FORM VI

MATHEMATICS 2 UNIT

Monday 20th February 2012

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 90 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.

Section II - 80 Marks

- Questions 11-15 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Collection

Section I Questions 1-10

- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.

Section II Questions 11-15

- Start each of these questions in a new booklet.
- Write your candidate number clearly on each booklet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question Eleven.

Checklist

- SGS booklets - 5 per boy

Examiner

- Candidature - 80 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

Question One

Which of the following is equal to $e^{x}\left(e^{x}-\frac{1}{e}\right)$?
(A) $e^{x^{2}}-e$
(B) $e^{2 x}-e$
(C) $e^{x^{2}}-e^{x+1}$
(D) $e^{2 x}-e^{x-1}$

Question Two

For the function $y=x^{3}+1$, which one of the following statements is true?
(A) The function is odd.
(B) The function is even.
(C) The function is increasing for all values of $x>0$.
(D) There is a triple root at $x=-1$.

Question Three

The definite integral $\int_{0}^{4}\left(x^{2}+2\right) d x$ is equal to
(A) $\frac{88}{3}$
(B) 18
(C) $\frac{64}{3}$
(D) $23 \frac{1}{3}$

Question Four

Given the function $y=f(x)$ above, which of the following statements is false?
(A) There is a local minimum at A.
(B) The concavity changes at B.
(C) There is a global maximum at C.
(D) The zeroes occur at points A and D.

Question Five

For the parabola sketched above, point A is the vertex and point S is the focus. The equation of the parabola could be
(A) $(y-2)^{2}=8 x$
(B) $y^{2}=8(x-2)$
(C) $(y-2)^{2}=8(x-2)$
(D) $(y+2)^{2}=8(x-2)$

Question Six

Which of the following is a primitive of $\frac{10}{x^{2}}$?
(A) $-5 x^{2}+C$
(B) $-10 x^{3}+C$
(C) $-\frac{10}{x}+C$
(D) $-\frac{10}{3 x^{2}}+C$

Question Seven

The graph of the locus of the point $P(x, y)$ that moves so that its distance from a point $A(1,1)$ is twice the distance from another point $B(4,1)$ would be a
(A) vertical line
(B) parabola with a vertical axis of symmetry
(C) parabola with a horizontal axis of symmetry
(D) circle

Question Eight

The number of solutions to the equation $e^{x+1}+x^{2}+2=0$ may be found by sketching graphs. Which of the following statements is true?
(A) We should sketch $y=e^{x+1}+2$ and $y=-x^{2}$ to show there are no solutions.
(B) We should sketch $y=x^{2}+2$ and $y=e^{x+1}$ to show there are two solutions.
(C) We should sketch $y=e^{x+1}$ and $y=-x^{2}-2$ to show there are two solutions.
(D) We should sketch $y=e^{x+1}+2$ and $y=x^{2}$ to show only one solution.

Question Nine

The gradient of a line that is perpendicular to $3 x+5 y-5=0$ is
(A) $-\frac{1}{3}$
(B) $\frac{5}{3}$
(C) $\quad-\frac{5}{3}$
(D) $-\frac{3}{5}$

Question Ten

The equation of a line with gradient $\frac{3}{2}$ and y-intercept $\frac{1}{2}$ is
(A) $y=3(2 x-1)$
(B) $y=\frac{2 x+1}{3}$
(C) $3 y=1-2 x$
(D) $y=\frac{1}{2}(3 x+1)$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

Question Eleven (16 marks) Use a separate writing booklet.
(a) Use your calculator to find $\frac{e^{3}}{2}$ correct to two decimal places.
(b) Simplify $\frac{\left(e^{x}\right)^{4}}{e^{x}}$.
(c) A parabola has equation $x^{2}=8 y$. Find:
(i) the coordinates of the vertex,
(ii) the coordinates of the focus,
(iii) the equation of the directrix.
(d) Differentiate:
(i) $\frac{x^{4}}{2}$
(ii) $3 e^{2 x}$
(iii) $(2 x-1)^{5}$
(e) Find a primitive of:
(i) $x+16$
(ii) $e^{4 x+1}$
(iii) \sqrt{x}
(f) Sketch on a number plane the locus of a point P which moves so that it is always 3 units from the origin. Write down the equation of the locus of P.

