

SYDNEY BOYS HIGH
 MOORE PARK, SURRY HILLS

2014

YEAR 12 Mathematics
HSC Task \#2

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answers must be given in simplest exact form unless otherwise stated.

Total marks - 72
Multiple Choice Section (5 marks)

- Answer Questions 1-5 on the Multiple Choice answer sheet provided.

Sections A, B, C and D (67 marks)

- Start a new answer booklet for each section.

Examiner: D.McQuillan

Multiple Choice Section (5 marks)

(1) A bag contains three white balls and seven yellow balls. Three balls are drawn one at a time from the bag without replacement. The probability that they are all yellow is
(A) $\frac{3}{500}$
(B) $\frac{27}{1000}$
(C) $\frac{21}{100}$
(D) $\frac{7}{24}$
(E) $\frac{243}{1000}$
(2) If $\int_{1}^{4} f(x) d x=2$, then $\int_{1}^{4}(2 f(x)+3) d x$ is equal to
(A) 2
(B) 4
(C) 7
(D) 10
(E) 13
(3) For the function $f(x)=(x+5)^{2}(x-1)$ the gradient of $f(x)$ is negative for
(A) $x<1$
(B) $-5<x<1$
(C) $-5<x<-1$
(D) $x<-5$
(E) $-5<x<0$
(4) For $y=\sqrt{1-f(x)}, \frac{d y}{d x}$ is equal to
(A)

$$
\frac{2 f^{\prime}(x)}{\sqrt{1-f(x)}}
$$

(B)

$$
\frac{-1}{2 \sqrt{1-f^{\prime}(x)}}
$$

(C)

$$
\frac{1}{2} \sqrt{1-f^{\prime}(x)}
$$

(D)

$$
\frac{3}{2\left(1-f^{\prime}(x)\right)}
$$

(E)

$$
\frac{-f^{\prime}(x)}{2 \sqrt{1-f(x)}}
$$

(5) The graph of $y=f(x)$ is shown below.

Which one of the following could be the graph of $y=f^{\prime}(x)$?
(A)

(C)

(E)

(B)

(D)

End of Multiple Choice Section

Section A (18 marks)

Start a NEW writing booklet for each section.
(1) Given $\mathrm{AB} / / \mathrm{CD}$ and $\mathrm{CD} / / \mathrm{EF}$ and $\mathrm{AC}: \mathrm{CE}=1: 4$ find the ratio of $\mathrm{DF}: \mathrm{FB}$.

(2) To what sum will $\$ 1500$ amount if invested for 3 years at 12% per annum compounded yearly?
(3) Evaluate
(a)

$$
\lim _{x \rightarrow-2} \frac{x^{2}+7 x+10}{x+2}
$$

(b)

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+9}{2 x^{2}+2}
$$

(4) Find the derivative of
(a) $2 x^{3}+3 x^{-2}$
(b) $\left(4 x^{3}+x\right)\left(\frac{1}{2} x^{2}-4\right)$
(c) $\frac{4 x^{2}}{2 x-1}$
(5) Find the equation of the tangent to the graph $y=e^{3 x}+3 x$ at the point where $x=0$.
(6) Karthik has four pairs of identical purple socks and three pairs of identical green socks. His socks are randomly mixed in his drawer. He takes two individual socks at random from the drawer in the dark. Find the probability that he obtains a matching pair.

End of Section A

SECTION B (16 marks)

Start a NEW writing booklet for each section.
(1) Find
(a)

$$
\int\left(4 x^{3}+4 x^{2}+1\right) d x
$$

(b)

$$
\int \frac{e^{x}}{e^{x}-5} d x
$$

(c)

$$
\int \frac{e^{x}-5}{e^{x}} d x
$$

(2) Evaluate

$$
\int_{1}^{3} \frac{x+3}{x^{2}+6 x-6} d x
$$

(3) Show that the points $A(3,-1), B(7,2)$ and $C(1,10)$ are the vertices of a right angled triangle. Also find the area of the triangle $A B C$.
(4) Using differentiation from first principles find the derivative of $f(x)=2 x+5$.

