

2016
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- All answers to be given in simplified exact form, unless otherwise stated
- Hand in your answers in 4 separate bundles. Multiple Choice (Q1-5), Question 6, Question 7 and Question 8.

Total Marks - 70

- Attempt questions 1-8
- All questions are NOT of equal value.

Examiner: A Ward

Section A - Answer on Multiple Choice Answer Paper.
5 Marks

1. Given
$f(x)=\left\{\begin{array}{l}-5 \text { for } x \leq-3 \\ 2 x \text { for }-3<x<0 \\ x^{2} \text { for } x \geq 0\end{array}\right.$
Find the value of $f(-3) \div f(3)$
A. $x=\frac{-5}{9}$
B. $x=\frac{2}{3}$
C. $x=\frac{1}{2}$
D. $x=\frac{-5}{6}$
2. Convert $\frac{3 \pi}{5}$ radians to degrees.
A. 108°
B. 54°
C. 216°
D. 540°
3. Find the primitive of: $e^{7 x}+14$
A. $7 e^{7 x}+14+c$
B. $\frac{e^{7 x}}{7}+14 x+c$
C. $e^{7 x}+14 x+c$
D. $7 e^{7 x}+14 x+c$
4. Differentiate: $\log _{e}(4 x+3)$
A. $4 \log _{e}(4 x+3)$
B. $\frac{4}{\log _{e}(4 x+3)}$
C. $\frac{4}{4 x+3}$
D. $\frac{4 x+3}{4}$
5. What is the exact value of $\cos \frac{7 \pi}{6}$?
A. $\frac{\sqrt{3}}{2}$
B. $\frac{-\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

End of Multiple Choice

Question 6 Overleaf

Question 6 - Start a new booklet.

20 Marks

a. Find:

$$
\int \frac{3}{2 x+6} d x
$$

b. Draw on a number line the solution of:

$$
|2 x-1| \geq 5
$$

c.

In the diagram, $X Y$ is an arc of a circle with centre O and radius 12 cm . The length of the arc $X Y$ is $4 \pi \mathrm{~cm}$.
i. Find the exact size of θ in radians.
ii. Find the exact area of sector $O X Y$.
d. The co-ordinates of the points A, B and C are $(-4,3),(0,5)$ and $(9,2)$ respectively. (Hint: draw a diagram)
i. Find the length of the interval $B C$.
ii. Show that the equation of the line l, drawn through A parallel to $B C$ is

$$
x+3 y-5=0
$$

iii. Find the co-ordinates of D, the point where the line l meets the x-axis.
iv. Prove $A B C D$ is a parallelogram. $\mathbf{2}$
v. Find the perpendicular distance from the point B to line l. $\mathbf{2}$
vi. Hence, or otherwise, find the area of the parallelogram $A B C D$.
e.

In the diagram $C A=A D=D B$ and $\angle E B D=20^{\circ}$
i. Copy this diagram onto your answer sheet.
ii. Show $\angle A D C=40^{\circ}$, giving reasons.
iii. Hence, find the size $\angle C A E$ giving reasons
f. A point P moves so that it is always equidistant from the points $A(-4,0)$ and $B(4,0)$. Find the locus of P.

End of Question 6.

Question 7 Overleaf

Question 7 - Start a new booklet.

23 Marks

a. Differentiate:
i. $3 x e^{5 x} \quad 2$
ii. $\ln \left(\frac{x+2}{x-2}\right)$
b. The table shows the values of a function $f(x)$ for five values of x.

x	1	1.5	2	2.5	3
$f(x)$	7	3	-1	5	9

Use the Trapezoidal rule with these five values to find the value of:

$$
\int_{1}^{3} f(x) d x
$$

c. The curves $y=x^{2}$ and $y=4-x^{2}$ are shown below. The two curves intersect at P and Q.

i. Write down the co-ordinates of P and Q.
ii. Hence, find the exact area of the region enclosed by $y=x^{2}$ and

$$
y=4-x^{2}
$$

d.