Question ELEVEN (Continued)
(g)

The function $y=f(x)$, for $0 \leq x \leq 7$, is shown above. The curves are semicircular arcs.
(i) Find $\int_{0}^{7} f(x) d x$.
(ii) Find the exact total area of the shaded parts.

Question Twelve (16 marks) Use a separate writing booklet.
(a) Evaluate the following definite integrals.

$$
\begin{aligned}
& \text { (i) } \int_{-1}^{1}(6 x-2) d x \\
& \text { (ii) } \int_{1}^{2} \frac{1}{x^{3}} d x
\end{aligned}
$$

(b) By completing squares, find the centre and radius of the circle $x^{2}+y^{2}-4 x+8 y=5$.
(c) Given that $f^{\prime}(x)=2 x^{2}-6$, find $f(x)$ if $f(1)=0$.
(d) Consider the function $y=x^{3}-6 x^{2}+7$.
(i) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(ii) Find the coordinates of any stationary points and determine their nature.
(iii) Find the coordinates of the point of inflexion. You must show that it is a point of inflexion.
(iv) Sketch the graph of the function, clearly showing all stationary and inflexion points. Do NOT attempt to find any x-intercepts.

Question Thirteen (16 marks) Use a separate writing booklet.
(a) Find the first and second derivatives of $e^{x^{2}}$.
(b) Use the quotient rule to differentiate $y=\frac{2 e^{2 x+3}}{x+3}$. In your answer simplify the numerator as far as possible.
(c) Use Simpson's Rule with three function values to approximate $\int_{0}^{1} 2^{x} d x$. Give your answer correct to two decimal places.
(d) Find the value of p if $\int_{1}^{p}(3 x+4) d x=20$ and $p>1$.
(e)

The diagram above shows a cup of height 8 cm whose width at the top is 4 cm . It is formed by rotating the arc $A B$ of the parabola $y=2 x^{2}$ about the y-axis. Find the exact volume of the cup.
(f)

The graph of $y=f(x)$ is sketched above. Sketch on separate diagrams, clearly indicating any x-intercepts, possible graphs of:
(i) $y=f^{\prime}(x)$
(ii) $y=f^{\prime \prime}(x)$

Question Fourteen (16 marks) Use a separate writing booklet.
(a) Use the second derivative to explain why the graph of the function $y=e^{-2 x}$ is always concave up.
(b) Find the equation of the normal to the curve $y=x+e^{x}$ at the point where the curve cuts the y-axis.
(c) Sketch a graph of the parabola $6 x+y^{2}=18$ clearly indicating the vertex, focus, and directrix.
(d) A car's velocity v in metres per second is recorded each second as it accelerates along a drag strip. The table below gives the results.

$t(s)$	0	1	2	3	4	5
$v\left(m s^{-1}\right)$	0	15	31	48	64	83

Given that the distance travelled may be found by calculating the area under a velocity/time graph, use the trapezoidal rule to estimate the distance travelled by the car in the first five seconds.
(e) Solve for x :

$$
e^{2 x}+e^{x}-2=0
$$

(f)

The diagram shows the curves $y=x^{2}$ and $y=4 x-x^{2}$ which intersect at the origin and at point A.
(i) Find the coordinates of point A.
(ii) Hence find the area enclosed by the two parabolas.

