SYDNEY GRAMMAR SCHOOL

2013 Half-Yearly Examination

FORM VI MATHEMATICS 2 UNIT

Thursday 21st February 2013

General Instructions

- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total — 85 Marks

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 75 Marks

- Questions 11–15 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets 5 per boy
- Multiple choice answer sheet
- Candidature 96 boys

Examiner SG

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which of the following is a primitive of \sqrt{x} ?

(A) $\frac{3}{2}x^{\frac{3}{2}}$ (B) $\frac{2}{3}x^{\frac{3}{2}}$ (C) $\frac{1}{2}x^{-\frac{1}{2}}$ (D) $-\frac{1}{2}x^{-\frac{1}{2}}$

QUESTION TWO

What is the value of the definite integral $\int_{-1}^{2} x^{2} dx$?

(A) 3 (B) -3(C) $\frac{7}{3}$ (D) $-\frac{7}{3}$

QUESTION THREE

A point P(x, y) moves so that it is always equidistant from the points A(0, 0) and B(5, 5). Which of the following best describes the locus of P?

- (A) A line
- (B) A circle
- (C) A parabola
- (D) A hyperbola

QUESTION FOUR

The graph of y = f(x) is shown below. It consists of a straight line section and a semicircle. What is the value of the definite integral $\int_{0}^{4} f(x) dx$?

QUESTION FIVE

A parabola has its focus at (3, -3) and directrix at x = 1. What is the equation of this parabola?

(A)
$$(y+3) = 4(x-2)^2$$

(B)
$$(y+3)^2 = 4(x-2)$$

(C)
$$(y-3)^2 = 4(x+2)$$

(D)
$$(y-3) = 4(x+2)^2$$

QUESTION SIX

The graph of $y = e^x$ is translated two units to the right. Which of the following represents the new function?

- $(\mathbf{A}) \quad y = e^{x+2}$
- $(B) \quad y = e^{x-2}$
- $(C) \quad y = e^x + 2$
- (D) $y = e^x 2$

Exam continues next page ...

QUESTION SEVEN

For y = f(x) graphed below, which of the labelled points satisfies $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$?

(A) A
(B) B
(C) C
(D) D

QUESTION EIGHT

Which of the following is not true of the function $f(x) = e^x + 3$?

- (A) The first derivative is e^x .
- (B) The function is always increasing.
- (C) The function has its *y*-intercept at (0, 1).
- (D) A primitive of the function is $e^x + 3x$.

QUESTION NINE

The function $f(x) = (x-2)^2(x+7)$ has the following first and second derivatives:

$$f'(x) = 3(x-2)(x+4) f''(x) = 6(x+1)$$

Which of the following statements is false?

- (A) f(x) has stationary points at x = 2 and x = -4.
- (B) f(x) is concave up for x < -1.
- (C) f(x) has x-intercepts at x = 2 and x = -7.
- (D) f(x) is a cubic function.

QUESTION TEN

A function y = f(x) is graphed below. The x-axis is an asymptote for the function.

Which of the following statements is true?

- (A) f(x) has a global minimum at y = 0.
- (B) f(x) has an asymptote at x = 0.
- (C) f(x) has a single point of inflexion.
- (D) f(x) has two stationary points.

End of Section I

Exam continues next page ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks

(a) Calculate $\frac{3e^2}{5}$, correct to three decimal places.

(b) Simplify
$$\frac{(e^x)^3}{e^{2x}}$$
.

- (c) (i) Sketch the locus of a point P which moves so that it is always at a fixed distance 1 of two units below the x-axis.
 - (ii) Write down the equation of the locus.

(d) A parabola has equation $x^2 = -4y$.

