

SYDNEY BOYS HIGH SCHOOL moore park, surry hills

2015 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #2

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen.
- Board approved calculators may be used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 69

- Attempt questions 1 12.
- All questions are not of equal value.
- Unless otherwise directed give your answers in simplest exact form.

Examiner: A.M.Gainford

Section A (24 Marks)

Questions 1 to 7. (7 marks)

Indicate which of the answers A, B, C, or D is the correct answer.MarksWrite the answer on the separate answer sheet.Marks

(1) The gradient of the tangent to the curve $y = (x - 1)(x^2 + 1)$ at the point where $x = \frac{1}{2}$ is:

A: $-\frac{4}{3}$ **B:** $\frac{3}{4}$ **C:** $\frac{4}{3}$ **D:** $-\frac{3}{4}$

(2) For what values of x is the curve
$$f(x) = 2x^2 - x^3$$
 increasing?

- A: $x > \frac{2}{3}$ B: $x < 0, x > \frac{4}{3}$ C: $x < \frac{2}{3}$ D: $0 < x < \frac{4}{3}$
- (3) What is the slope of the line containing the points (-9,2) and (3,14).

1

1

1

A:
$$\frac{4}{3}$$

B: $-\frac{1}{2}$
C: 1
D: -2

(4) The figure below is the graph of $f(x) = 3x^2$:

Which of the following represents the graph of the second derivative?

C:

f(x)8-

4.

2.

0

-2

x

A:
$$\frac{dy}{dx} = -18x^{-2}$$

B:
$$\frac{dy}{dx} = -12x^{-3}$$

C:
$$\frac{dy}{dx} = -18x^{-4}$$

D:
$$\frac{dy}{dx} = -3x^{-2}$$

 $y = 6x^{-3}$

(6) It is known that f''(a) = 0. The point (a, f(a)) is:

A:	a minimum turning point
B :	a maximum turning point
C:	a horizontal point of inflection
D:	not determined (insufficient information)

(7) The graph with equation $y = x^2$ is translated 3 units down and 2 units to the right. Which equation represents the resulting graph?

A:
$$y = (x-2)^2 + 3$$

B: $y = (x-2)^2 - 3$
C: $y = (x+2)^2 + 3$
D: $y = (x+2)^2 - 3$

Question 8 (17 marks) (Start a new booklet)

(a) Differentiate the following: Marks

- (i) $\ln x^3$ 1
- (ii) e^{2x+1} 1
- (iii) $e^x \ln x$ 1

(b) Find

(i)
$$\int (3x^2 - 4x + 1)dx$$
 2

(ii)
$$\int \left(\frac{1}{x} - \frac{1}{x-1}\right) dx$$

(iii)
$$\int \left(\frac{1}{e^{2x}}\right) dx$$
 2

(c) Evaluate

(i)
$$\int_{-1}^{3} (2x-1)dx$$
 2

(i)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{\cos x}{1+\sin x}\right) dx$$
 2

(d) (i) Copy and complete the table for $f(x) = e^{x^2}$ correct to 4 decimal places. 2

x	0	0.5	1	1.5	2
f(x)	1				

2

⁽ii) Use Simpson's Rule with the above 5 function values to find an approximation to $\int_0^2 e^{x^2} dx$ correct to 3 decimal places.

Section B (23 Marks)

START A NEW BOOKLET

Question	9	(12)	Marks)
----------	---	------	--------

(a)	In an <i>x</i> - <i>y</i>	plane in you answer booklet:	Marks
	(i)	Sketch the line through $C(-3,0)$ which makes an angle of 45° with the positive direction of the <i>x</i> -axis. Also sketch the line $x + y = 4$, which meets the first line at <i>A</i> , and the <i>x</i> -axis at <i>B</i> .	1
	(ii)	Show that AC is perpendicular to AB .	1
	(iii)	Find the equation of the line through B , which is parallel to AC .	2
	(iv)	Show that the equation of the line through the point <i>C</i> parallel to the line <i>AB</i> is $x + y + 3 = 0$.	1
	(v)	The lines from parts (iii) and (iv) meet at D . Find the coordinates of D .	2
	(vi)	What type of quadrilateral is <i>ABDC</i> ? Give reasons.	2

(b) A car's velocity v in metres per second is recorded each second as it accelerates along a drag strip. The table below gives the results. 3

t (s)	0	1	2	3	4	5
$v(ms^{-1})$	0	15	31	48	64	83

Given that the distance travelled may be found by calculating the area under a velocity/time graph, use the trapezoidal rule to estimate the distance travelled by the car in the first five seconds.

