SYDNEY BOYS HIGE SCHOOL

MOORE PARK, SURRY HILLS

2012

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 66

- Attempt questions 1-6.
- All questions are not of equal value.
- Unless otherwise directed give your answers in simplest exact form.

Examiner: P.R.Bigelow

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : ln } x=\log e x, x>0
\end{aligned}
$$

Section A (20 Marks)

START A NEW BOOKLET

Question 1. (5 marks)
Indicate which of the answers $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D is the correct answer. Write the answer Marks in your answer booklet.
(a) $\frac{d}{d x}(\cos 3 x)$ equals :-

A: $\quad \frac{1}{3} \sin 3 x$

B: $\quad 3 \sin 3 x$
C: $\quad-\frac{1}{3} \sin 3 x$
D: $\quad-3 \sin 3 x$
(b)

The diagram shows $y=f(x)$. At point A:
A: $\quad y^{\prime}>0, y^{\prime \prime}>0$
B: $\quad y^{\prime}<0, y^{\prime \prime}<0$
C: $\quad y^{\prime}>0, y^{\prime \prime}<0$
D: $\quad y^{\prime}<0, y^{\prime \prime}>0$
(c) $4 \ln \sqrt{e}$ equals:-

A: $2 \longrightarrow 1$
B: $\quad 2 e$
C: 1
D: $\sqrt{2}$
(d) $\int_{-3}^{3} x^{3} d x$ equals:- $\quad 1$

A: $\quad\left|\int_{-3}^{0} x^{3} d x\right|+\int_{0}^{3} x^{3} d x$
B: $\quad 2 \int_{0}^{3} x^{3} d x$
C: 0
D: $\frac{81}{2}$
(e) If $f(x)=\sin x$, then $f^{\prime}\left(-\frac{\pi}{3}\right)$ is:-

A: $\frac{\sqrt{3}}{2}$
B: $\quad \frac{1}{2}$
C: $\quad-\frac{1}{2}$
D: $\quad-\frac{\sqrt{3}}{2}$

Question 2 (15 marks)

Marks

(a) Differentiate the following:
(i) $y=\cos 4 x$
(ii) $y=e^{-4 x}$
(iii) $\quad f(x)=x \tan x$
(iv) $f(x)=\frac{\sin x}{x}$
(v) $y=\cos ^{3} 2 x$
(b) Find
(i) $\int \frac{d x}{x+3}$
(ii) $\int_{0}^{1} \frac{3}{e^{2 x}}$
(c) Use Simpson’s Rule with three function values to find an approximation to

$$
\int_{0}^{1} \sqrt{1+x^{3}} d x
$$

(Answer correct to two decimal places.)
(d) The diagram shows the graphs of $y=4-x^{2}$ and $y=3 x$.

(i) Find the x-values of the points of intersection A and B.
(ii) Calculate the area of the region between the two graphs.

Section B (20 Marks)

START A NEW BOOKLET
Question 3 (10 Marks)
Marks
(a) Given $f(x)=3 \ln (2+x)$ find $f^{\prime}(4)$.
(b) Find $\int_{0}^{\frac{\pi}{4}} \cos 2 x d x$.
(c) Find the value of $\sqrt{e^{3}}$ correct to three significant figures.
(d) Use the identity $\sec ^{2} x=1+\tan ^{2} x$ to evaluate

$$
\int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x
$$

(e) In the diagram $\angle B A C=30^{\circ}$ and a circular arc of radius 6 cm , centre A, is constructed from B to C.

(i) Find the area of $\triangle A B C$.
(ii) Calculate the exact area of the shaded segment.

Question 4 (10 Marks)
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ where $f(x)=\sin \left(x^{2}\right)$.
(b) Given the function $y=x^{3}-9 x+3$
(i) Find the co-ordinates of the stationary points, and determine their nature.
(ii) Find the co-ordinates of any points of inflexion.
(iii) Sketch the curve in the domain $-4 \leq x \leq 4$.
(iv) What is the greatest value of $x^{3}-9 x+3$ in the domain $-4 \leq x \leq 4$?