End of Section B

SECTION C (18 marks)

Start a NEW writing booklet for each section.
(1) The diagonal BD of the quadrilateral ABCD bisects each of the angles ABC and ADC. Prove that
(a) $\triangle A B D \equiv \triangle C B D$
(b) $A C \perp B D$
(2) Find the greatest and least values of $f(x)=x^{3}-12 x+20$ on the interval $-3 \leq x \leq 5$.
(3)
(a) Find the approximate value of

$$
\int_{0}^{2}\left(x^{3}+x\right) d x
$$

using the Trapezoidal Rule with 2 subintervals.
(b) What is the difference between the approximation from part (a) and the actual value of the integral?
(4) For the curve $y=(x+2)(5-x)^{3}$
(a) Find the stationary points and their natures.
(b) Hence sketch the curve $y=(x+2)(5-x)^{3}$.
(5) If two dice are rolled and one of the dice shows a 2 what is the probability that the sum of the upper most faces is less than 6 ?

End of Section C

SECTION D (15 marks)

Start a NEW writing booklet for each section.
(1) Find the exact area of the region bounded by the x-axis, the y-axis, the line $y=3$ and the curve $y=\log _{e}(x-1)$.
(2) A rectangular box is required to have a volume of $24 \mathrm{~cm}^{3}$ and its length is to be double its width. It is to be strengthened by a strip of steel running along all its edges. If the total length of the steel strip is to be a minimum, find the dimensions of the box (length, width and depth).
(3) On Brendan's $20^{\text {th }}$ birthday his grandparents place $\$ 500000$ in a trust account that earns 8% per annum. Brendan receives one payment a year from the trust account. He receives the first payment on his $21^{\text {st }}$ birthday.
(a) If the payments are $\$ \mathrm{M}$ per year show that the amount, $\$ \mathrm{~A}_{2}$, in the trust account after the second payment is

$$
A_{2}=500000 \times 1.08^{2}-M \times 1.08-M
$$

(b) How much would each payment be if the trust account was to last for 20 years?
(c) If the payments were $\$ 75000$ per year, how many full payments would Brendan receive?
(d) After the last full payment of $\$ 75000$ how much is still left in the trust.

End of Section D

End of Exam

2014 Year 12 Mathematics HSC Task \#2-Solutions
Multiple Choice

1. 3 White, 7 yellow.
2. D
3. E
4. C
5. E
6. C

D
2. $\int_{1}^{4} f(x) d x=2$, then $\int_{1}^{4}(2 f(x)+3) d x$ is

$$
\begin{aligned}
& =\int_{1}^{4} 2 f(x) d x+\int_{1}^{4} 3 d x \\
& =2 \int_{1}^{4} f(x) d x+[3 x]_{1}^{4} \\
& =2(2)+[3(4)-3(1)] \\
& =4+9 \\
& =13
\end{aligned}
$$

3. negative gradient: $f^{\prime}(x)<0$

$$
\begin{aligned}
f(x) & =(x+5)^{2}(x-1) \\
u & =(x+5)^{2}, \quad v=(x-1) \\
u^{\prime} & =2(x+5) \quad v^{\prime}=1 \\
\therefore f^{\prime}(x) & =u v^{\prime}+v u^{\prime} \\
& =(x+5)^{2} \cdot 1+(x-1) \cdot 2(x+5) \\
& =(x+5)[(x+5)+2(x-1)]
\end{aligned}
$$

$$
\begin{align*}
& =(x+5)[3 x+3] \\
& =3(x+5)(x+1) \\
f^{\prime}(x) & <0 \Rightarrow \quad x>-5, x<-1
\end{align*}
$$

4.

$$
\text { t. } \begin{aligned}
y & =\sqrt{1-f(x)} \\
& =(1-f(x))^{1 / 2} \\
\therefore \frac{d y}{d x} & =\frac{1}{2}(1-f(x))^{-1 / 2}-f^{\prime}(x) \\
& =\frac{-f^{\prime}(x)}{2(1-f(x))^{1 / 2}} \\
& =\frac{-f^{\prime}(x)}{2 \sqrt{1-f(x)}}
\end{aligned}
$$