(a)

In the diagram $\angle QPR = 90^{\circ}$, PS = SQ.

- (i) Copy the diagram to your answer booklet.
- (ii) Construct $ST \perp PQ$ (Sketch only). 1

(ii) Prove that
$$PS = \frac{1}{2}RQ$$
. 3

(b) A triangle has vertices A(4, 0), B(-4, 0) and C(0, 6).

(i)	Draw a neat sketch of the triangle in your answer booklet.	1
(ii)	State the coordinates of <i>D</i> and <i>E</i> , the mid-points of <i>CA</i> and <i>CB</i> respectively.	1
(iii)	Show that the medians BD and EA meet on the y-axis.	3

(c)

In the diagram the shaded region is bounded by the parabola $y = x^2 + 1$, the x-axis and the lines x = 0, and x = 1.

Find the volume of the solid formed when then shaded region is rotated about the *x*-axis.

Section C (22 Marks)

START A NEW BOOKLET

3

Question 11 (11 Marks)

(a)

In the diagram above, $AB \parallel DE$.

Find the value of *x*, correct to 2 decimal places, giving full reasons.

(b) Consider the curve with equation $y = 2x^3 - 9x^2 + 12x - 3$.

(i)	Find the co-ordinates of the stationary points and determine their nature.	4
(ii)	Find the co-ordinates of any points of inflexion.	2
(iii)	Sketch the curve for the domain $0 \le x \le 3$. (Do not attempt to find any <i>x</i> -intercepts.)	2

Question 12 (11 Marks)

(a) For a certain curve
$$y = f(x)$$
, $f''(x) = 6x - 1$.

Find the equation of the curve given that it passes through the point (1, -2) with gradient -3.

(b) (i) Differentiate
$$e^x \sqrt{x}$$
. 2

(ii) Hence evaluate
$$\int_{1}^{2} \frac{e^{x}(1+2x)}{\sqrt{x}} dx$$
. 2

(c) A sealed tin rectangular box is to have a square base and a volume of 64 cm^3 . If the length of the edge of the base is *x* cm:

2

(i)	Express the height of the box in terms of x .	1
(ii)	Show that the total surface area $y \text{ cm}^2$ of the box is given by $y = \frac{256}{x} + 2x^2$.	2

(iii) Find the minimum surface area of the box, and its dimensions.

This is the end of the paper.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

NOTE : $\ln x = \log_e x, x > 0$

2015

HSC Task #2

Mathematics Suggested Solutions & Markers' Comments

QUESTION	Marker
1 – 7	_
8	VL see PSP
9 & 10	JC
11 & 12	RB

Multiple Choice Answers

- 1. B
- 2. D
- 3. C 4. B
- 4. B 5. C
- 5. C 6. D
- 7. B

$$\frac{Q.1}{Q.1} \quad y' = u'v + uv' \qquad \text{where} \qquad u = x-1 \\ = x^{2}+1 + (x-1)x 2x \qquad u' = 1 \\ = x^{2}+1 + 2x^{2} - 2x \qquad v = x^{2}+1 \\ = 3x^{2} - 2x + 1 \qquad v' = 2x \\ f'(\frac{1}{2}) = 3(\frac{1}{2})^{2} - 2(\frac{1}{2}) + 1 \\ = \frac{3}{4} - 1 + 1 \\ = \frac{3}{4} \\ B \\ \hline Curve \qquad increases \qquad when \qquad f'(x) > 0 \\ 4x' - 3x^{2} > 0 \\ x (4 - 3x) > 0 \\ .: \qquad 0 < x < \frac{4}{3} \\ \hline v \\ 0 \qquad \frac{4}{3} \\ \hline B \\ \hline B \\ \hline Curve \qquad increases \qquad when \qquad f'(x) > 0 \\ 4x' - 3x^{2} > 0 \\ x (4 - 3x) > 0 \\ .: \qquad 0 < x < \frac{4}{3} \\ \hline v \\ 0 \qquad \frac{4}{3} \\ \hline B \\ \hline B \\ \hline B \\ \hline B \\ \hline Curve \qquad increases \qquad when \qquad f'(x) > 0 \\ 4x' - 3x^{2} > 0 \\ x (4 - 3x) > 0 \\ .: \qquad 0 < x < \frac{4}{3} \\ \hline v \\ \hline 0 \qquad \frac{4}{3} \\ \hline B \\ \hline B \\ \hline B \\ \hline C \\ \hline C$$

.