In the diagram, $P Q R S$ is a rectangle and $S R=3 P S . R, Q$ and Y are collinear points. $X Q=6 \mathrm{~cm}$ and $Y Q=8 \mathrm{~cm}$.
i. Prove that $\triangle Y Q X|\mid \triangle Y R S \quad 2$
ii. Hence find the length of $P S$.
e. Graph the curves then shade the intersection of the regions defined by :

$$
2 y \geq x^{2}-5 \text { and } y<x-1
$$

f. The region bounded by the curve $y=e^{x}+e^{-x}$, the x axis and the lines $x=0$ and $x=2$ is rotated around the x axis. Find the volume of the solid formed. (Leave your answer in terms of e).
g. A curve has gradient function $\frac{d y}{d x}=e^{3 x}$. Find the equation of the curve if it passes through the point $(0,2)$

End of Question 7

Question 8 Overleaf

Question 8 - Start a new booklet.

22 Marks

a. If $f(x)=x+\frac{1}{x}$
i. Solve $f(x)=-2$. 2
ii. Show whether the function is odd, even or neither. $\mathbf{1}$
iii. Write down the domain and range of $f(x)$. 2
b. Use Simpson's rule with 5 function values to find the approximate volume, to 2 decimal places, when the area bounded by the curve

$$
y=\frac{1}{\sqrt{4+x^{2}}}
$$

, x-axis and the lines $x=1$ and $x=5$, is rotated about the x-axis
c. Evaluate $\int_{1}^{e^{3}} \frac{7}{x} d x$.
d. i. Draw the graphs of $y=3 \cos x$ and $y=1-x$ on the same axes for

$$
-2 \pi \leq x \leq 2 \pi
$$

ii. Explain why all the solutions of the equation $3 \cos x=1-x$ must lie between $x=-2$ and $x=4$
e. Find the equation of the circle which is concentric to circle
$x^{2}+y^{2}+8 x+2 y+8=0$ and which passes through the point $(1,7)$
f.

$P Q R S$ is a parallelogram. $P M$ and $R N$ are perpendicular to $Q S$.
i. Copy the diagram into your answer booklet.
ii. Prove the $P N R M$ a parallelogram.
g. The function represented by the equation $x=3 \sin (n t)+6$ has a period equal to $\frac{3 \pi}{4}$. Determine the value of n.
h. Graph the piecemeal function $v(t)= \begin{cases}A e^{k t} & 0 \leq t<\frac{1}{k} \\ A e & t \geq \frac{1}{k}\end{cases}$ where $A, k>1$ are constants.

End of Question 8

End of Examination

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2016
HSC Task \#2

Mathematics 2U

Suggested Solutions
 \&

 Markers' Comments| QUESTION | Marker |
| :---: | :---: |
| $1-5$ | - |
| 6 | PB |
| 7 | JWC |
| 8 | RB |

Multiple Choice Answers

1. A
2. A
3. B
4. C
5. B
6. Given

$$
f(x)=\left\{\begin{array}{l}
-5 \text { for } x \leq-3 \\
2 x \text { for }-3<x<0 \\
x^{2} \text { for } x \geq 0
\end{array}\right.
$$

Find the value of $f(-3) \div f(3)$
(A.) $x=\frac{-5}{9}$
B. $x=\frac{2}{3}$.

$$
-5
$$

C. $x=\frac{1}{2}$
D. $x=\frac{-5}{6}$
2. Convert $\frac{3 \pi}{5}$ radians to degrees.
(A.) 108°
B. 54°
C. 216°
D. 540°
3. Find the primitive of: $e^{7 x}+14$
A. $7 e^{7 x}+14+c$
(B.) $\frac{e^{7 x}}{7}+14 x+c$
C. $e^{7 x}+14 x+c$
D. $7 e^{7 x}+14 x+c$
(1) A
(2) A
(3) B
(4) C
(5) B.
4. De: $\log _{e}(4 x+3)$
A. $4 \log _{e}(4 x+3)$
B. $\frac{4}{\log _{e}(4 x+3)}$
C. $\frac{4}{4 x+3}$
D. $\frac{4 x+3}{4}$
5. What is the exact value of $\cos \frac{7 \pi}{6}$:

$$
\frac{-180}{6}=210
$$

A. $\frac{\sqrt{3}}{2}$
$=-\cos 210 \quad \frac{S}{\circ} \quad A$
(B.) $\frac{-\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Qursmon6- (2u.)
a. $\int \frac{3}{2 x+6} d x=\frac{3}{2} \int \frac{d x}{x+3}$

$$
=\frac{3}{2} \ln |x+3|+c .
$$

Commiser T alternatively $\frac{3}{2} \ln |2 x+6|+c_{1}$
(arsueen differ hy a coustonct ie $\left(\neq c_{1}\right)$
$T 6$
(1)

$$
\begin{aligned}
l & =r \theta \\
\therefore 4 \pi & =120 \\
\theta & =\frac{\pi}{3}
\end{aligned}
$$

(II)

$$
\begin{aligned}
1 & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 144 \times \frac{\pi}{3} \\
\therefore A & =24 \pi \mathrm{cn}^{2}
\end{aligned}
$$

Coumrait most students oftained full manto.
b

$$
\begin{aligned}
& |2 x-1| \geqslant 5 \\
\therefore \quad 2 x-1 \geqslant 5 & , \quad 2 x-1 \leqslant-5 \\
x \geqslant 3, & x \leqslant-2
\end{aligned}
$$

commant. were dre.
(d)
(i)

$$
\begin{aligned}
B C & =\sqrt{(5-2)^{2}+(0-4)^{2}} \\
& =\sqrt{9+81} \\
& =\sqrt{90} \\
& =3 \sqrt{10}
\end{aligned}
$$

(iI)

$$
\text { 1) } \begin{aligned}
\frac{y-3}{x+4} & =\frac{2-5}{9-0} \\
\frac{y-3}{x+4} & =\frac{-1}{3} \\
\frac{3 y-9}{} & =-x-4 \\
x+3 y-5 & =0
\end{aligned}
$$

(111) $D(5,0)$
(iv)

$$
\begin{aligned}
m_{A_{B}} & =\frac{5-3}{0+4} \\
& =\frac{1}{2} \\
m_{C_{0}} & =\frac{2-0}{9-5} \\
& =\frac{1}{2}
\end{aligned}
$$

$\therefore A B / / C D \quad \& B C / / A D$ (data)
$\therefore A B C D$ is a parablelogram.
(v)

$$
\begin{aligned}
d & =\left|\frac{1 \times 0+3 \times 5-5}{\sqrt{10}}\right| \\
& =\frac{10}{\sqrt{10}} \\
& =\sqrt{10} .
\end{aligned}
$$

(vi)

$$
\begin{aligned}
\text { Area } & =3 \sqrt{10} \times \sqrt{10} \\
& =30 m^{2}
\end{aligned}
$$

f

Now $P A=P B$.
ie $\sqrt{(x+4)^{2}+(y-4)^{2}}=\sqrt{(x-4)^{2}+(y-0)^{2}}$.

$$
\begin{aligned}
(x+4)^{2}+y^{2} & =(x-4)^{2}+y^{2} \\
x^{2}+8 x+16 & =x^{2}-8 x+16 .
\end{aligned}
$$

$$
16 x=0
$$

$\therefore \quad x=0$ ie y-arir.

Commerts The tocus is cleanly the restendieular bivecter of the interal $A B$. ie the g-ain.
NB The instiuction clealy state that secessay surnking he akourn

And
Answen to he given in simplified porm ie rut $16 x=0$ for exanple. suten $x=0$ is simpler.