- (i) Write down the coordinates of the vertex.
- (ii) Write down the coordinates of the focus.
- (iii) Write down the equation of the directrix.
- (iv) Sketch the parabola, showing all the features found in (i) to (iii).
- (e) Differentiate the following with respect to x:
 - (i) $5x^3 3x^2 + 9$
 - (ii) $4e^{5x}$
 - (iii) $(2-3x)^4$
- (f) Find a primitive for each of the following:

(i) $x^2 - 2$	1
(ii) $x^{-\frac{1}{2}}$	1

1

1

1

1

1

1

1

1

 $\mathbf{2}$

QUESTION TWELVE (15 marks) Use a separate writing booklet. Marks

- (a) Expand and simplify $(e^x + e^{-x})^2$. (2)
- (b) Evaluate the following definite integrals:

(i)
$$\int_{-2}^{2} (3x^2 + 2x) dx$$
 2

(ii)
$$\int_{1}^{3} \frac{2}{x^2} dx$$
 2

- (c) Given $f'(x) = e^x + 2x$, find f(x) if f(0) = 0.
- (d) The following diagram shows the graph of y = f(x). A maximum occurs when x = a and a stationary point of inflexion when x = b. Sketch a possible graph of f'(x).

(e) Find the area of the region bounded by the curve $y = e^x - 1$, the *x*-axis and the line x = 2, as shown in the diagram below. Express your answer in terms of *e*.

Exam continues next page ...

 $\mathbf{2}$

QUESTION TWELVE (Continued)

(f) The curves $y = x^2 + x + 1$ and $y = 2x^2 - x - 2$ meet at two points whose x-coordinates are x = -1 and x = 3.

Find the area of the shaded region enclosed between the two curves, as shown in the diagram above.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks

(a) Consider the curve $y = 3x^3 - 9x + 3$.

(i) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. 2

(ii) Find all the stationary points of the curve.

(iii) Determine the nature of each stationary point.

(iv) Sketch the curve, clearly indicating all the stationary points and the *y*-intercept.Note, you are not required to find the *x*-intercepts or any points of inflexion.

(b) Evaluate
$$\int_{-2}^{2} e^{2x+1} dx$$
. 2

- (c) Using Simpson's rule with five function values, estimate $\int_{1}^{5} \frac{1}{x} dx$ correct to three **2** decimal places.
- (d) Find the equation of the tangent to the curve $y = e^{3x}$ at the point where x = 0.

Exam continues overleaf ...

3

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

3

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

(a) The cost, C dollars, of running a vehicle at an average speed of $v \,\mathrm{km/h}$ is given by

$$C = \frac{2}{5}v + 2000v^{-1}$$
, where $v > 0$.

For what average speed will the cost be minimised?

(b) The region bounded by the curve $y = \sqrt{x}$, the x-axis and the line x = 4, is shown below.

Find the volume of the solid generated when this region is rotated about the x-axis.

- (c) A function f(x) has second derivative $f''(x) = 20(x-1)^2(x-4)$. Show that f(x) has **2** only one point of inflexion.
- (d) Differentiate the following, leaving your answers in simplest form.

(i)
$$y = (2x - 1)e^x$$

(ii) $y = e^x$

(ii)
$$y = \frac{1}{2x+3}$$

(e) (i) Differentiate
$$y = e^{x^3}$$
.
(ii) Hence evaluate the definite integral $\int_0^1 3x^2 e^{x^3} dx$.

Marks

3

 $\mathbf{2}$

1

 $\mathbf{2}$

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.

- (a) Consider the function $f(x) = \frac{1}{(x+4)^2}$.
 - (i) Find f''(x).
 - (ii) Explain why y = f(x) is concave up for all real x except x = -4.
- (b) Show that the function $y = xe^{-2x}$ satisfies the equation y'' + 4y' + 4y = 0.
- (c) A sector with radius 5 cm, arc length ℓ cm and angle θ degrees at its centre is bent to form a cone, as shown in the diagram below. The resultant cone has base radius r cm and height h cm.