Question Fifteen (16 marks) Use a separate writing booklet.
(a) A continuous function $y=f(x)$ satisfies all of the following conditions:

$$
\begin{aligned}
& f(2)>0 \\
& f(-4)<0 \\
& f^{\prime}(x)>0 \\
& f^{\prime \prime}(x)<0
\end{aligned}
$$

Draw a possible sketch of the function for $-4 \leq x \leq 2$.
(b) Suppose that $y=e^{k x}$.
(i) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(ii) Find the value of k such that $y=2 \frac{d y}{d x}-\frac{d^{2} y}{d x^{2}}$.
(c)

The diagram above shows the framework of a storage container which has been constructed in the shape of a rectangular prism. The container is eight times as long as it is wide, and has breadth x metres and height h metres.
(i) Find, in terms of x and h, an expression for the total length L of steel required to construct the frame.
(ii) The container has volume $2304 \mathrm{~m}^{3}$.
(α) Show that $h=\frac{288}{x^{2}}$.
(β) Show that $L=36 x+\frac{1152}{x^{2}}$.
(γ) Find the dimensions of the container so that the minimum length of steel is used in the construction of the frame.

END OF EXAMINATION

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$

Question One

AB \qquad
C

D

Question Two

A \bigcirc
B
C

D \bigcirc

Question Three

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B \bigcirc
$\mathrm{C} \bigcirc$
D

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question Five

A
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

A \bigcirc
BD \bigcirc

Question Seven

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Eight

AB \bigcirc
C
D \bigcirc

Question Nine

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Ten

A \bigcirc
B \bigcirc
C
\bigcirc
D \bigcirc

Question One

2012
Half-Yearly Examination FORM VI
MATHEMATICS 2 UNIT
Monday 20th February 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.
$\mathrm{A} \bigcirc$
B
C
D

Question Two
A
B \bigcirc
C
D \bigcirc

Question Three
A

- B
B ○
C
D \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B \bigcirc
C
D \bigcirc

Question Five
A \bigcirc
B
C
D \bigcirc

Question Six

A
B

C
$\mathrm{D} \bigcirc$

Question Seven

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D

Question Eight
A
B
CD \bigcirc

Question Nine
A
B
C
D \bigcirc

Question Ten

A \bigcirc
B \bigcirc
C O
D
maths 2 -unt solutions half-yearly 2012
Question 11.
(a) 10.04
(g) (i) $\begin{aligned} \int_{0}^{7} f(x) d x & =\frac{1}{2} \times 1 \times 1 \\ & =\frac{1}{2}\end{aligned}$
(b) $\frac{e^{4 x}}{e^{x}}=e^{3 x}$
(ii) $A=\pi\left(\frac{3}{2}\right)^{2}+\frac{1}{2}$
(c) $\quad x^{2}=8 y$

$$
=\frac{9 \pi}{4}+\frac{1}{2} \quad \text { unds }^{2}<
$$

(i) Vertex $V(0,0)$
(ii) Focus

$$
\begin{aligned}
& \text { rocus } \\
& a=2 \quad s(0,2) .
\end{aligned}
$$

(iii) Drectriv $y=-2$
(d)
(i)

$$
\text { (i) } \begin{aligned}
& \frac{d}{d x}\left(\frac{1}{2} x^{4}\right)=\frac{1}{2} \times 4 x^{3} \\
&=2 x^{3} \\
&\text { (ii) } \left.\begin{array}{rl}
\frac{d}{d x}\left(3 e^{2 x}\right) \\
& =6 e^{2 x} \\
\text { (iii) } \frac{d}{d x}\left((2 x-1)^{5}\right) & =5 \times 2(2 x-1)^{4} \\
& =10(2 x-1)^{4}
\end{array}\right)
\end{aligned}
$$

(ii) $\frac{d}{d x}\left(3 e^{2 x}\right)$
(e)
(i) $\int x+16 d x=\frac{1}{2} x^{2}+16 x+c$
(ii) $\int e^{4 x+1} d x=\frac{1}{4} e^{4 x+1}+c c$
(iii) $\int x^{\frac{1}{2}} d x=\frac{2}{3} x^{\frac{3}{2}}+c$

$$
=\frac{2 x \sqrt{x}}{3}+c
$$

(f)