Combusts

* A number if students had trontle with (II). They were able th estaflich chweet gradient lout didn't inoelue the print A.
*. (iv) curled he done in a vainly of ways. eg one hair of sides equal and parallel.
os diagonals livest ore aster.
*. Overall, quite well dove.
(e) (1)

(ii) $\angle D A C=20^{\circ}$ (base angles of an corrodes triangle?
$\therefore \angle A D C=40^{\circ}$ (extend angle equal to the sunn of the intents
(III) $\angle A C D=40^{\circ}$ (bare anglesif an oproute angles). isoovers triangle)

$$
\therefore \angle C A E=40^{\circ}+20^{\circ}
$$

$=60^{\circ}$. (extent angle equal it the sum y the intention ophorite angles)
COMMBret Antat students fill sacks.

Year 12 (2 Unit) Half Yearly Examination

Question 7

$$
\text { ai) } \begin{align*}
& y=3 x e^{5 x} \\
& y^{\prime}=3 x\left(5 e^{5 x}\right)+e^{5 x}(3) \\
&=15 x e^{5 x}+3 e^{5 x} \\
& y^{\prime}=3 e^{5 x}(5 x+1) \tag{2}
\end{align*}
$$

Generally well-done. Careless mistakes with the differential of $e^{5 x}$

$$
\text { ii) } \begin{align*}
y & =\ln \left(\frac{x+2}{x-2}\right) \\
\text { ie } y & =\ln (x+2)-\ln (x-2) \\
& =\frac{1}{x+2}-\frac{1}{x-2} \\
& =\frac{x-2-(x+2)}{(x+2)(x-2)} \\
y^{\prime} & =\frac{-4}{(x+2)(x-2)} \tag{2}
\end{align*}
$$

The use of log law or chain rule is suitable. However, $\ln \frac{x+2}{x-2}$ is not the same as $\frac{\ln (x+2)}{\ln (x-2)}$

$$
\begin{aligned}
\text { b) } & \approx \frac{0.5}{2}(7+2(3+-1+5)+9) \\
& =\frac{0.5}{2} \times 30 \\
& =7.5
\end{aligned}
$$

Award 1 for the height $=0.5$

Award 1 for the value 30

Award for the correct use of the Trapezoidal rule
Some candidates were confused over the Trapezoidal rule.

$$
\begin{align*}
& \text { Ci) } \quad 4-x^{2}=x^{2} \\
& 0=2 x^{2}-4 \\
& 0=2(x+\sqrt{2})(x-\sqrt{2}) \\
& \therefore P(-\sqrt{2}, 2) \tag{2}\\
& Q(\sqrt{2}, 2) \\
& \text { (-1) with no working }
\end{align*}
$$

Students were told about the mistake in the question during the examination. Using $y=2-x^{2}$ will make the question significantly easier.

$$
\begin{align*}
& \text { ii) } \int_{-\sqrt{2}}^{\sqrt{2}}\left(4-x^{2}\right)-x^{2} d x \\
& \int_{-\sqrt{2}}^{\sqrt{2}} 4-2 x^{2} d x \\
& A=\left(4 x-\frac{2 x^{3}}{3}\right]_{-\sqrt{2}}^{\sqrt{2}} \\
& =\frac{\left.\left(4 \sqrt{2}-\frac{4 \sqrt{2}}{3}\right)-(-4 \sqrt{2})+\frac{4 \sqrt{2}}{3}\right)}{3}--\frac{8 \sqrt{2}}{3} \\
& = \\
& =\frac{16 \sqrt{2}}{3} \text { units }^{2}
\end{align*}
$$

Award 1 for correct integral

$$
\text { Award } 2 \text { for substitution with correct answer }
$$

One mark deducted for not able to simplify $\left(\sqrt{2}^{3}\right.$
Quite a number of students struggle with simplifying this expression.

d)

i) In $\triangle Y Q x, \triangle Y R S$ $\angle Y$ is common \checkmark here. $\angle Y Q X=\angle Y R S=90^{\circ}$
(corresp $\angle S P Q / / S R$)
(2)
$\therefore \triangle Y Q X \| Y R S$ (equiangular)
Candidates need to be careful what is "given" in the question, $\angle \mathrm{XQY}=90^{\circ}$ is not given. Parallel lines must be labelled using angles in parallel lines. Equiangular or all corresponding angles are equal can be used as a reason for similarity, not AAA.