Section C (26 Marks)

START A NEW BOOKLET

Question 5 (10 Marks)
(a) For the function $f(x)=2 \cos x+1$
(i) State the range of $f(x)$.
(ii) Sketch $f(x)=2 \cos x+1$ for $0 \leq x \leq 2 \pi$.
(iii) Calculate the exact area of the region in the first quadrant bounded by the curve $f(x)=2 \cos x+1$, the y-axis, and the line $y=1$.
(b) (i) Sketch $y=\log _{e} x$. Mark on the curve the point P where $x=e$.
(ii) Find, in general form, the equation of the tangent to the curve $y=\log _{e} x$ at the point P.
(iii) Using the sketch of $y=\log _{e} x$ find the values of k for which $k x=\log _{e} x$ has at least one real root.

Question 6 (16 Marks)

(a) Simplify $e^{2 \ln 5}$.

The diagram shows the graph of the gradient function of the curve $y=f(x)$.
(i) What type of point occurs on $y=f(x)$ at $x=-2$? Justify your answer.
(ii) If $f(-2)=5$ and $f(2)>0$ sketch $y=f(x)$.
(c) On the same (new) diagram:
(i) Sketch $y=x$ and $y=x^{2}$ in the first quadrant.
(ii) Mark the points of intersection and indicate, by shading, the area between the two graphs.
(iii) Find the volume generated when this area is rotated about the x -axis.
(Question continued overleaf)
(d)

The diagram shows the part of the circle $x^{2}+y^{2}=64$ in the first quadrant. The point $P(x, y)$ lies on the circle, centre O.
M is on the x -axis at $x=4, N$ is on the y-axis at $y=2$, and $\angle M O P=\theta$ in radians.
(i) Show that the area, A, of the quadrilateral $O M P N$ is given by

$$
A=16 \sin \theta+8 \cos \theta
$$

(ii) Find the value of $\tan \theta$ for which A is a maximum.
(iii) Hence find in surd form the co-ordinates of P for which A is a maximum.

This is the end of the paper.

201280 TASK 2. YRIQ
SECTION
a) D
b) B
c) A
d) C
e) $B \cdot V$
2. a) i) $-4 \sin 4 x$
11) $-4 e^{-4 x}$
iii) $\tan x+x \sec ^{2} x$
v) $\frac{x \cos x-\sin x}{x^{2}}$
v)

$$
\begin{aligned}
& 3(\cos 2 x)^{2}(-2 \sin 2 x) \\
& =-6 \cos ^{2} 2 x \sin 2 x .
\end{aligned}
$$

b)

$$
\text { i) } \begin{aligned}
\ln (x+3) & +c \\
i i) & \begin{aligned}
3 \int_{0}^{1} e^{-2 x} \cdot d x & =3\left[-\frac{1}{2} e^{-2 x}\right]_{0}^{1} \\
& =-\frac{3}{2} e^{-2}-\left(-\frac{3}{2} e^{0}\right) \\
& =3 / 2\left(1-\frac{1}{e^{2}}\right)
\end{aligned}
\end{aligned}
$$

c) $h=\frac{b-a}{n}=\frac{1-0}{2}-\frac{1}{2} \quad \frac{x}{n} \cdot \frac{0}{1} \frac{0.5}{\sqrt{1.25}} \frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& \int_{0}^{\sqrt{1+x^{3}}}=\int_{a}^{b}=\frac{h}{3}(40+4 n+4(\text { yedd } 1 / 2 \text { yeven)) } \\
&==1(1 \pm \sqrt{2}+1 \sqrt{10125})) . \\
&=1.1 .10947
\end{aligned}
$$

d)i)

$$
\begin{array}{r}
\text { i) } \begin{array}{r}
=4-x^{2}=3 x \\
x^{2}+3 x-4=0 \\
(x-1)(x+4)=0 \\
\text { P.O.I B(} 1,3), A(-4,-12)
\end{array} \text {. }
\end{array}
$$

ii)

$$
\begin{array}{rl}
\int_{-4}^{1} & 4-x^{2}-3 x \cdot d x . \\
& =\left[4 x-x^{3} / 3-\frac{3}{2} x^{2}\right]_{-4}^{1} \\
& =[4-1 / 3-3 / 2]-\left[-16+\frac{44}{3}-\frac{48}{2}\right] \\
& =2 \frac{1}{6}--18 \frac{2}{3} \\
& =20^{5 / 6}
\end{array}
$$