Tocus of $\rho: x^{2}+y^{2}=9$

MATHS 2-UNIT SOLuTIONS

QUESTION 12
(a) (i)

$$
\begin{aligned}
\int_{-1}^{1}(6 x-2) d x & =\left[\frac{6 x^{2}}{2}-2 x\right]_{-1}^{1} \\
& =\left[3 x^{2}-2 x\right]_{-1}^{1} \\
& =(3-2)-(3+2) \\
& =-4
\end{aligned}
$$

(ii) $\int_{1}^{2} \frac{1}{x^{3}} d x$
$=\int_{1}^{2} x^{-3} d x$

$$
=\left[\frac{x^{-2}}{-2}\right]_{1}^{2}
$$

(d) $y=x^{3}-6 x^{2}+7$
(i)

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}-12 x \\
& \frac{d^{2} y}{d x^{2}}=6 x-12
\end{aligned}
$$

(ii) Stationary points when $\frac{d y}{d x}=0$

$$
=\left[-\frac{1}{2 x^{2}}\right]_{1}^{2}
$$

$$
\begin{aligned}
& 3 x^{2}-12 x=0 \\
& 3 x(x-4)=0 \\
& \therefore x=0 \text { or } 4
\end{aligned}
$$

$$
=\left(-\frac{1}{8}\right)-\left(-\frac{1}{2}\right)
$$

$$
=\frac{3}{8}
$$

When $x=0 \quad y=7$ and $\frac{d^{2} y}{d x^{2}}=-12$
So $(0,7)$ b. a local maximum turning pt
(b) $x^{2}+y^{2}-4 x+8 y=5$

$$
\begin{gathered}
x^{2}-4 x+4+y^{2}+8 y+16=5+4+16 \\
(x-2)^{2}+(y+4)^{2}=25
\end{gathered}
$$

$\left.\begin{array}{l}\text { Centre }(2,-4) \\ \text { Radius } 5 \text { units }\end{array}\right\}$
When $x=4 \quad \begin{aligned} y & =4^{3}-6 \times 4^{2}+7 \\ & =-25\end{aligned}$

$$
\frac{d^{2} y}{d x^{2}}=12
$$

$70 \quad$ So $(4,-25)$ is a local minimum turning point
(iii) Possible pt. of inflexion when $\frac{d^{2} y}{d x}=0$

$$
\begin{aligned}
6 x-12 & =0 \\
x & =2
\end{aligned}
$$

When $x=2 \quad \begin{aligned} y & =2^{3}-6 \times 2^{2}+7 \\ & =-9\end{aligned}$

Check concavity changes \quad| x | 0 | 2 | 4 |
| :--- | :--- | :--- | :--- |
| $\frac{d^{2} y}{d x^{2}}$ | -12 | 0 | +12 |
| | N | \cdot | N |

So, $(2,-9)$ is a point of inflexion
(iv)

Question 13
(a)

$$
\begin{aligned}
y & =e^{x^{2}} \\
\frac{d y}{d x} & 2 x e^{x^{2}} \\
\frac{d^{2} y}{d x^{2}} & =2 x \cdot 2 x e^{x^{2}}+2 e^{x^{2}} \\
& =4 x^{2} e^{x^{2}}+2 e^{x^{2}} \\
& =2 e^{x^{2}}\left(2 x^{2}+1\right)
\end{aligned}
$$

(e)

$$
\begin{aligned}
V & =\pi \int_{0}^{8} x^{2} d y \\
& =\pi \int_{0}^{8} \frac{y}{2} d y \\
& =\frac{\pi}{2} \int_{0}^{8} y d x \\
& =\frac{\pi}{2}\left[\frac{y^{2}}{2}\right]_{0}^{8} \\
& =\frac{64 \pi}{4} \\
& =16 \pi \text { units }^{3}
\end{aligned}
$$

$$
=\frac{e^{2 x+3}(4(x+3)-2)}{(x+3)^{2}}
$$

$$
=\frac{e^{2 x+3}(4 x+10)}{(x+3)^{2}}
$$

(c)

x	0	$\frac{1}{2}$	1
$f(x)$	1	$\sqrt{2}$	2

$$
\begin{align*}
\int_{0}^{1} 2^{x} d x & \doteq \frac{1-0}{6}(1+4 \sqrt{2}+2) \tag{ii}\\
& \doteq \frac{1}{6}(3+4 \sqrt{2}) \\
& \doteq 1 \cdot 44
\end{align*}
$$