No half mark awarded for this question.
ii) Let $Q R=x \therefore S R=3 x$

$$
\frac{8+x}{3 x}=\frac{8}{6}(\text { same ratios } \text { in } 111 \Delta s)
$$

$$
6(8+x)=24 x
$$

$$
48+6 x=24 x
$$

$$
48=18 x
$$

$$
\therefore x=P S=8 / 3=22 / 3 \text { units (1) }
$$

Generally well done. Try to answer as a fraction.

Most candidates did not show the point of intersection. This is part of the feature.

Award one for POI
Award one for correct parabola and linear function
Award one for the correct region and the correct lines
Minus half mark for each mistake.

$$
V=\pi \int y^{2} d x
$$

$$
\left(e^{x}+e^{-x}\right)^{2}=e^{2 x}+2 e^{x} e^{-x}+e^{-2 x}
$$

$$
\therefore v=\pi \int_{0}^{2} e^{2 x}+e^{-2 x}+2 d x
$$

$$
=\pi\left[\frac{e^{2 x}}{2}-\frac{e^{-2 x}}{2}+2 x\right]_{0}^{2}
$$

$$
\begin{equation*}
=\pi\left[\left(\frac{e^{4}}{2}-\frac{e^{-4}}{2}+4\right)-\right. \tag{3}
\end{equation*}
$$

Award 1 for the expansion. Almost half of the candidate experienced difficulty with the expansion

Award 1 for correct integral
Award 1 for simplified answer

Award 1 for the correct value of c
Award 1 for the equation.
This is not a linear function, hence $y=m x+b$ is incorrect.

Solutions to 2016 Assessment Task2 2 unit.
of a)

$$
\text { (i) } \begin{aligned}
f(x) & =x+\frac{1}{x} \\
f(x) & =-2
\end{aligned}
$$

So $x+\frac{1}{x}=-2$

$$
\begin{align*}
& \text { (ii) Assume odd. } \\
& f(-x)=-f(x) . \\
& \text { So }-f(x)=-\left(x+\frac{1}{x}\right) . \\
& f(-x)=-x+\frac{1}{x} \\
& \text { well dores }=-x-\frac{1}{x}=-\left(x+\frac{1}{x}\right) \tag{1}\\
& \text { but many fiy }
\end{align*}
$$

$$
\begin{align*}
& x^{2}+1=-2 x \\
& x^{2}+2 x+1=0 \\
& (x+1)^{2}=0 \tag{1}\\
& x=-1
\end{align*}
$$

(i)
(1)
forgot the odd function
Well done, buit there wers (iii) domain $x \neq 0$ (1) well done. algastraic mistakes. ange $y \leq-2, y \geq 2$ (1)
(b)
prefer $f(x) \leq-2, f(x) \geq 2$

$$
\begin{align*}
& \begin{array}{l}
\text { Rangu was ven porly } \\
\text { answered. - puite hild! }
\end{array} \\
& V=\pi \int_{a}^{b} y^{2} d x \\
& =\frac{h}{3}\left[\left(y_{0}^{2}+y_{n}^{2}\right)+4\left(y_{1}^{2}+y_{3}^{2}+\cdots\right)+2\left(y_{2}^{2}+y_{4}^{2}+\cdots\right)\right] \\
& h=\frac{b-a}{n}, n=\text { strips } \\
& h=\frac{5-1}{4}=1 \\
& y=\frac{1}{\sqrt{4+x^{2}}} \tag{1}\\
& V=\pi \int_{1}^{5} y^{2} d x \div \frac{1}{3}\left[\left(\frac{1}{5}+\frac{1}{29}\right)+4\left(\frac{1}{8}+\frac{1}{20}\right)+2\left(\frac{1}{13}\right)\right] \text { (1) } \tag{1}
\end{align*}
$$