$5 . \quad C$

Section A

1. $A C: C E=1: 4$

$$
\begin{array}{rlrl}
D F & =C E & F B & =B D+D F \\
& =4 & & =A C+C E \\
& =1+4 \\
& & =5
\end{array}
$$

$$
\begin{equation*}
\therefore D F: F B=4: 5 \tag{1}
\end{equation*}
$$

2.

$$
\begin{align*}
A=P(1+r)^{n} \Rightarrow A & =1500(1+0.12)^{3} \\
& =2107.392 \\
& =\$ 2107.39 \tag{2}
\end{align*}
$$

3. (a)

$$
\begin{align*}
\lim _{x \rightarrow-2} \frac{x^{2}+7 x+10}{x+2} & =\lim _{x \rightarrow-2} \frac{(x+5)(x+2)}{(x+2)} \\
& =\lim _{x \rightarrow-2} \\
& =-2+5 \\
& =3 \tag{2}
\end{align*}
$$

(b)

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+9}{2 x^{2}+2} & =\lim _{x \rightarrow \infty} \frac{x^{2} / x^{2}-3 x / x^{2}+9 / x^{2}}{2\left(x^{2} / x^{2}+1 / x^{2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1-3 / x+9 / x^{2}}{2\left(1+1 / x^{2}\right)} \\
& =\frac{1-3 / \infty+9 / \infty^{2}}{2\left(1+1 / \infty^{2}\right)} \\
& =\frac{1-0+0}{2(1+0)} \\
& =\frac{1}{2} \tag{2}
\end{align*}
$$

$$
\text { 4. (a) } \begin{align*}
\frac{d\left(2 x^{3}+3 x^{-2}\right)}{d x} & =3 \cdot 2 x^{2}+(-2) \cdot 3 x^{-3} \\
& =6 x^{2}-6 x^{-3} \\
& =6 x^{2}-\frac{6}{x^{3}} \tag{1}
\end{align*}
$$

(b)

$$
\text { 0) } \begin{align*}
& \frac{d\left(4 x^{3}+x\right)\left(\frac{1}{2} x^{2}-4\right)}{d x} \\
= & \text { Let } u=4 v^{\prime}+v u^{\prime}+x \\
= & v=\frac{u^{\prime}}{}=12 x^{2}+1 \\
= & \left.v^{\prime}=x x^{3}+x\right) x+\left(\frac{1}{2} x^{2}-4\right)\left(12 x^{2}+1\right) \\
= & 4 x^{4}+x^{2}+6 x^{4}+\frac{1}{2} x^{2}-48 x^{2}-4 \\
= & 10 x^{4}-\frac{93 x^{2}}{2}-4
\end{align*} \quad \text { [2] }
$$

$$
\begin{align*}
& \text { (c) } \frac{d\left(\frac{4 x^{2}}{2 x-1}\right)}{d x} \\
& \text { Let } u=4 x^{2} \\
& u^{\prime}=8 x \\
& =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{(2 x-1) .8 x-4 x^{2} .2}{(2 x-1)^{2}} \\
& =\frac{16 x^{2}-8 x-8 x^{2}}{(2 x-1)^{2}} \\
& =\frac{8 x^{2}-8 x}{(2 x-1)^{2}} \\
& =\frac{8 x(x-1)}{(2 x-1)^{2}} \tag{3}
\end{align*}
$$

5. $y=e^{3 x}+3 x$ at $x=0$.
when $x=0, \begin{aligned} y & =e^{3(0)}+3(0) \\ & =1\end{aligned}$

$$
\therefore(0,1)
$$

$$
\begin{aligned}
y^{\prime} & =3 e^{3 x}+3 \\
& =3\left(e^{3 x}+1\right)
\end{aligned}
$$

when

$$
\begin{gathered}
x=0, y^{\prime}=3\left(e^{3(0)}+1\right) \\
=3(2) \\
=6 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=6(x-0)
\end{gathered}
$$

$$
\therefore \quad y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\begin{equation*}
\therefore \quad 6 x-y+1=0 \tag{3}
\end{equation*}
$$

6.

