

SYDNEYBOYSHIGH SCHOOL

MOORE PARK, SURRY HILLS

2015
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen.
- Board approved calculators may be used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 69

- Attempt questions $1-12$.
- All questions are not of equal value.
- Unless otherwise directed give your answers in simplest exact form.

Examiner: A.M.Gainford

Section A (24 Marks)

Questions 1 to 7. (7 marks)
Indicate which of the answers $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D is the correct answer.
Marks
Write the answer on the separate answer sheet.
(1) The gradient of the tangent to the curve $\mathrm{y}=(x-1)\left(x^{2}+1\right)$ at the point where $x=\frac{1}{2}$ is:

A: $\quad-\frac{4}{3}$
B: $\quad \frac{3}{4}$
C: $\quad \frac{4}{3}$
D: $\quad-\frac{3}{4}$
(2) For what values of x is the curve $\mathrm{f}(x)=2 x^{2}-x^{3}$ increasing?

A: $\quad x>\frac{2}{3}$
B: $\quad x<0, x>\frac{4}{3}$

C: $\quad x<\frac{2}{3}$

D: $\quad 0<x<\frac{4}{3}$
(3) What is the slope of the line containing the points $(-9,2)$ and $(3,14)$.

A: $\frac{4}{3}$
B: $\quad-\frac{1}{2}$

C: 1

D: $\quad-2$
(4) The figure below is the graph of $f(x)=3 x^{2}$:

Which of the following represents the graph of the second derivative?
A:

C:

B:

D:

(5) Differentiate the following equation: $y=6 x^{-3}$

A: $\quad \frac{d y}{d x}=-18 x^{-2}$
B: $\quad \frac{d y}{d x}=-12 x^{-3}$
C: $\quad \frac{d y}{d x}=-18 x^{-4}$
D: $\quad \frac{d y}{d x}=-3 x^{-2}$
(6) It is known that $f^{\prime \prime}(a)=0$. The point $(a, f(a))$ is:

A: a minimum turning point
B: a maximum turning point
C: a horizontal point of inflection
D: not determined (insufficient information)
(7) The graph with equation $y=x^{2}$ is translated 3 units down and 2 units to the right. Which equation represents the resulting graph?

A: $\quad y=(x-2)^{2}+3$
B: $\quad y=(x-2)^{2}-3$

C: $\quad y=(x+2)^{2}+3$
D: $\quad y=(x+2)^{2}-3$

Question 8 (17 marks) (Start a new booklet)

Marks

(a) Differentiate the following:
(i) $\ln x^{3}$
(ii) $e^{2 x+1}$

1
(iii) $e^{x} \ln x$
(b) Find
(i) $\int\left(3 x^{2}-4 x+1\right) d x$
(ii) $\int\left(\frac{1}{x}-\frac{1}{x-1}\right) d x$
(iii) $\int\left(\frac{1}{e^{2 x}}\right) d x$
(c) Evaluate
(i) $\quad \int_{-1}^{3}(2 x-1) d x$
(i) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\frac{\cos x}{1+\sin x}\right) d x$
(d) (i) Copy and complete the table for $f(x)=e^{x^{2}}$ correct to 4 decimal places.

x	0	0.5	1	1.5	2
$f(x)$	1				

(ii) Use Simpson's Rule with the above 5 function values to find an approximation to $\int_{0}^{2} e^{x^{2}} d x$ correct to 3 decimal places.

Section B (23 Marks)

START A NEW BOOKLET

Question 9 (12 Marks)
(a) In an $x-y$ plane in you answer booklet:
(i) Sketch the line through $C(-3,0)$ which makes an angle of 45° with the

1 positive direction of the x-axis. Also sketch the line $x+y=4$, which meets the first line at A, and the x-axis at B.
(ii) Show that $A C$ is perpendicular to $A B$.
(iii) Find the equation of the line through B, which is parallel to $A C$.
(iv) Show that the equation of the line through the point C parallel to the line $A B$ is $x+y+3=0$.
(v) The lines from parts (iii) and (iv) meet at D. Find the coordinates of D.
(vi) What type of quadrilateral is $A B D C$? Give reasons.
(b) A car's velocity v in metres per second is recorded each second as it accelerates along 3 a drag strip. The table below gives the results.