С

=

$$\frac{Q.4}{f'(x) = 3x^{2}}$$

$$\frac{f'(x) = 6x}{f''(x) = 6}$$

$$\frac{Q.5}{f''(x) = 6}$$

$$\frac{Q.5}{\frac{dy}{dx} = -18x^{-4}}$$

$$C$$

$$\frac{Q.6}{D}$$

$$\frac{Q.7}{y = (x-2)^{2} - 3x}$$

$$\frac{translated}{3 units}$$

$$\frac{U}{translated}$$

$$\frac{U}{translated}$$

$$\frac{U}{translated}$$

.

Question 8
(a) (i)
$$\frac{d}{dx} \ln x^3 = \frac{d}{dx} 3 \ln x$$

 $= \frac{3}{x}$

a)(i) Those who wrote the following received no marks because they are all incorrect: $(3x^2)^{-1}$, $\frac{1}{x^3}$, $\frac{x}{3}$, $\frac{3\ln x^2}{\ln x^3}$, $\frac{2x}{x^3}$, $3\ln x^2$, $3x^3$, $3e^x$, $\frac{3}{x^2}$, $3\ln e^x$, $3x^2\ln x^3$ Those who wrote $\frac{3x^2}{x^3}$ received $\frac{1}{2}$ out of 1 mark because they should have simplified their answer to $\frac{3}{x}$. (ii) $\frac{d}{dx} e^{2x+1} = 2e^{2x+1}$

1)(ii) Those who wrote the following received no marks because they were all incorrect: $2e^{2x}$, e^2 , e^{2x+1} , $2xe^{2x+1}$, $(2x+1)e^{2x+1}$, $(2x+1)e^{2x}$, $\frac{1}{2}e^{2x+1}$

(iii)
$$\frac{d}{dx} e^{x} \ln x = u'v + uv'$$
 where $u = e^{x}$
 $= e^{x} \ln x + \frac{e^{x}}{x}$ $u' = e^{x}$
 $= e^{x} \left(\ln x + \frac{1}{x} \right)$ $v' = \frac{1}{x}$

a)(iii) The product rule should be used.
Those who did not use the product rule wrote
the following which were all incorrect:

$$e^{x} \times \frac{1}{x} = \frac{e^{x}}{x}$$
, $e^{x} \ln x$, $\frac{1}{x^{x}}$, $x^{-e^{x}}$, e^{x} , $2xe^{x} \ln x$

(b) (i)
$$\int (3x^2 - 4x + 1) dx = x^3 - 2x^2 + x + C$$

(ii) $\int (\frac{1}{x} - \frac{1}{x-1}) dx = \ln x - \ln (x-1) + C$

b)
$$\rightarrow 1$$
 mark was bost if the constant was not included.
b)(i) well answered overall
b)(ii) The following scored zero marks :
 $-1-(>c-1)^{-1}+C$, $lnx+ln(x-1)+C$, $l+C$, $-x+C$,
 $\frac{-2}{>c-1}$, $\frac{x^{\circ}}{0}$ = undefined, $\frac{ln(x)}{ln(x-1)}$, $\frac{1}{x}+C$, $lnx-lnx-lnx$

(iii)
$$\int \left(\frac{1}{e^{2x}}\right) dx = \int e^{-2x} dx$$

= $\frac{e^{-2x}}{-2} + c$

(b) (iii) If the negative sign was omitted from the
first term, one mark was lost
i.e.
$$e^{-2x} + c$$
 is the correct answer $(net e^{-2x}) = e^{-2x} + c$
This question was not answered correctly overall
with incorrect answers such as :
 $\frac{\ln e^{2x}}{2e^{2x}}$, $\ln e^{2x} + c$, $e^{-2x} + c$, $2x + c$, $\frac{e^{2x-1}}{2x}$,
 $\frac{x}{e^{2x}} + c$, $\frac{1}{e^x} + c$, $\frac{1}{2} \ln (e^{2x})$, $-3e^{-3x} + c$,
 $\frac{e^{-2x+1}}{e^{-2x+1}} + c$, $\ln e^{2x} \cdot \frac{1}{2e^{2x}}$, $\frac{1}{e^{2x^2}} + c$
(c) (i) $\int_{-1}^{3} (2x-1) dx = [x^2 - x]_{-1}^{3}$
 $= (3^2 - 3) - ((-1)^2 - (-1))$
 $= (9 - 3) - (1 + 1)$
 $= 4$

(c) (i)
$$[x^{2}-x]^{3}_{-1}$$

= $(3^{2}-3) - ((-1)^{2}-(-1))$ If grouping symbols were
not used, students
incorrectly wrote $6-(-2)$
= 4
for incorrectly wrote $6-(-2)$
= 8
for incorrectly wrote $6-(-1)$
= 6
The negative sign on the lower limit was
incorrectly left out (1 was used instead of -1)
Most students answered this correctly
because grouping symbols were used.