$$
\begin{align*}
P(\text { a pair }) & =P(P P)+P(G G) \\
& =\frac{8}{14} \times \frac{7}{13}+\frac{6}{14} \times \frac{5}{13} \\
& =\frac{43}{91} \tag{2}
\end{align*}
$$

Section B
1.(a)

$$
\text { 1) } \begin{align*}
\int & 4 x^{3}+4 x^{2}+1 d x \\
= & \frac{4 x^{4}}{4}+\frac{4 x^{3}}{3}+x+c \\
= & x^{4}+\frac{4 x^{3}}{3}+x+c \tag{2}
\end{align*}
$$

(b) $\int \frac{e^{x}}{e^{x}-5} d x \Rightarrow\left[\int \frac{f^{\prime}(x)}{f(x)} d x\right]$

$$
\begin{equation*}
=\ln \left(e^{x}-5\right)+c \tag{2}
\end{equation*}
$$

$$
\text { (c) } \begin{aligned}
\int \frac{e^{x}-5}{e^{x}} d x & =\int \frac{e^{x}}{e^{x}}-\frac{5}{e^{x}} d x \\
& =\int 1-5 e^{-x} d x \\
& =x+5 e^{-x}+c \\
& =x+\frac{5}{e^{x}}+c \quad[2]
\end{aligned}
$$

$$
\text { 2. } \left.\int_{1}^{3} \frac{x+3}{x^{2}+6 x-6} d x \quad \begin{array}{rl}
& \text { If } f(x)=x^{2} \\
f^{\prime}(x)=2 x \\
=2
\end{array}\right]
$$

$$
=\frac{1}{2} \ln (21)(\approx 1.5226)
$$

3.

$$
\begin{aligned}
m_{A B} & =\frac{2-(-1)}{7-3} & m_{A C} & =\frac{10-(-1)}{1-3} \\
& =\frac{3}{4} & & =-\frac{11}{2}
\end{aligned}
$$

$$
\begin{aligned}
m_{B C} & =\frac{10-2}{1-7} \\
& =-\frac{8}{6} \\
& =-\frac{4}{3}
\end{aligned}
$$

$$
\begin{aligned}
\therefore m_{A B} \times m_{B C} & =\frac{3}{4} \times-\frac{4}{3} \\
& =-1
\end{aligned}
$$

$$
\therefore A B \perp B C
$$

$$
\begin{aligned}
& d_{A B}=\sqrt{(7-3)^{2}+(2-(-1))^{2}} \\
&=5 \\
& d_{B C} \\
&=\sqrt{(1-7)^{2}+(10-2)^{2}} \\
&=10
\end{aligned}
$$

$$
\therefore \text { Area }=\frac{1}{2} \times 5 \times 10
$$

$$
\begin{equation*}
=25 \text { units }^{2} \tag{5}
\end{equation*}
$$

2112014 Assess Task 2 Section C.
(1)

(b) Because

$$
\triangle A B D \equiv \triangle C B D,
$$

quadinlateral is nite,
square, rhombus, n, where. a diagonal bisects a pair of vertex angles.

$$
\therefore A B=A D, \triangle A B C
$$

is iso sceles.
line from vertex to base $D B$ bisects base and is上 to it.
a) data: as per diagram
aim: to prove $\triangle A B D=\triangle C B D$
Proof: $D B$ bisects $\hat{A B C}$ given
So $A \hat{B D}=C \hat{B D}$
$D B$ bisects $A \hat{D C}$ queen
So $A \hat{D}_{B}=C \hat{D B}_{B}$
Line $D B$ common side
$\therefore \triangle A B D \equiv \triangle C B \triangle A A S$
(3) rule.
(2)

$$
\begin{aligned}
& f(x)=x^{3}-12 x+20 \\
& f^{\prime}(x)=3 x^{2}-12 \\
& f^{\prime \prime}(x)=6 x
\end{aligned}
$$

Stat pts $f^{\prime}(x)=0$

$$
\begin{aligned}
& 3 x^{2}-12=0 \\
& 3 x^{2}=12 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

at $x=2, f(x)=4$

$$
x=-2,7(x)=36 \quad(-2,36)
$$

at $(2,4) y^{\prime \prime}(x)=12>0$ min stat ρt.
$(-2,36) y^{\prime \prime}(x)=-12<0$ max stat pt.
at the end points!