$t(s)$	0	1	2	3	4	5
$v\left(m s^{-1}\right)$	0	15	31	48	64	83

Given that the distance travelled may be found by calculating the area under a velocity/time graph, use the trapezoidal rule to estimate the distance travelled by the car in the first five seconds.

Question 10 (11 Marks)
(a)

In the diagram $\angle Q P R=90^{\circ}$, $\mathrm{PS}=\mathrm{SQ}$.
(i) Copy the diagram to your answer booklet.
(ii) Construct $S T \perp P Q$ (Sketch only). 1
(ii) Prove that $P S=\frac{1}{2} R Q$. 3
(b) A triangle has vertices $A(4,0), B(-4,0)$ and $C(0,6)$.
(i) Draw a neat sketch of the triangle in your answer booklet.
(ii) State the coordinates of D and E, the mid-points of $C A$ and $C B$ respectively.
(iii) Show that the medians $B D$ and $E A$ meet on the y-axis.
(c)

In the diagram the shaded region is bounded by the parabola $y=x^{2}+1$, the x-axis and the lines $x=0$, and $x=1$.
Find the volume of the solid formed when then shaded region is rotated about the x axis.

Section C (22 Marks)

START A NEW BOOKLET

Question 11 (11 Marks)

(a)

In the diagram above, $A B \| D E$.
Find the value of x, correct to 2 decimal places, giving full reasons.
(b) Consider the curve with equation $y=2 x^{3}-9 x^{2}+12 x-3$.
(i) Find the co-ordinates of the stationary points and determine their nature.
(ii) Find the co-ordinates of any points of inflexion.
(iii) Sketch the curve for the domain $0 \leq x \leq 3$. (Do not attempt to find any x intercepts.)

Question 12 (11 Marks)

(a) For a certain curve $y=f(x), f^{\prime \prime}(x)=6 x-1$.

Find the equation of the curve given that it passes through the point $(1,-2)$ with gradient -3 .
(b) (i) Differentiate $e^{x} \sqrt{x}$.
(ii) Hence evaluate $\int_{1}^{2} \frac{e^{x}(1+2 x)}{\sqrt{x}} d x$.
(c) A sealed tin rectangular box is to have a square base and a volume of $64 \mathrm{~cm}^{3}$. If the length of the edge of the base is $x \mathrm{~cm}$:

(i) Express the height of the box in terms of x.
(ii) Show that the total surface area $y \mathrm{~cm}^{2}$ of the box is given by $y=\frac{256}{x}+2 x^{2}$.
(iii) Find the minimum surface area of the box, and its dimensions.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec ^{a x \tan } a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

SYDNEY BOYS HIGH SCHOOL

 MOORE PARK, SURRY HILLS
2015

HSC Task \#2

Mathematics

Suggested Solutions
 \&

 Markers' Comments| QUESTION | Marker |
| :---: | :---: |
| $1-7$ | - |
| 8 | VL see PSP |
| $9 \& 10$ | JC |
| $11 \& 12$ | RB |

Multiple Choice Answers
$\begin{array}{ll}\text { 1. } & \text { B } \\ \text { 2. } & \text { D } \\ \text { 3. } & \text { C } \\ \text { 4. } & \text { B } \\ \text { 5. } & \text { C } \\ \text { 6. } & \text { D } \\ \text { 7. } & \text { B }\end{array}$
Q. 1

$$
\begin{aligned}
y^{\prime} & =u^{\prime} v+u v^{\prime} \quad \text { where } & & u=x-1 \\
& =x^{2}+1+(x-1) \times 2 x & & u^{\prime}=1 \\
& =x^{2}+1+2 x^{2}-2 x & & v=x^{2}+1 \\
& =3 x^{2}-2 x+1 & & v^{\prime}=2 x \\
f^{\prime}\left(\frac{1}{2}\right) & =3\left(\frac{1}{2}\right)^{2}-2\left(\frac{1}{2}\right)+1 & & \\
& =\frac{3}{4}-1+1 & & \\
& =\frac{3}{4} & &
\end{aligned}
$$