End of Section II

END OF EXAMINATION

Marks

 $\mathbf{2}$

1

3

BLANK PAGE

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

SYDNEY GRAMMAR SCHOOL

2013 Half-Yearly Examination FORM VI MATHEMATICS 2 UNIT Thursday 21st February 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One									
A 🔿	В ()	С ()	D ()						
Question '	Гwo								
A 🔿	В ()	С ()	D ()						
Question Three									
A 🔿	В ()	С ()	D ()						
Question 1	Four								
A 🔾	В ()	С ()	D ()						
Question 1	Five								
A 🔿	В ()	$C \bigcirc$	D ()						
Question 8	Six								
A 🔿	В ()	С ()	D ()						
Question S	Seven								
A 🔿	В ()	С ()	D ()						
Question 1	Eight								
A 🔿	В ()	С ()	D ()						
Question 1	Nine								
A ()	В ()	С ()	D ()						
Question '	Ten								
A 🔾	В ()	С ()	D ()						

CANDIDATE NUMBER:

FORM	<u>VT 2</u>	UNIT	HALF-	YEARLY	SOLUTIO	<u>201</u>	<u>3</u>
· · · · · · · · · · · · · · · · · · ·							
Q I.	B						
Q 2	A					an ar ar fundi anticipation and a single and a	
Q 3	A	,					****
Qц	<u>D</u>	,					
२८	B						- -
Q 6.	<u> </u>		<u>.</u>				······································
Q7.	A						
Q 8.	C	· · · · · · · · · · · · · · · · ·				······································	
Qq	B						
Q (0	С		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				<u>I</u> c		
					· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		·····	· · · · · · · · · · · · · · · · · · ·				
······································						···· · · · · · · · · · ·	

QII. $3e^2 = 4.433$ \mathbb{C} (a) $\frac{\left(\frac{x}{2}\right)^3}{2x}$ 3x (6) 2x 2 7 = ${\mathfrak A}$ (c) (i) 0 <u>4 = -2</u> - 2 (ii) <u>y=-2</u> (d)(i)(0, 0) $(ii) \quad 4a=4 \rightarrow a=1$ Parabola concave down, so focus at S(0,-1). v Directrix one mit above vertex: <u>(iii)</u> <u>y = 1</u> 4 Directrix, vestex, 4=1 (0,0) focus needed on sketch for 3(0,-1) mark. 4

 $(e) (i) d (5x^{3} - 3z^{2} + 9) = 15x^{2} - 6x$ $\frac{(ii)}{dx} = 20e^{5x}$ (iii) $d(2-3x)^{4} = 4(2-3x)^{3}(-3)$ $= -12(2-3x)^{3}$ (f) (i) x³-2x + C (any C; constart) $\int x^{-1/2} = 2x^{1/2} + c \quad (augc),$ <u>(it)</u> 151 $= e^{\frac{1}{2}} + 2e^{\frac{1}{2}} + e^{-2x}$ e + e - x e²x + e $(b) (i) \int (3x^2 + 2x) dx = x^3 + x^2$ $= \left(2^{3} + 2^{2}\right) - \left(\left(-2\right)^{3} + \left(-2\right)^{2}\right)$

2 72 $dx^{-2} dx$ <u>dr =</u> _(ï)__ -2x-1 = -2 <u>4</u> 3 -oc_11/3------= (c) $f'(x) = e^{\chi} + d\chi \longrightarrow f(\chi) = e^{\chi} + \chi^2 + c$ v Now, $f(o) = e^{\circ} + o + c$ 0 +c = 0Ł ____ C = flx पुर्द्ध(त्र) 0 a 6 I For any of @ or B 2 for both @+0 v (0 Ð 6 (2)f'(x)

 $\int^{2} (e^{\chi} - 1) d\chi = \int^{2} e^{\chi} - \chi$ <u>(e)</u> $e^{2}-2)-(e^{\circ}-0)$ Ξ ~e²-3 : 2 $-x^2+2x$ 2+x+1) $-(2x^2-x-2) dx =$ +3 000 ر -۱ $\frac{-x^3+x^2+3y}{3}$ = **;** $\left(\left(-\frac{3^{3}}{3}+3^{2}+3(3)\right)\right)$ $+(-1)^{2}+3(-1)$ 3 3 = <u>32</u> 3 115