3 (a)

$$
\begin{aligned}
f(x) & =3 \ln (2+x) \\
f^{\prime}(x) & =\frac{3}{2+x} \\
f^{\prime}(4) & =\frac{3}{2+4} \\
& =\frac{1}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \cos 2 x \cdot d x \\
& =\left[\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{2}\left(\sin \frac{\pi}{2}-\sin 0\right) \\
& =\frac{1}{2}
\end{aligned}
$$

(c) $\sqrt{e^{3}}=4.48$ (3 SIG.FIG.)
(d)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \tan ^{2} x \cdot d x \\
& =\int_{0}^{\frac{\pi}{4}} \sec ^{2} x-1 \cdot d x \\
& =[\tan x-x]_{0}^{\frac{\pi}{4}} \\
& =\left(1-\frac{\pi}{4}\right)-(0-0) \\
& =1-\frac{\pi}{4}
\end{aligned}
$$

(e)(i) Area $\triangle A B C=\frac{1}{2} \cdot 6^{2} \cdot \sin 30$

$$
=9 \mathrm{~cm}^{2}
$$

(ii) A rea of shaded $=\frac{1}{2} r^{2} \theta-9$

$$
=\frac{1}{2} \cdot 6^{2} \cdot \frac{\pi}{6}-9
$$

$$
=3 \pi-9
$$

4 (a)

$$
\text { a) } \begin{aligned}
f(x)= & \sin \left(x^{2}\right) \quad(C \text { Limi Pule }) \\
b^{\prime}(x)= & 2 x \cdot \cos \left(x^{2}\right) \\
b^{\prime \prime}(x)= & 2 x \cdot-2 x \sin \left(x^{2}\right) \\
& +\cos \left(x^{2}\right) \cdot 2 \text { (Prod. Rule) } \\
= & 2 \cos \left(x^{2}\right)-4 x^{2} \sin \left(x^{2}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { 3) } y=x^{3}-9 x+3 \\
& y^{\prime}=3 x^{2}-9 \\
& \text { for } 5 \operatorname{sectats} y^{\prime}=0 \\
& \therefore 3\left(x^{2}-3\right)=0 \\
& \quad x= \pm \sqrt{3}
\end{aligned}
$$

TVest in $y^{\prime \prime}=6 x$
at $x=\sqrt{3} ; y^{\prime \prime}>0 \therefore \mathrm{~min}$
$\therefore(\sqrt{3}, 3-6 \sqrt{3}) \mathrm{mCN}$
Simiarly $\frac{(-\sqrt{3}, 3+6 \sqrt{3}) m a x}{}$.
P. O.I at $x=0$ and
convarity charge. $(0,3)$

(IV) Clecorly max value of function in givien domain $\dot{\infty}$ at $x=4$

SECTION C
Question 5
(a) i)

$$
\begin{aligned}
-1 & \leqslant \cos x \leqslant 1 \\
-2 & \leqslant 2 \cos x \leqslant 2 \\
-1 & \leqslant 2 \cos x+1 \leqslant 3 \\
R: \quad-1 & \leqslant y \leqslant 3
\end{aligned}
$$

ii)

$$
\begin{aligned}
& f(x)=2 \cos x+1 \text { for } 0 \leqslant x \leqslant 2 \pi \\
& a=2 \\
& p=\frac{2 \pi}{1}
\end{aligned}
$$

iii)

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{2}}(2 \cos x+1-1) d x \\
& =\int_{0}^{\frac{\pi}{2}} 2 \cos x d x \\
& =[2 \sin x]_{0}^{\frac{\pi}{2}} \\
& =2 \sin \frac{\pi}{2}-2 \sin 0 \\
& =2(1) \\
& =2 \text { units }^{2}
\end{aligned}
$$

(b) i)

ii)

$$
\begin{gathered}
y=\log _{e} x \\
y^{\prime}=\frac{1}{x} \\
\text { at } p(e, 1) \\
m_{T}=\frac{1}{e} \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=\frac{1}{e}(x-e) \\
e y-e=x-\neq \\
x-e y=0
\end{gathered}
$$

iii) The tangent at P found in (ii) passes through the origin since it's in the form $y=k x$ where $k=\frac{1}{e}$.