B
Q. $2 f^{\prime}(x)=4 x-3 x^{2}$
curve increases when $f^{\prime}(x)>0$

$$
\begin{aligned}
& 4 x^{\prime}-3 x^{2}>0 \\
& x(4-3 x)>0 \\
& \therefore \quad 0<x<\frac{4}{3} \quad 1 \quad \frac{4}{3}
\end{aligned}
$$

Q. 3

$$
\begin{aligned}
\text { slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{14-2}{3-(-9)} . \\
& =1
\end{aligned}
$$

Q. 4

$$
\begin{aligned}
f(x) & =3 x^{2} \\
f^{\prime}(x) & =6 x \\
f^{\prime \prime}(x) & =6
\end{aligned}
$$

Q. $5 \quad y=6 x^{-3}$

$$
\frac{d y}{d x}=-18 x^{-4}
$$

$$
C
$$

$Q .6$
Q. $7 \quad y=\underset{\uparrow}{(x-2))^{2}}-\frac{3}{\text { translated 2uints }} \begin{gathered}\text { translated } \\ 3 \text { units down }\end{gathered}$
translated 2umits to the right

$$
B
$$

Question 8
(a) (i)

$$
\begin{aligned}
\frac{d}{d x} \ln x^{3} & =\frac{d}{d x} 3 \ln x \\
& =\frac{3}{x}
\end{aligned}
$$

a) (i) Those who wrote the following received no marks because they are all incorrect:

$$
\begin{aligned}
& \left(3 x^{2}\right)^{-1}, \frac{1}{x^{3}}, \frac{x}{3}, \frac{3 \ln x^{2}}{\ln x^{3}}, \frac{2 x}{x^{3}}, 3 \ln x^{2} \\
& 3 x^{3}, 3 e^{x}, \frac{3}{x^{2}}, 3 \ln e^{x}, 3 x^{2} \ln x^{3}
\end{aligned}
$$

Those who wrote $\frac{3 x^{2}}{x^{3}}$ received $\frac{1}{2}$ out of 1 mark because they should have simplified their answer to $\frac{3}{x}$.
(ii) $\frac{d}{d x} e^{2 x+1}=2 e^{2 x+1}$.
a)(ii) Those who wrote the following received no marks because they were all incorrect: $2 e^{2 x}, e^{2}, e^{2 x+1}, 2 x e^{2 x+1},(2 x+1) e^{2 x+1},(2 x+1) e^{2 x}$,
$\frac{1}{2} e^{2 x+1}$,
(iii)

$$
\left.\begin{array}{rl}
\frac{d}{d x} e^{x} \ln x & =u^{\prime} v+u v^{\prime} \quad \text { where } \quad u=e^{x} \\
& =e^{x} \ln x+\frac{e^{x}}{x} \quad
\end{array} \quad \begin{array}{rl}
u^{\prime} & =e^{x} \\
& =e^{x}\left(\ln x+\frac{1}{x}\right)
\end{array} \quad \begin{array}{l}
v
\end{array}\right)=\ln x .
$$

a)(iii) The product rule should be used:

Those who did not use the product rule wrote the following which were all incorrect :

$$
e^{x} \times \frac{1}{x}=\frac{e^{x}}{x}, e^{x} \ln x, \frac{1}{x^{x}}, x^{-e^{x}}, e^{x}, 2 x e^{x} \ln x
$$