$$
\text { at } x=-3, f(x)=29
$$

$$
x=5, f(x)<85
$$

Greatest (y) value in domain is 85 Least (g) value in domain is 4
(3) $\int_{0}^{2}\left(x^{3}+x\right) d x \quad$ Trapezoidal rule. $\quad \begin{aligned} & 2 \text { sub intervals }\end{aligned}$

$f(x) |$| 0 | 1 | 2 |
| :---: | :---: | :---: |
| 0 | 2 | 10 |
| y_{0} | y_{1} | y_{n} |

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\frac{y_{0}}{2}\left[\left(y_{1}+y_{n}\right)+2\left(y_{1}\right)\right] \\
& =\frac{1}{2}[0+10+2 \times 2] \\
& =\frac{1}{2} \times 14=7 u^{2} \tag{2}
\end{align*}
$$

(b)

$$
\begin{aligned}
\int_{0}^{2}\left(x^{3}+x\right) d x & \left.=\frac{x^{4}}{4}+\frac{x^{2}}{2}\right]_{0}^{2} \\
& =(4+2)-(0)=6
\end{aligned}
$$

difference $7-6=1$
(4) (a)

$$
\begin{aligned}
y & =(x+2)(5-x)^{3} \\
y^{\prime} & =(x+2) \times 3(5-x)^{2} \times-1+(5-x)^{3} \times 1 \\
& =-3(x+2)(5-x)^{2}+(5-x)^{3} \\
& =(5-x)^{2}[-3(x+2)+(5-x)] \\
& =(5-x)^{2}[-3 x-6+5-x] \\
& =(5-x)^{2}[-4 x-1]
\end{aligned}
$$

$$
y^{\prime \prime}=(5-x)^{2} \times-4+(-4 x-1) \times 2(5-x)^{\prime} \times 1
$$

$$
=-4(5-x)_{2}^{2}-2(-4 x-1)(5-x)
$$

$$
=-4(5-x)^{2}+2(1+4 x)(5-x)
$$

$$
=2(5-x)[-2(5-x)+(1+4 x)]
$$

$$
=2(5-x)[-10+2 x+1+4 x]
$$

$$
=2(5-x)[-9+6 x]
$$

$$
=6(5-x)[2 x-3]
$$

Stat points when $y^{\prime}=0$ ier $-(5-x)^{2}(1+4 x)=0$
When $x=5, y=0 \quad(5,0) \quad x=5$ and $x=-\frac{1}{4}$
when $x=-\frac{1}{4}, y=253 \frac{59}{256} \quad\left(-\frac{1}{4}, 253 \frac{59}{256}\right)$
at $(5,0) y^{\prime \prime}=0$ so need.

$$
\begin{array}{ll}
x=5-\varepsilon & (4.9) y^{\prime}=-0.206 \\
x=5 & y^{\prime}=0 \\
x=5+\varepsilon & (5.1) \quad y^{\prime}=-0.214
\end{array}
$$

but probablinat max fiori3ontar point min inflexain
it $\left(-\frac{1}{4}, 253 \frac{59}{256}\right) \quad y^{\prime \prime}<0$ minx stat, point
(a) continued $(5,0)$ is not a max nor mim stat point
An inflesion?

$$
\begin{array}{lll}
x=5-\varepsilon & (4,9) & y^{\prime \prime}>0 \\
x=5 & y^{\prime \prime}=0 \\
x=5+\varepsilon & (5,1) & y^{\prime \prime}<0
\end{array}
$$

$(5,0)$ is a point ofvinflexion (3)
(b)

