
(iii) Find $\int \frac{1-x^{3}}{x^{2}} d x$

START A NEW BOOKLET

Question 2 (25 marks)
(a) (i) Find $\log _{3} 81$.
(ii) Given that $\log _{4} 9=1 \cdot 585$, correct to 3 decimal places, find $\log _{4} 144$.
(b)

A car windscreen wiper sweeps out the shape $R S T U$, where $R S$ and $U T$ are arcs of circles centre O. Measurements are as shown in the figure.
(i) Calculate the perimeter of RSTU.
(ii) Calculate the area RSTU.
(c)

x	1	2	3	4	5
$f(x)$					

(i) Copy and complete the table for $f(x)=\frac{3 \sqrt{x}}{x+1}$, correct to 4 decimal places.
(ii) Using Simpson's Rule with the above function values find an estimate for $\int_{1}^{5} \frac{3 \sqrt{x}}{x+1} d x$, correct to 4 significant figures.
(d) Find that part of the domain for which $f(x)=2 x^{3}+3 x^{2}-36 x+1$ is a decreasing function.
(e) Given three points $A(0, \sqrt{3}), B(3,0), C(2,-\sqrt{3})$:
(i) Draw a diagram to represent this situation.
(ii) Show that $A B$ and $B C$ meet at right angles.
(iii) If D is the point $(1,0)$, show that A, B and C lie on a circle with centre D.
(f) In the adjoining figure P and Q are the midpoints of $A B$ and $A C$ respectively.

Prove that $P Q \| B C$, and that $P Q$ is half the length of $B C$.

(g) The area under the curve $y=1-x^{2}$ from $x=0$ to $x=1$ is rotated about the x-axis. Find the volume of the solid of revolution generated.

Question 3 (23 Marks)
(a) Two identical urns each contain a number of numbered pool balls. Urn A contains

Marks

 three balls numbered 1, 2, 3, whereas Urn B contains five balls numbered 1, 3, 5, 7, 9.A ball is drawn at random from each urn.
(i) What is the probability that both balls have the same number?
(ii) What is the probability that at least one ball is a 3 ?
(b) The diagram shows the graph of a certain derivative, $y=f^{\prime}(x)$.

(i) Copy this diagram to your Writing Booklet.
(ii) On the same set of axes, draw a sketch of a possible $f(x)$.
(c) Consider the curves $y=x^{2}-4$ and $y=2-x^{2}$.
(i) Sketch the graphs of the curves on the same axes, and state the x-values of the points of intersection.
(ii) Hence find the area bounded by the two curves, between their points of intersection.
(d) Given the curve $y=x^{3}-6 x^{2}-15 x$ where $-3 \leq x \leq 9$.
(i) Find any stationary points, and points of inflexion.
(ii) Sketch the curve, showing its principal features.
(iii) State the maximum and minimum values of y in the domain.
(e) An isosceles right-triangle based prism, with dimensions $x \mathrm{~cm}$ and $y \mathrm{~cm}$ (as shown), is to have a volume of $1000 \mathrm{~cm}^{3}$.

(i) Write equations for the volume (V) and surface area (S) of the figure.
(ii) Show that the surface area $S=x^{2}+\frac{2000(2+\sqrt{2})}{x}$.
(iii) Find the value of x (correct to one decimal place) so that the surface area is a minimum.

This is the end of the paper.

Question 1. (22 marks)
(a) Evaluate $\left(\frac{49}{16}\right)^{-\frac{3}{2}}$, as a common fraction in simplest form.

$$
\left(\frac{16}{49}\right)^{\frac{3}{2}}=\frac{4^{3}}{1^{3}}=\frac{64}{343}^{(2)} \text { Marks }
$$

(b) (i) Express 1.352 radians in degrees, correct to the nearest minute.
(ii) Find $\sin 5$, correct to four significant figures.

$$
\begin{aligned}
& c=\frac{180}{\pi} \\
& i=10
\end{aligned}
$$

(c) Differentiate
(i) $\frac{d}{d x}\left(3 x^{2}-5 x+7\right)=6 x-5$
(1)
(ii) $\frac{d}{d x}\left(\frac{3}{x^{4}}\right)=\frac{d}{d x}\left(3 x^{-4}\right)=-12 x^{-5}=-\frac{12}{x^{5}}$ (2)
(iii) $\frac{d}{d x}\left(x^{2}-1\right)^{5}=5\left(x^{2}-1\right)^{4} \times 2 x=10 x\left(x^{2}-1\right)^{4}$