(b) (i) $\int\left(3 x^{2}-4 x+1\right) d x=x^{3}-2 x^{2}+x+C$
(ii) $\int\left(\frac{1}{x}-\frac{1}{x-1}\right) d x=\ln x-\ln (x-1)+C$
b) $\rightarrow 1$ mark was host if the constant was not included.
b) (i) well answered overall
b) (ii) The following scored zero marks :

$$
\begin{aligned}
& -1-(x-1)^{-1}+c, \ln x+\ln (x-1)+c, 1+c,-x+c, \\
& \frac{-2}{x-1}, \frac{x^{0}}{0}=\text { undefined }, \frac{\ln (x)}{\ln (x-1)}, \frac{1}{x}+c, \ln x-\ln x-\ln x
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\int\left(\frac{1}{e^{2 x}}\right) d x & =\int e^{-2 x} d x \\
& =\frac{e^{-2 x}}{-2}+c
\end{aligned}
$$

(b) (iii) If the negative sign was omitted from the first term, one mark was lost i.e. $\frac{e^{-2 x}}{-2}+c$ is the correct answer (not $\frac{e^{-2 x}}{2}+c$)

This question was not answered correctly overall with incorrect answers such as:

$$
\begin{aligned}
& \text { with incorrect answers such as } \\
& \frac{\ln e^{2 x}}{2 e^{2 x}}, \ln e^{2 x}+c, e^{-2 x}+c, 2 x+c, \frac{e^{2 x-1}}{2 x}, \\
& \frac{x}{e^{2 x}+c, \frac{1}{e^{x}}+c, \frac{1}{2} \ln \left(e^{2 x}\right),-3 e^{-3 x}+c} \\
& \frac{e^{-2 x+1}}{-2 x+1}+c, \ln e^{2 x} \cdot \frac{1}{2 e^{2 x}}, \frac{1}{e^{2 x^{2}}}+c
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
\int_{-1}^{3}(2 x-1) d x & =\left[x^{2}-x\right]_{-1}^{3} \\
& =\left(3^{2}-3\right)-\left((-1)^{2}-(-1)\right) \\
& =(9-3)-(1+1) \\
& =4
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
& {\left[x^{2}-x\right]_{-1}^{3} } \\
= & \left(3^{2}-3\right)-\left((-1)^{2}-(-1)\right) \\
= & (9-3)-(1+1) \\
= & 4
\end{aligned}
$$

If grouping symbols were not used, students incorrectly wrote 6-(-2) $=8$

$$
\left\{\begin{array} { c }
{ \text { or incorrectly mote } } \\
{ 6 - 1 + 1 } \\
{ = 6 }
\end{array} \left\{\begin{array}{c}
\text { or incorrectly wrote } \\
6-(1-1) \\
=6
\end{array}\right.\right.
$$

The negative sign on the lower limit was incorrectly left out (1 was used instead of -1)

Most students answered this correctly because grouping symbols were used.
(c) (ii)

$$
\begin{aligned}
\int_{\pi / 6}^{\pi / 3}\left(\frac{\cos x}{1+\sin x}\right) d x & =[\ln (1+\sin x)]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \\
& =\ln \left(1+\frac{\sqrt{3}}{2}\right)-\ln \left(1+\frac{1}{2}\right) \\
& =\ln \left(\frac{2+\sqrt{3}}{2}\right)-\ln \left(\frac{3}{2}\right) \\
& =\ln \left(\frac{\frac{2+\sqrt{3}}{2}}{\frac{3}{2}}\right) \\
& =\ln \left(\frac{2+\sqrt{3}}{3}\right)
\end{aligned}
$$

(d) (i)

x	0	0.5	1	1.5	2
$f(x)$	1	1.2840	2.7183	9.4877	54.5982

(ii)

$$
\left.\begin{array}{rl}
\int_{0}^{2} e^{x^{2}} d x & \approx \frac{h}{3}\left[\begin{array}{c}
f(0) \\
+
\end{array} \quad f(2)+4(f(0.5)+f(1.5))\right] \\
& +2(f(1))
\end{array}\right]
$$

(d) (i) Some students did not round to 4 decimal places (instead they rounded to 3 decimal places. and lost 1 mark).