(5) $\begin{aligned} & 2,1 \\ & 2,2 \\ & 2,3 \\ & 1,2 \\ & 2,3\end{aligned}$

bection D
15
(1) $y=\ln (x-1)$
so $x-1>0$

$$
\log _{e}(x-1)=y
$$

$$
e^{y}=x-1
$$

$$
e^{y}+1=x
$$

$$
\begin{aligned}
A & =\int_{0}^{3}\left(e^{y}+1\right) d y . \\
& \left.=\left(e^{y}+y\right)\right]_{0}^{3} \\
& =\left(e^{3}+3\right)-\left(e^{0}+0\right) \\
& =e^{3}+3-1=\left(e^{3}+2\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
V=2 x^{2} y & =24 \\
x^{2} y & =12 \\
y & =\frac{12}{x^{2}}
\end{aligned}
$$

all edges $\quad 2 x+x+2 x+x+2 x+x+2 x+x+4 \times \frac{12}{x^{2}}$.

$$
E=12 x+\frac{48}{x^{2}}
$$

- (2) continued

$$
\begin{aligned}
E & =12 x+48 x^{-2} \\
E^{\prime} & =12-96 x^{-3} \\
E^{\prime \prime} & =288 x^{-4} \\
\text { het } E^{\prime} & =0,12-\frac{96}{x^{3}}=0 \\
12 & =\frac{96}{x^{3}} \\
12 x^{3} & =96 \\
x^{3} & =8 \\
x & =2 .
\end{aligned}
$$

when $x=2, E^{\prime \prime}=\frac{288}{x^{4}}>0$ minimum dimerisions are $4 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm}$.

D (3)

$$
\begin{align*}
\text { (a) } A_{1}= & 500000+500000 \times \frac{8}{100}-m \\
= & 500000\left(1+\frac{8}{100}\right)-m \\
= & {[500000(1.08)-m} \\
A_{2}= & {[500000(1.08)-m]+[500000(1.08)-m] } \\
& \times \frac{8}{100}-m \\
= & {[500000(1.08)-m]\left[1+\frac{8}{100}\right]-m } \\
= & {[500000(1.08)-m][1.08]-m } \\
= & 500000(1.08)^{2}-m \times 1.08-m \tag{2}
\end{align*}
$$

(b) above $500000(i .08)^{2}-m\left(1+1.08^{1}\right)$
account last 20 years.

$$
\begin{aligned}
& \text { account last } 20 \text { years } \\
& A_{20}=500000(1.08)^{20}-m\left(1+1.08+\cdots+1.08^{19}\right) \\
& m=\frac{500000(1.08)^{20}}{1+1.08+\cdots+1.08^{19}}
\end{aligned}
$$

so densminator $1+1.08+\cdots+1.08^{19}$ Mse $S_{20}=\frac{r L-a}{r-1}=\frac{1.08 \times 1.08^{19}-1}{1.08-1}$

$$
\begin{equation*}
m=\$ 50926 \cdot 10 \tag{2}
\end{equation*}
$$

(1) (3)

$$
\text { (c) } A_{n}=500000(1.08)^{n}-75000\left(1+1.08+\cdots+1,08^{n-1}\right.
$$

So $\left(1+1.08+\cdots+1.08^{n-1}\right)$

$$
\begin{aligned}
& S_{n}=\frac{r l-a}{r-1}=\frac{1.08 \times 1.08^{n-1}-1}{1.08-1}=\frac{1.08^{n}-1}{0.08} \\
& A_{n}=500000(1.08)^{n}-75000\left(1.08^{n}-1\right) \\
& 0.08 \\
&=500000(1.08)^{n}-937500(1.08)^{n}+937500 \\
&=-437500(1.08)^{n}+937500
\end{aligned}
$$

Let $A_{n}=0$

$$
\begin{gather*}
437509(1.08)^{n}=937500 \\
1.08^{n}=2.142857143 \ldots \\
n \log _{10} 1.08=\log _{10} 2.142857143 \\
n=\frac{\log _{10} 2.142857143}{\log _{10} 1.08} \\
n=9.9029 \ldots \tag{2}
\end{gather*}
$$

Brendan reciuves 9 full payments.
(D) 3
(d)

$$
\begin{align*}
A_{q} & =500000(1.08)^{9}-75000 \frac{\left(1.08^{9}-1\right)}{0.08} \\
& =\$ 999502.31-\$ 936566.84 \\
& =\$ 62,935.47 \tag{2}
\end{align*}
$$