Verg bodly, attempted.
Look at the above $=\frac{4103}{11310} \pi \mathrm{~m}^{3}$
formida, marked

carquadly. $\leqslant 1.14(2 \backslash p) u$

$$
\begin{aligned}
& \begin{array}{l}
8 \text { (c) } \int_{1}^{e^{-}} \frac{7}{x} d x \\
\text { wheld donert } \\
\text { by abote }
\end{array} \\
& \text { by aboit }=7 \int_{1}^{e^{3}} \frac{1}{x} d x \\
& \text { sululente }=7 \ln x]_{1}^{e}
\end{aligned}
$$

$$
\begin{align*}
& =7(3 \ln e-\ln 1) \\
& =7(3 x 1-0) \\
& =21 . \tag{1}\\
& \text { (e) } x^{2}+y^{2}+8 x+2 y+8=0 \\
& x^{2}+8 x+6+y^{2}+2 y+1=-8+16+1 \\
& (x+4)^{2}+(y+1)^{2}=9 \\
& c(-4,-1) \quad r=3 \text {. (1) }
\end{align*}
$$

Concentric means same centre.
So

$$
(x+4)^{2}+(y+1)^{2}=r^{2}
$$ sub in $(1,7){ }^{2}$

$$
\begin{align*}
& \text { eq in }(1,7) \tag{1}\\
& 25+64=r^{2} \text { 1s } \\
& \Rightarrow r=\sqrt{89}(x+4)^{2}+(y+1)^{2}=89
\end{align*}
$$

So all the solutions must lie (could)
between $x=-2$ and $x=4$
a very small number of studelfis justefyed $-2 \leq x \leq 4$ in stuir oun words.
concenting \Rightarrow same centre

and

(f) (i)

$P Q R S$ is a parm $\Rightarrow P Q=S R, P Q \| S R$
(ii) In $\triangle P M S, \triangle R N Q$,
$P S=Q R$ sides' of pars
$\hat{P M}=R \hat{N} Q=90^{\circ}$ giver
$\hat{P} \hat{S} m=R \hat{Q} N$ alt. angles, transversal $S Q$.

$$
\therefore \triangle P M S \equiv \triangle R N Q \quad(A A S)
$$

So $P m=R N$ matching sides.
$S m=\Phi N$ matching sides
noil in $\triangle P Q N, \triangle R S M$
$\begin{aligned} & \text { Mans student } \\ & \text { could a not be }\end{aligned} S M=Q N$ proved above.
$\begin{aligned} & \text { Man shat be } \\ & \text { could not be } \\ & \text { bothered t }\end{aligned} P Q=S R$ property of farm. bothered
write out a
bothered to
withe out of
full proof.
Hence it tins $=\hat{\Phi P}$ opp angles in a arm
are equal
wile assumed
were assumed So $\triangle P Q N \equiv \triangle R S M$. (SAG)
without beng
$\therefore P N=R M$. matching sides
proved first
attempts/ Hence PNRM is a parallelogram other descuissins also looked positive eg using Sifthagoras for \triangle Pms, $\triangle R N M$.

8 (g) $x=3 \sin (n t)+6$

$$
\rho=\frac{2 \pi}{2}=\frac{3 \pi}{4}
$$

$2 \pi=\frac{3 \pi n}{4}$
$3 \pi n=8 \pi$ $n=\frac{8 \pi}{3 \pi}=\frac{8}{3}$
bigger
Question b shifts cure up was very well th units.
answered when answered when
(1) it was attempted.
$v(t)$
(h)

Given A is a constant and $k>1$

$$
\begin{aligned}
& V(t)=A e \text { for } t \geq \frac{1}{k} \\
& V(t)=A e^{k t} \text { for } 0 \leq t<\frac{1}{k}
\end{aligned}
$$

Badly attempted.
Most students left it out completely. Those that did try, most were success fol. But some did have a problem with the point ($\frac{1}{k}$, Ae)