Answer is $-\infty<k \leqslant \frac{1}{e}$
Question 6
(a)

$$
\begin{aligned}
\frac{s \operatorname{tion} 6}{e^{2 \ln 5}} & =e^{\ln 5^{2}} \\
& =5^{2} \\
& =25
\end{aligned}
$$

(b) i)

when

$$
\begin{aligned}
& x=-2 \\
& \left.y^{\prime}=0 \quad \text { (y cuts the } x-a \times 13\right)
\end{aligned}
$$

$y^{\prime \prime}<0 \quad$ (gradient of y^{\prime} is negative)
A concave down
\therefore Maximum Trowing Point when $x=-2$
OR consider y^{\prime} on either sidle of $x=-2$

${ }^{\text {-since }} y^{\prime}$ is above x-axis>
\therefore Maximum Turmhg Point when $x=-2$
ii)

(c) i)
ii)

iii)

$$
\begin{aligned}
V & =\pi \int_{a}^{b} y^{2} d x \\
& =\pi \int_{0}^{1}\left((x)^{2}-\left(x^{2}\right)^{2}\right) d x \\
& =\pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& =\pi\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{1} \\
& =\pi\left[\frac{(1)^{3}}{3}-\frac{(1)^{5}}{5}-(0)\right] \\
& =\frac{2 \pi}{15}
\end{aligned}
$$

(d) assuming P lies in the first quadrant θ is acute.
i)

$$
\begin{aligned}
\text { Area } \triangle O P M & =\frac{1}{2}(8)(4) \sin \theta \\
& =16 \sin \theta \\
\text { Area } \triangle O P N & =\frac{1}{2}(2)(8) \sin \left(\frac{\pi}{2}-\theta\right) \\
& =8 \sin \left(\frac{\pi}{2}-\theta\right)
\end{aligned}
$$

$$
=8 \cos \theta \quad \text { (complimentary angles) }
$$

Area of quadrilateral OMPN $=16 \sin \theta+8 \cos \theta$
ii)

$$
\begin{gathered}
A=16 \sin \theta+8 \cos \theta \\
\frac{d A}{d \theta}=16 \cos \theta-8 \sin \theta \\
\frac{d^{2} A}{d \theta^{2}}=-16 \sin \theta-8 \cos \theta \\
\text { let } \frac{d A}{d \theta}=0 \text { for stat. points } \\
16 \cos \theta-8 \sin \theta=0 \\
16 \cos \theta=8 \sin \theta \\
16=8 \tan \theta \\
\tan \theta=2
\end{gathered}
$$

when θ is acute $\frac{d^{2} A}{d \theta^{2}}<0 \quad \downarrow \downarrow$ concave down
$\therefore A$ is a maximum when $\tan \theta=2$
iii)

$$
\left.\begin{array}{rl}
\cos \theta=\frac{x}{8} & \sin \theta
\end{array}\right)=\frac{y}{8}
$$

$$
\cos \theta=\frac{1}{\sqrt{5}} \quad \sin \theta=\frac{2}{\sqrt{5}}
$$

$$
\begin{aligned}
x & =8\left(\frac{1}{\sqrt{5}}\right) & y & =8\left(\frac{2}{\sqrt{5}}\right) \\
& =\frac{8}{\sqrt{5}} & & =\frac{16}{\sqrt{5}} \\
& =\frac{8 \sqrt{5}}{5} & & =\frac{16 \sqrt{5}}{5}
\end{aligned}
$$

$\therefore P$ has coordinates $\left(\frac{8 \sqrt{5}}{5}, \frac{16 \sqrt{5}}{5}\right)$