(c) (ii)
$$\int_{T_{c}}^{T_{c}} \left(\frac{\cos x}{1+\sin x}\right) dx = \left[\ln\left(1+\sin x\right)\right]_{T_{c}}^{T_{c}}$$
$$= \ln\left(1+\frac{\sqrt{3}}{2}\right) - \ln\left(1+\frac{1}{2}\right)$$
$$= \ln\left(\frac{2+\sqrt{3}}{2}\right) - \ln\left(\frac{3}{2}\right)$$
$$= \ln\left(\frac{2+\sqrt{3}}{2}\right)$$
$$= \ln\left(\frac{2+\sqrt{3}}{2}\right)$$
$$= \ln\left(\frac{2+\sqrt{3}}{2}\right)$$

(d) (i) х 0 0.5 1.5 2 f(x)t 1.2840 2.7183 9.4877 54.5982 (ii) $\int_{0}^{2} e^{x^{2}} dx \approx \frac{h}{3} \left[f(0) + f(2) + 4(f(0.5) + f(1.5)) + 2(f(1)) \right]$ $= \frac{2-0}{4} \left(1 + 54.5982 + 4 \left(1.2840 + 9.4877 \right) + 2 \left(2.7183 \right) \right)$ = 17.354 (correct to 3 decumal places Some students did not round to 4 decimal (d) (i) places (instead they rounded to 3 decimal places and lost 1 mark). When completing the table, approximations. were not written and instead exact values et, el, e, e were written. No marks were awarded for exact values.

1/2 mark was lost for each incorrect approximation.

(d)(ii) Overall, Simpson's Rule was written and applied correctly. In a few cases, $\frac{h}{3}$ was incorrectly calculated as $\frac{2-0}{4} = \frac{1}{2}$ (instead of $\frac{1}{6}$) $\frac{1}{2}$ mark was lost if $\frac{h}{3}$ was incorrect. If Simpson's Rule was written and applied correctly however the final answer was not rounded to 3 decimal places or uncorrect. $\frac{1}{2}$ mark was lost.

(i)

$$\begin{array}{c}
 (i) \\
 (j) \\$$

4

Almost all the students were able to attain full marks

Question 9 (continued) a) (v) y = x - 4 ----(リ) x + y + 3 = 0sub (1) in (2) x + x - 4 + 3 = 02x - 1 = 0 $\chi = \frac{1}{2}$ $y = \frac{1}{2} - 4$ $y = -3\frac{1}{2}$ $D = (\frac{1}{2}, -3\frac{1}{2})$ Almost all the students were able to attain full marks (v_{i}) ABED is a square * All sides equal, adjacent sides are perpendicular.

> This part was poorly done, most students weren't able to identify the type of quadrilateral

Most students were able to attain full marks

Most students were able to write out a logical proof for this question

Question 10 (continued) $V = \pi \int_{a}^{b} y^2 dx$ $= \pi \int (x^2 + 1)^2 dx$ $= \pi \int_{-\infty}^{1} x^{4} + 2x^{2} + 1$, dx $= \pi \left[\frac{x^{5}}{5} + \frac{2x^{3}}{3} + x \right]^{1}$ $=\pi\left[\frac{1}{5}+\frac{2}{3}+1\right]$ - 0 | $V = \frac{28\pi}{15}$ Deduct (2) for not including TT.

Almost all the students were able to attain full marks

Algersment Task. 2 Minit 2015 March/ April Section O (||)(11) a) x_{+15} D_{15} D_{15} IN DABC and DDEC, T_{15} è is common BAC = EDC angles in the corresponding position as AB/IDE given 2'angle test. U : AABCIIIADEC The proportional duision theorem Thus AB = AC = BC DE DC EC. a line parallel to 1 side of a triangle, divides the other sides in the same rates " $\frac{11}{7} = \frac{\chi + 15}{15}$ $11 \times 15 = 7(2+15)$ 165 = 7x + 105x= 60 = 8.57 2DP () * Well answered but students did get the ratio of sides wrong.