When completing the table, approximations were not written and instead exact values $e^{\frac{1}{4}}, e^{1}, e^{2 \frac{1}{4}}, e^{4}$ were written. No marks were awarded for exact values.
$\frac{1}{2}$ mark was lost for each incorrect approximation.
(d)(ii) Overall, Simpsori's Rule was written "and applied correctly. In a few cases, $\frac{h}{3}$ was incorrectly calculated as $\frac{2-0}{4}=\frac{1}{2}$ (instead of $\frac{1}{6}$) $\frac{1}{2}$ mark was lost if $\frac{h}{3}$ was incorrect.
If Simpson's Rule was written and applied correctly however the final answer was not rounded to 3 deamal places or incorrect, $\frac{1}{2}$ mark was lost.

Question 9
a) (i)

(ii)

$$
\begin{align*}
& m_{c_{1}}=\tan 45^{\circ} \quad m_{c_{2}}=-1 \\
& m_{c_{1}}=1 \\
& m_{c_{1}} \times m_{c_{2}}=1 \times-1=-1
\end{align*}
$$

$$
\therefore A C \perp A B .
$$

Almost all the students were able to attain full marks
(iii)

$$
\begin{gather*}
y-0=1(x-4) \tag{1}\\
y=x-4 \tag{1}
\end{gather*}
$$

Almost all the students were able to attain full marks
(iv)

$$
\begin{gathered}
y-0=-1(x+3) \\
y=-x-3 \\
x+y+3=0
\end{gathered}
$$

Question 9 (continued).
a) (v)

$$
\begin{align*}
& y=x-4 \tag{1}\\
& x+y+3=0
\end{align*}
$$

sub (1) in (2),

$$
\begin{gathered}
x+x-4+3=0 \\
2 x-1=0 \\
x=\frac{1}{2} \\
y=\frac{1}{2}-4 \\
y=-3 \frac{1}{2} \\
\therefore D=\left(\frac{1}{2},-3 \frac{1}{2}\right)
\end{gathered}
$$

(vi) $A B C D$ is a square (1)

* All sides equal, adjacent sides are perpendicular.

This part was poorly done, most students weren't able to identify the type of quadrilateral

Question 9 (continued)
b). $d=\frac{h}{2}\left[f(a)+2 f\left(x_{n}\right)+f(b)\right]$

$$
=\frac{1}{2}[0+2(15+31+48+64)+83]
$$

Most students were able to attain full marks

Question 10:
a). (i).

Almost all the students were able to attain full marks
(iii). Let $\angle S P T=x$

$$
\begin{aligned}
& \angle S Q T=\angle S P T=x \quad(\text { base } \angle s \text { of isos. } \triangle) \\
& \angle R P S=90^{\circ}-x \quad(\text { comp. } \angle) \\
& \angle P R Q=180^{\circ}-90^{\circ}-x \quad(\angle 5 \text { sum of a (1) } \\
&\left.=90^{\circ}-x \quad \text { right }-\angle \quad \triangle\right) \\
& \therefore \angle P R Q=\angle R P S=90^{\circ}-x \\
& \therefore \triangle R S P \text { is isosceles with } P S=R S(1) \\
& \therefore P S=R S=S Q \\
& \therefore P S=\frac{1}{2}(R S+S Q) \\
& P S=\frac{1}{2} R Q
\end{aligned}
$$

Most students were able to write out a logical proof for this question

Question 10 (continued)

(ii) $D(2,3)$ (1

$$
\begin{equation*}
E(-2,3) \tag{1}
\end{equation*}
$$

Almost all the students were able to attain full marks
b) (i)
(iii)

$$
\begin{align*}
m_{B D} & =\frac{3-0}{2+4} & m_{A E} & =\frac{3-0}{-2-4} \tag{1}\\
m_{B D} & =\frac{1}{2} & & =-\frac{1}{2}
\end{align*}
$$

Equation of $B D: y-0=\frac{1}{2}(x+4)$

$$
\begin{equation*}
y=\frac{1}{2} x+2 \tag{1}
\end{equation*}
$$

Equation of $A E: y-0=-\frac{1}{2}(x-4)$
Equate (1) \& (2)

$$
\begin{array}{cc}
\frac{1}{2} x+2=-\frac{1}{2} x+2 & y=\frac{1}{2}(0)+2 \\
x=0 & y=2
\end{array}
$$

\therefore Medians meet at $(0,2)$ utrich is on the y-axis.