$$
\pi^{c}=180^{\circ}
$$

$$
\begin{equation*}
1.352 \times \frac{180}{\pi}=11 \tag{1}
\end{equation*}
$$

(iv)

$$
\begin{align*}
\frac{d}{d x}\left(x^{2}-1\right) & =b(x-1) \tag{3}\\
\frac{d}{d x} x^{2}(1-x)^{4} & =x^{2} \times 4(1-x)^{3} \times-1+(1-x)^{4} \times 2 x \\
& =2 x(1-x)^{3}[-2 x+(1-x)]=2 x
\end{align*}
$$

$$
\begin{aligned}
& =x^{2} \times 4(1-x) \times-1+(1-x) \times 2 x \\
& =2 x(1-x)^{3}[-2 x+(1-x)]=2 x(1-x)[-3 x+1]
\end{aligned}
$$

(d) Consider the function $y=3 \sin 2 x$.
amplitude $\frac{30}{\text { perish }}=\frac{21}{n}=\frac{21}{2}=\pi 0$

$$
\text { pelitude } \frac{3 n}{n}=\frac{2 \pi}{2}=1
$$

(i) State the amplitude and period of the function.
(e)
(ii) Sketch the graph of the function in the domain $0 \leq x \leq 2 \pi$
(i) Find
(ii) Evaluate $\int_{0}^{3}\left(2 x^{2}+x\right) d x$

$$
\begin{aligned}
\int\left(3 x^{2}+4 x-7\right) d x & =\frac{3 x^{3}}{3}+\frac{4 x^{2}}{2}-7 x+0^{3} \\
\text { ate } \int\left(2 x^{2}+x\right) d x & =x^{3}+2 x-7 x
\end{aligned}
$$

(iii) Find $\int \frac{1-x^{3}}{x^{2}} d x$

$$
=\int \frac{1}{x^{2}}-\frac{x^{3}}{x^{2}}
$$

$$
=\int_{-1}^{-2} x-x d x
$$

$$
\begin{aligned}
& =\frac{x^{-1}}{-1}-\frac{x^{2}}{2}+0 \\
& =-\frac{1}{x}-\frac{x^{2}}{2}+0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{2 x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{3} \\
= & \left(\frac{2}{3} \times 2 \frac{9}{9}+\frac{9}{2}\right)-(0+0) \\
= & 18+4 \frac{1}{2} \\
= & 22 \frac{1}{2}
\end{aligned}
$$

Question 2
ai. $\log _{3} 81=4$
ii

$$
\begin{align*}
\log _{4} 144 & =\log _{4} 9+\log _{4} 16 \text { (1) } \tag{1}\\
& =\log ^{2} 85+\log _{4} 4^{2} \\
& =1.585+2 \log _{4} 4 \\
& =1.5855+2 \\
& =3.585 \tag{3}
\end{align*}
$$

b. $120^{\circ}=2 \pi / 3$
i.

$$
\begin{aligned}
\text { i } & =2(50-20)+20 \times 2 \pi / 3+50 \times 2 \pi / 3 \\
& =206: 61 \mathrm{~cm}-(2 d p)-(2) \\
\text { ii } A & =\left(1 / 2 \times 50^{2} \times 1 / 3\right)-\left(1 / 2 \times 20^{2} \times 2 \pi / 3\right) \\
& =2199 \cdot 11 \mathrm{~cm}^{2}(2 d p)
\end{aligned}
$$

c.

x	1	2	3	4	5
$f(x)$	1.5	$1.4142)$	3.2990	1.2	1.1180

ii $h=\frac{5-1}{4}=\frac{4}{4}=1$

$$
\begin{aligned}
& \int_{1}^{5} \frac{3 \sqrt{x}}{x+1} d x \\
& \div \frac{1}{3}[1.5+1.1180+4(1.4142+1.2) \\
& +2(1.2990)]
\end{aligned}
$$

$$
\begin{equation*}
=5.224(4 \text { sig fig }) \tag{3}
\end{equation*}
$$

d. decreasing $\therefore f^{\prime}(x)<0$

$$
\begin{equation*}
f^{\prime}(x)=6 x^{2}+6 x-36 \tag{127}
\end{equation*}
$$

st at $f^{\prime}(x)=0$

$$
\begin{aligned}
\therefore M_{O} A B & =\frac{\sqrt{3}-0}{0-3} \\
& =\frac{-\sqrt{3}}{3}
\end{aligned}
$$