11 (b) $y = 2x^3 - 9x^2 + 12x - 3$ With answered hit max Imin he but max Imin has y' = bx - 18x + 12to be established. Sign change for hished y = 12x - 18 Graph domain (i) stat points exist when $10 \le x \le 3$ $\frac{1}{26} \frac{6x^2 - 18x + 12 = 0}{x^2 - 3x + 2} = 0$ y values then. (x-2)(x-1)=0x = 1, x = 2at x=2, y=16-36+24-3=1 (2,1) (ii) Inflexions occur when y = 0 and there is a sign change. y"= 12x-18=0 $12x = 18, x = 12^{\circ}$ $(1_{2}^{\prime}, 1_{2}^{\prime})^{\cdot}$ At x = 12 y = 6.75 - 20.25 + 18-3 = 12 Sign changel? $\begin{array}{c} y = 1.5 - \varepsilon, (1.4) \quad y' = 12 \times 1.4 - 18 = -1.2 < 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y'' = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 - 18 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 12 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 1.6 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 1.2 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 1.2 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 1.2 \times 1.6 = 1.2 > 0 \\ y = 1.5 + \varepsilon, (1.6), \quad y = 1.2 \times 1.6 \times 1.$ (iii) $if \xrightarrow{1} 2 3 \chi$

 $\left(1 \right)$ (n) (a) 7''(x) = 6x - 1 $f'(x) = \int (bx-1) dx$ $\int \frac{f'(x)}{2} = \frac{bx^2}{2} - x + C_1$ $\int \frac{dx}{2} = \frac{bx^2}{2} - x + C_1$ $\frac{dx}{2} = \frac{bx^2}{2} - x + C_2$ $\chi = 1$, $-3 = 3 - 1 + C_1$ f'(x) = -3 $C_1 = -5$ $f(\alpha) = 3\alpha^2 - 3\alpha - 5$ (1) $f(x) = \int (3x^2 - x - 5) dx$ $= \frac{3x^{2} - x^{2} - 5x + C_{2}}{\frac{3}{2} - \frac{1}{2}}$ $f(x) = \chi^{3} - \frac{\chi^{2}}{2} - \frac{5\chi}{2} + C_{2}$ $dala (1,-2) -2 = 1 - \frac{1}{2} - 5 + C_2$ $G_2 = 2\frac{1}{2}$ $\therefore f(x) = \chi^3 - \frac{\chi^2}{2} - 5\chi + 2\frac{1}{2}$ Often made mistakes, ; found 7 (sc) but not the first constant. ; many found 7 (sc) but not the 2 constant i many students left out the question

 $(i) \stackrel{d}{=} \begin{pmatrix} e^{x} & \chi^{\frac{1}{2}} \end{pmatrix}$ 12 (b) $= \underbrace{\begin{array}{c} x \\ x \\ x^{2} \end{array}}_{x^{2}} + \underbrace{\begin{array}{c} x \\ x^{2} \end{array}}_{r} + \underbrace{\begin{array}{c} x \\ x^{2} \end{array}}_{r} \\ x^{2} \end{array}$ $= 2(e^{2}.52 - e^{1}.51)$ $2(52e^2 - e^2)$ $2e(52e - e^2)$ via (3)Generally well answered but the 2/ was often missing.

|2 (c) y = height $V = \chi_X \chi_X \chi_y$ (1) D easily Journal $64 = \chi^2 \gamma$ height $y = \frac{64}{N^2}$ $y = \frac{64}{N^2}$ (\tilde{n}) = $2x^2 + 4xy$ = $2\chi^2 + 4\chi \times \frac{64}{\chi^2}$ well answered $y = 256 + 2x^2$ (111) $y = 25bx^{-1} + 2x^{2}$ $y' = -256x^2 + 4x$ $y''=512x^{-3}+4$ When $y' = 0 - \frac{256}{x^2} + 4x$ ------256 + 4x = 0obviously x = 0 4x = 256 χ^3 5

If dimensions are 4x4x4 $y'' = \frac{512}{2} + 4$ then = 8+4=12 => min value So Minimum S.A is when dimensions are 4×4×4 cm and its value SA 15 2x4+256 = 32 + 64= 96 cm² 2. a minimum was often not Jourd by either using y or y", Dimensions often not finally quoted The mininum Surface area often not Jound as a conclusion.