Question 10 (continued).
c).

$$
\begin{align*}
V & =\pi \int_{a}^{b} y^{2} \cdot d x \\
& =\pi \int_{0}^{1}\left(x^{2}+1\right)^{2} \cdot d x \\
& =\pi \int_{0}^{1} x^{4}+2 x^{2}+1 \cdot d x \\
& =\pi\left[\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+x\right]_{0}^{1} \\
& =\pi\left[\frac{1}{5}+\frac{2}{3}+1-0\right] \\
\therefore V & =\frac{28 \pi}{15} \tag{1}
\end{align*}
$$

Deduct ($\frac{1}{2}$) for not including π.

Assessment Task. 2ilinit 2015 March/Apoil Section O

(11) a)

In $\triangle A B C$ and $\triangle D E^{C} C$,
\hat{C} is common.
$\hat{B A C}=E \hat{D C}$ angles in the corresponding position as $A B / / D E$ given
$\therefore \triangle A B C \| \triangle D E C$ 2 angle test. (1)
Thus $\frac{A B}{D E}=\frac{A C}{D C}=\frac{B C}{E C}$.
(1) on stating. proportional the proportconal
duiliscon theceren "A .sine paralleleito!

$$
\begin{align*}
& \frac{11}{7}=\frac{x+15}{15} \\
& 11 \times 15=7(x+15) \\
& 165=7 x+105 \\
& 7 x=60 \\
& x=\frac{60}{7} \div 8.57 \quad 20 P \tag{1}
\end{align*}
$$ side by a dingles. divides the other site" in the same rato" "

* Well answered but students did get the ratio of sides prong.
// (b)

$$
\begin{aligned}
& y=2 x^{3}-9 x^{2}+12 x-3 \\
& y^{\prime}=6 x^{2}-18 x+12 \\
& y^{\prime \prime}=12 x-18
\end{aligned}
$$

Well answered. but max pin in ha o to be established. sig change for inflexion established.
(i) Stat points exist when $y^{\prime}=0$ Graph domain $0 \leq x \leq 3$ only and
$\div 6$

$$
\begin{align*}
& 6 x^{2}-18 x+12=0 \\
& x^{2}-3 x+2=0 \\
& (x-2)(x-1)=0 \\
& x=1, \quad x=2 \tag{1}
\end{align*}
$$

orly and
at $x=1, y=2-9+12-3=2 \quad(1,2)$
at $x=2, \quad y=16-36+24-3=1 \quad(2,1)$
at (1,2) $y_{\prime \prime}^{\prime \prime}=12-18=-6<0$ max st pt. (1)
at $(2,1), y^{\prime \prime}=24^{4}-18=6>0$ min st pt. (1)
(ii) Inflexions occur when y " $=0$ and there in a sly n change. Sign change?
at $x=1.5-\varepsilon$, (1.4) $y^{\prime \prime}=12 \times 1.4-18=-1,2<0$
(iii)

$$
\begin{align*}
& y^{\prime \prime}=\begin{array}{c}
12 x-18 \\
12 x-18 \\
x=0
\end{array}=0 \\
& \begin{aligned}
& 12 x=18 \\
& x=1 \\
& 1
\end{aligned} \tag{1}
\end{align*}
$$

(12) (a)

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-1 \\
& f^{\prime}(x)=\int(6 x-1) d x \\
& f^{\prime}(x)=\frac{b x^{2}}{2}-x+c_{1}
\end{aligned}
$$