QB (a) $y = 3x^3 - 9x + 3$ (i) $dy = 9x^2 - 9$, $dx^2 = 18x$ dx dx dx $= 9(\alpha^2 - 1)$ either (ii) Need all x: dy =0. dx $q(\pi^2 - 1) = 0$ $\rightarrow x = \pm 1$ Hence Corresponding y-coordinates: y(1) = 3 - 9 + 3 = -3y(-1) = -3 + 9 + 3 = 9Stationary paints: (1,-3) and (-1,9) (iii) Nature: $d^2y = 18x$, so for: dx^2 $d^2y = -18 < 0 \longrightarrow concare down, local enex.$ Hence (1. - 3) local (-1,q) local more use. table of gradients: dy 27 0 0 27 / implies (1, -3 local ruin. local rox.

y-intercept at (0,3). (-1, 9) <u>(iv)</u> υ Full marks (2) only (1,-3) for - intercept stationary points. 1 22+1 2x+1 2 <u>و</u> ج $\frac{1}{2}$ (Z $\frac{\sigma R = e^8 - 1}{2e^3}$ <u>3-1</u> + 4 × 1 + 1 4 5 $\frac{4 \times 1}{2} + \frac{1}{3}$ 5-3 1 dx r $= \frac{73}{73}$ 5 45 ≑ 1.622 <u>ا</u> چ 1 (2)<u>f(x)</u> (3 d.p. $\frac{y}{y} = e^{3x}$ $y' = 3e^{3x}$ (d` At x=0 / , y'(o) = e = 1 Also, y (0) line ٠. 15: 4 3(× -0) - 1 3 $3x \pm 1$ $\frac{\partial R}{\partial x} - y + 1 = 0$ 115

 Q_{14} (a) $C = \frac{2}{5} \times + \frac{2000}{5} \times \frac{1}{5}$, $\sqrt{20}$. $\frac{dC}{dv} = \frac{2}{5} - \frac{2000}{v^2}$ for v such that de Extrena du 2 - 2000 = 0 2000 - 2 v² 5 $v^2 = 5000$ $\therefore v = \pm \sqrt{5000}$ -> v= 50.52kuht(:v>0) $= \pm 50\sqrt{2}$ $v = 70.7 \, \text{kmh}^{-1}$ Test nature: d²C -2000 × (-2) v-3 ____ dur for all x > 0, so global 50 JE km/h $\frac{d^2 C}{d n^2}$ at $v = 50.52^{-2000} \times (-2)$ $\frac{d n^2}{(50.52)^3}$ >0 accepted - local univer where V = 50.12 kork Accept approximations too: solt kn/h = 70.71 kn/h. or table of gradients used to test nature of stationary point for one mark.

24 - L $(b) \quad y = \sqrt{x}$ Rotation about x-axis: $V = \pi \left(\left(J_{\overline{x}} \right)^2 dx \right)$ dx $= T \left[\begin{array}{c} \chi^2 \\ \chi \end{array} \right]^4$ $\frac{d^2}{2} = 0$ == Ti $= 8\pi u^3$ (c) $f''(x) = 2o(x-1)^2(x-4)$ f(x) will have potential points of inflexion for f"(x)=0. $\frac{1}{10(x-1)^2(x-4)} = 0$ duflies x = 1 or x = 4 Test concavity change : 4 5 <u> <o · >o</u> Change in concarrily only where x = 4. i f(x) has only one port of inflexion . ······