Mof $B C=\frac{O+\sqrt{3}}{3-2}$

$$
=\sqrt{3}
$$

$$
\begin{aligned}
M_{1} \times M_{2} & =-\frac{\sqrt{3}}{3} \times \sqrt{3} \\
& =-3 / 3 \\
& =-1
\end{aligned}
$$

$\therefore A B \square B C$
iii

$$
\begin{aligned}
\operatorname{deg} B D & =\sqrt{(3-1)^{2}+(0-0)^{2}} \\
& =\sqrt{2^{2}} \\
& =2
\end{aligned}
$$

\therefore centre $(1,0)$ radius 2
circle ign:

$$
(x-1)^{2}+y^{2}=4
$$

check A :

$$
(0-1)^{2}+(\sqrt{3})^{2}
$$

$$
\begin{aligned}
& =1+3 \\
& =4
\end{aligned}
$$

Check B:

$$
\begin{aligned}
& (3-1)^{2}+0^{2} \\
= & 2^{2} \\
= & 4
\end{aligned}
$$

Check C:

$$
\begin{aligned}
& (2-1)^{2}+(-\sqrt{3})^{2} \\
& =1+3 \\
& =4
\end{aligned}
$$

$\therefore A, B, C$ lie on a circle with centre D. (2)
f.

$\triangle A P Q$ III $\triangle A B C$ as $\angle A$ is common $a \frac{A P}{A B}=\frac{1}{2}=\frac{A Q}{A C}$
"Two triangles are similar If there is an equal angle a the sides making this angle "are in the same ratio."

$$
\begin{aligned}
& \therefore \angle A P Q=\angle A B C \\
& \therefore \angle A Q P=\angle A C B
\end{aligned}
$$

(corresponding L's in III Δ 's)
$\therefore P Q \| B C$.

$$
\begin{align*}
& \frac{P Q}{B C}=\frac{A P}{A B} \quad \begin{array}{c}
\text { Slides in same } \\
\text { ratio) }
\end{array} \\
& \frac{P Q}{B C}=\frac{1}{2} \\
& P Q=1 / 2 B C
\end{align*}
$$

$$
\text { g. } \begin{align*}
& V=\pi \int_{0}^{1}\left(1-x^{2}\right)^{2} d x \tag{1}\\
= & \pi \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
& =\pi\left[x-\frac{2 x^{3}}{3}+\frac{x^{5}}{5}\right]_{0}^{1} \tag{2}\\
& =\pi\left[\left(1-\frac{2}{3}+\frac{1}{5}\right)-0\right] \\
& =\frac{8 \pi}{15} \tag{3}
\end{align*}
$$

Solns $2 v_{\text {nit }} y_{r} 12 \quad / 23$
3 (a)

$$
{\left.\underset{A}{\left[\begin{array}{c}
1,2 \\
3
\end{array}\right.}\right)}_{\beta}^{\beta} \underset{\left(\left.\begin{array}{c}
1,3,5 \\
7,9
\end{array} \right\rvert\,\right.}{ }
$$

(i) $P(1,1$ or 3,3$)$

$$
\begin{align*}
& =\frac{1}{3} \times \frac{1}{5}+\frac{1}{3} \times \frac{1}{5} \\
& =\frac{1}{15}+\frac{1}{15} \tag{2}\\
& =\frac{2}{15}
\end{align*}
$$

(ii) P (at least 1 ball is a 3)

$$
\begin{aligned}
& =P(3, \overline{3} \text { or } \overline{3}, 3) \text { or } 3,3 \text {) or } 1-P(5,3) \\
& =\frac{1}{3} \times \frac{4}{5}+\frac{2}{3} \times \frac{1}{5}+\frac{1}{3} \times \frac{1}{5}=2,2,345 \\
& =\frac{4}{15}+\frac{2}{15}+\frac{1}{15} \\
& =\frac{7}{15}
\end{aligned}
$$

b)

Min TPot $x=0$ MaxTP at $x=2$
PHI at $x=4, ~, ~$
$\begin{aligned} f^{\prime \prime}(x) & =0 \text { at } x=18 \\ & \Rightarrow \text { charge in comm }\end{aligned}$
$\prime(x)=0$ ot $x=2.9$
\Rightarrow chamatim
$3(c)$

$$
\begin{align*}
& y=x^{2}-4 \tag{1}\\
& y=2-x^{2} \tag{2}
\end{align*}
$$

(i)

Points of intergection. solve simultaneously

$$
\begin{gather*}
\Rightarrow x^{2}-4=2-x^{2} \\
2 x^{2}=6 \\
x^{2}=3 \tag{2}\\
x= \pm \sqrt{3}
\end{gather*}
$$