(d)

$$
\begin{aligned}
\int_{1}^{p}(3 x+4) d x & =\left[\frac{3 x^{2}}{2}+4 x\right]_{1}^{p} \\
& =20 \\
\frac{3 p^{2}}{2}+4 p-\left(\frac{3}{2}+4\right) & =20 \\
\frac{3 p^{2}}{2}+4 p-\frac{11}{2} & =20 \\
3 p^{2}+8 p-11 & =40 \\
3 p^{2}+8 p-51 & =0 \\
(3 p+17)(p-3) & =0 \\
\therefore p & =3 \quad(p>1)
\end{aligned}
$$

Question 14
(a) $y=e^{-2 x} \quad y^{\prime}=-2 e^{-2 x} y^{\prime \prime}=4 e^{-2 x}$
$\frac{4}{e^{2 x}}>0$ for all x, so $y=e^{-2 x}$ is allays concave up.
(b)

$$
\begin{aligned}
y & =x+e^{x} \\
\frac{d y}{d x} & =1+e^{x}
\end{aligned}
$$

(e)

$$
\begin{gathered}
e^{2 x}+e^{x}-2=0 \\
\left(e^{x}-1\right)\left(e^{x}+2\right)=0
\end{gathered}
$$

Either $e^{x}=1$

$$
x=0
$$

or $e^{x}=-2$
No solution, $e^{x}>0$
So gradient of tangent is. 2 . and:- gradient of normal is: $-\frac{1}{2}$

When $x=0$

$$
\text { (f) (i) } \begin{aligned}
x^{2} & =4 x-x^{2} \\
2 x^{2}-4 x & =0 \\
2 x(x-2) & =0 \\
x & =0 \text { or } 2
\end{aligned}
$$

When $x=2, y=4$
So A has coordinates $(2,4)$
(ii)

$$
\begin{aligned}
& \int_{0}^{2}\left(4 x-x^{2}-x^{2}\right) d x \\
= & \int_{0}^{2}\left(4 x-2 x^{2}\right) d x \\
= & {\left[\frac{4 x^{2}}{2}-\frac{2 x^{3}}{3}\right]_{0}^{2} } \\
= & {\left[2 x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{2} } \\
= & \left(8-\frac{16}{3}\right)-0 \\
= & \frac{8}{3} \text { units }^{2}
\end{aligned}
$$

Question 15
(a)

(β)

$$
\begin{aligned}
L & =36 x+4 h \\
& =36 x+\frac{4 \times 288}{x^{2}} \\
L & =36 x+\frac{1152}{x^{2}}
\end{aligned}
$$

(γ) Minimum occurs when

$$
\begin{aligned}
\frac{d L}{d x} & =0 \\
36-\frac{2304}{x^{3}} & =0 \\
x^{3} & =\frac{2304}{36} \\
x^{3} & =64 \\
\text { So } x & =4
\end{aligned}
$$

Check that this is a minimum
(ii) $e^{k x}=2 k e^{k x}-k^{2} e^{k x}$

$$
k^{2} e^{k x}-2 k e^{k x}+e^{k x}=0
$$

$$
e^{k x}\left(k^{2}-2 k+1\right)=0
$$

$$
e^{k x}(k-1)^{2}=0
$$

When $e^{k x}=0$
No solution
When $(k-1)=0$

$$
k=1
$$

(c) (i)

$$
\begin{aligned}
L & =4(8 x+x+h) \\
& =36 x+4 h
\end{aligned}
$$

(ii) (α)

$$
\text { 2) } \begin{aligned}
V & =8 x \times x \times h \\
& =8 x^{2} h \\
2304 & =8 x^{2} h \\
& =\frac{2304}{8 x^{2}} \\
& =\frac{288}{x^{2}}
\end{aligned}
$$