Date

$$
\begin{array}{ll}
x=1,=3 & -3=3-1+C_{1} \\
f^{\prime}(x)=-3 & C_{1}=-5 \tag{1}
\end{array}
$$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-x-5 \\
f(x) & =\int\left(3 x^{2}-x-5\right) d x \\
& =\frac{3 x^{3}}{3}-\frac{x^{2}}{2}-5 x+C_{2} \\
f(x) & =x^{3}-\frac{x^{2}}{2}-5 x+C_{2}
\end{aligned}
$$

delta $(1,-2)-2=1-\frac{1}{2}-5+C_{2}$

$$
\begin{gather*}
C_{2}=2 \frac{1}{2} \\
\therefore f(x)=x^{3}-\frac{x^{2}}{2}-5 x+2 \frac{1}{2} \tag{i}
\end{gather*}
$$

0) ten made mistakes,
: Found $Y^{\prime}(x)$ but not the first const ant.
: many found $f(x)$ but not the 2 nd constaris i many students lest out the question data completely.

12 (b)

$$
\text { (i) } \begin{aligned}
& \frac{d}{d x}\left(e^{x} \cdot x^{\frac{1}{2}}\right) \\
= & e^{x} \times \frac{1}{2} x^{-\frac{1}{2}}+x^{\frac{1}{2}} \cdot e^{x} \\
= & \frac{e^{x}}{2 \sqrt{x}}+e^{x} \cdot \sqrt{x}=\frac{e^{x}+e^{x} \cdot 2 x}{2 \sqrt{x}}
\end{aligned}
$$

Most students
handled the product rule
well. Mons though did not $=e^{x}(1+2 x)$ not simplify enough to help (2) $\frac{1}{2 \sqrt{x}}$ (far enough) apart (ii)
(ii)

$$
\begin{align*}
& \left.(2)_{1}^{2} \frac{e^{x}(1+2 x)}{2) \sqrt{x}} d x=2 e^{x} \sqrt{x}\right]_{1}^{2} \\
& =2\left(e^{2} \cdot \sqrt{2}-e^{1} \cdot \sqrt{1}\right) \\
& =2\left(\sqrt{2} e^{2}-e^{1}\right) \tag{2}\\
& =2 e(\sqrt{2} e-1)
\end{align*}
$$

Generally well answered but the 2/was often missing.

12 (c)

(i)

$$
\begin{aligned}
& V=x \times x \times y \quad y=\text { heght } \\
& 64=x^{2} y \\
& y=\frac{64}{x^{2}} \quad \text { hergit } y=\frac{64}{x^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\operatorname{total}_{5 \cdot A} & =x^{2}+x^{2}+x y+x y+x y+x y \\
& =2 x^{2}+4 x y \\
& =2 x^{2}+4 x \times \frac{64}{x^{2}} \\
y & =\frac{256}{x}+2 x^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& y=256 x^{-1}+2 x^{2} \\
& y^{\prime}=-256 x^{-2}+4 x \\
& y^{\prime \prime}=512 x^{-3}+4
\end{aligned}
$$

When $y^{\prime}=0 \quad-\frac{256}{x^{2}}+4 x=0$

$$
\begin{array}{r}
\begin{array}{r}
\quad \frac{-256}{x^{2}}+4 x=0 \\
\text { doviously } x \neq 0 \quad \frac{-256+4 x^{3}}{x^{2}}=0 \\
4 x^{3}=256 \\
x^{3}=64 \\
x^{2}-4 \mathrm{~cm}
\end{array}
\end{array}
$$

If dimensions are $4 \times 4 \times 4$

Hen'

$$
\begin{aligned}
y^{\prime \prime} & =\frac{512}{4^{3}}+4 \\
& =8+4=12 \\
& \Rightarrow \text { min value }
\end{aligned}
$$

So minimum S.A is when dimensions are $4 \times 4 \times 4 \mathrm{~cm}$ and ito value

$$
\text { SA } 15 \quad 2 \times 4+\frac{256}{4}
$$

$$
=32+64
$$

$$
\begin{equation*}
=96 \mathrm{~cm}^{2} \tag{2}
\end{equation*}
$$

a minimum was offer not found by either using y^{\prime} or $y^{\prime \prime}$ "
Dimensions often not finally quoted The minimum surface area of ten not Found as a conclusion.