(d) (i) $dy = e^{x}(2) + (2x-1)e^{x}$ = ex (2 + 2x-1 = (2x+1)e- e^x(2) dy = (2x+3)ex <u>ìī)</u> 2 (dx+3) $= \frac{e^{\chi} (2\chi + 1)}{(2\chi + 3)^2}$ (e) (i) $y = e^{x^3} \rightarrow dy = 3x^2e^{x^3}$ $\boxed{OR} \quad y = e^{\chi^3} \quad \text{Let} \quad u = \chi^3 \quad \text{Then} \quad y = e^{\frac{y}{2}}.$ dy - dy du dx du dx e. 4 . 3x2 $= 3x^2 e^{x}$ $3\chi^2 e^{\chi^3} dy = e^{\chi^3}$ (1) e - e e Ŧ

Q15 $\frac{(a)}{(x+4)^2} = \frac{1}{(x+4)^2}, \quad x \neq -4.$ $= (\chi + \psi)^{-2}$ $f(x) = -2(x+y)^{-5}$ $g_{x}:=\int^{y_{x}}(x)=\frac{6}{(x+4)^{4}}$ · · ···· Now, (x+4) >0 for all real x, x = -4. Here $\frac{6}{(x+4)^4}$ so for all real x, $x \neq -4$. Therefore f''(x) > 0 on this domain, f(x) is concave up for all or real x = -4. (b) $y = xe^{-2x} \rightarrow y' = x \cdot (-2)e^{-2x} + e^{-2x} \cdot 1$ = $-2xe^{-2x} + e^{-2x}$ -2-* $+ 4y' + 4y = 4xe^{-2x} - 4e^{-2x} + 4(-2xe^{-2x} + e^{-2x})$ <u>u</u>!! Now -8xe +4+2+x + 4+2+x -40 -- V

 $\rightarrow l = 10\pi\theta$ Accept: $l = \tau\theta \times \pi$ 180 <u>(c)(i) 1</u> 0 360 360 $d\pi(s)$ = Sθ×π 180 i.e. l= TO $= \frac{\pi \Theta}{36}$ 36 equal to are length (ii) Circu sperence of cone 2 base sctor 211 follows, Sh ce 止 1= πθ 36 $\pi\theta = d\pi r$ 36 Ð 72 By Pythagoras' Acoren 5² = 12+b 2 2 25 ence 2 0 72 25 1 702L (iv) or equivalent <u>. V =</u> $\frac{1}{3}$ $\left(\frac{\Theta}{72}\right)^{2}$

:: $\frac{(v)}{d\theta} = \frac{1}{3} \frac{\pi}{72^2} \left[\frac{2\theta}{\sqrt{25 - \theta^2/2}} + \frac{\theta^2}{4\theta^2} + \frac{1}{2\sqrt{25 - \theta^2/35}} + \frac{-2\theta}{72^2} \right] \sqrt{\frac{1}{2}} \sqrt{\frac{1}{25 - \theta^2/35}} + \frac{1}{72^2} \sqrt{\frac{1}{2\sqrt{25 - \theta^2/35}}} + \frac{1}{72^2} \sqrt{\frac{1}{2\sqrt{25 - \theta^2/35}}}$ Set dN = 0 & solve for 0: inpries ଜନ $\frac{20\sqrt{25-\theta_{42}^2}}{72^2} - \frac{\theta^3}{72^2} \frac{1}{\sqrt{25-\theta_{42}^2}}$ $\frac{25 - \theta^2 / 42^2}{72^2} - \frac{\theta^2}{\sqrt{25 - \theta^2 / 42^{2^2}}}$ θ -0 o (reject : volume clearly not maximised for is cone 0=0) $2\sqrt{25-\theta_{12}^{2}} = \theta^{2}$ $-\frac{72^{2}}{\sqrt{25-\theta_{12}^{2}}}$ $= \Theta^2$ - 0%, - $-2\Theta^2 = \Theta^2$ Đ² = 86400 only the sola e = 120 293.938... $\simeq 294^{\circ}$

Test nature & stationary point: 120 J6° 300° <u>0 290°</u> <u>d</u>V ≈ 0-026 0 ≈-0.046 do slope 1____ . Volume is at uher_0=120J6 naxim a or $\theta \simeq 294^{\circ}$. Note: incorrect response to part (iv) but correct differentiation received full marks. 15