(ii) $A=\int_{-\sqrt{3}}^{\sqrt{3}}\left(2-x^{2}\right)-\left(x^{2}-4\right) d x$

$$
\begin{align*}
& =\int_{-\sqrt{3}}^{\sqrt{3}}\left(-2 x^{2}+6\right) d x \\
& \left.=\left[-\frac{2 x^{3}}{3}+6 x\right]_{-\sqrt{3}}^{\sqrt{3}}=\frac{\left(-2 x(+\sqrt{3})^{3}\right.}{3}+6 x+\sqrt{3}\right) \\
& \left.=\frac{-2 \sqrt{3}}{3}+6 \sqrt{3}-\frac{2 \times(\sqrt{3})^{3}}{3}+6 x \sqrt{3}\right) \tag{2}\\
A & =4 \sqrt{3}) \\
A & =12 \sqrt{3}^{3}=8 \sqrt{3} \text { s.units. }
\end{align*}
$$

(d) $\quad y=x^{3}-6 x^{2}-15 x, \quad-3 \leqslant x \leqslant 9$
(i)

$$
\begin{aligned}
& y^{\prime}=3 x^{2}-12 x-15 \\
& y^{\prime \prime}=6 x-12
\end{aligned}
$$

For tip's $y^{\prime}=0 \Rightarrow 3\left(x^{2}-4 x-5\right)=0$

$$
3(x-5)(x+1)=0
$$

$$
\Rightarrow x=5 \text { or }-1
$$

When $\begin{aligned} x & =5, y=-100 \\ x & =-1, y=8\end{aligned} \quad \rightarrow(5,-100)$.

$$
x=-1, y=8 \rightarrow(-1,8)
$$

Type of St. Point

$$
\begin{aligned}
& y^{\prime \prime}(5)=30-12>0 \Rightarrow \frac{\min \text { at }}{(5,-100)} \\
& y^{\prime \prime}(-1)=-6-12<0 \Rightarrow \frac{\max }{}(-1,8)
\end{aligned}
$$

Points of Inflexion When $y^{\prime \prime}=0$
(ii)

$$
\Rightarrow 6 x-12=0
$$

$$
x=2
$$

(Change in at $(2,-46)$
$(-3,-36)$

3.(d)

$$
\left.\left.\begin{array}{rl}
\text { (iii) When } x & =-3, y=-36 \\
x & =9, y=108
\end{array}\right] \begin{array}{rl}
\text { End } \\
\text { values } \\
x & =-1, y
\end{array}\right)=8 \text { Turn. Paints }
$$

$3(e)$

(i)

$$
\begin{align*}
V & =\frac{x^{2}}{2} \cdot y \tag{1.}\\
S & =x^{2}+\sqrt{2} x y+2 x y \\
& =x^{2}+(2+\sqrt{2}) x y \tag{2}
\end{align*}
$$

(ii) Show $S=x^{2}+\frac{2000(2+\sqrt{2})}{x}$

Now $\frac{x^{2} y}{2}=1000$

$$
\begin{equation*}
\Rightarrow \quad y=\frac{2000}{x^{2}} \tag{3}
\end{equation*}
$$

Sub (3) in (2)

$$
\begin{aligned}
& \text { Sub (3) } \ln (2) \\
& \Rightarrow S=x^{2}+(2+\sqrt{2}) x \cdot \frac{2000}{x^{2}} \\
& \quad S=x^{2}+\frac{2000(2+\sqrt{2})}{x}
\end{aligned}
$$

(iï)

$$
S^{\prime}=2 x-\frac{2000(2+\sqrt{2})}{x^{2}}
$$

For turn.pto, $S^{\prime}=0 \Rightarrow 2 x-\frac{2000(2+\sqrt{2})}{x^{2}}=0$

$$
\begin{aligned}
2 x^{3} & =2000(2+\sqrt{2}) \\
x^{3} & =1000(2+\sqrt{2}) \\
x & =15.0578 \\
x & =15.1 \text { to } 1 \mathrm{dp}
\end{aligned}
$$

$$
\begin{aligned}
& 3(e)(\text { iii })(\text { cont }) \\
& S^{\prime \prime}=2+\frac{4000(2+\sqrt{2})}{x^{3}} \\
& S^{\prime \prime}(15.1)
\end{aligned}=2+\frac{4000(2+\sqrt{2})}{(15.1)^{3}}>0
$$

ie. SA. is a minimum when $x=15.1$

