

FORM VI

MATHEMATICS 2 UNIT

Thursday 21st February 2013

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 85 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 75 Marks

- Questions 11-15 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 5 per boy
- Multiple choice answer sheet

Examiner

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which of the following is a primitive of \sqrt{x} ?
(A) $\frac{3}{2} x^{\frac{3}{2}}$
(B) $\frac{2}{3} x^{\frac{3}{2}}$
(C) $\frac{1}{2} x^{-\frac{1}{2}}$
(D) $\quad-\frac{1}{2} x^{-\frac{1}{2}}$

QUESTION TWO

What is the value of the definite integral $\int_{-1}^{2} x^{2} d x$?
(A) 3
(B) -3
(C) $\frac{7}{3}$
(D) $-\frac{7}{3}$

QUESTION THREE

A point $P(x, y)$ moves so that it is always equidistant from the points $A(0,0)$ and $B(5,5)$. Which of the following best describes the locus of P ?
(A) A line
(B) A circle
(C) A parabola
(D) A hyperbola

QUESTION FOUR

The graph of $y=f(x)$ is shown below. It consists of a straight line section and a semicircle.
What is the value of the definite integral $\int_{0}^{4} f(x) d x$?

(A) $2+\pi$
(B) $2-\pi$
(C) $2+\frac{\pi}{2}$
(D) $2-\frac{\pi}{2}$

QUESTION FIVE

A parabola has its focus at $(3,-3)$ and directrix at $x=1$. What is the equation of this parabola?

(A) $\quad(y+3)=4(x-2)^{2}$
(B) $(y+3)^{2}=4(x-2)$
(C) $(y-3)^{2}=4(x+2)$
(D) $(y-3)=4(x+2)^{2}$

QUESTION SIX

The graph of $y=e^{x}$ is translated two units to the right. Which of the following represents the new function?
(A) $y=e^{x+2}$
(B) $y=e^{x-2}$
(C) $y=e^{x}+2$
(D) $y=e^{x}-2$

QUESTION SEVEN

For $y=f(x)$ graphed below, which of the labelled points satisfies $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}<0$?

(A) A
(B) B
(C) C
(D) D

QUESTION EIGHT

Which of the following is not true of the function $f(x)=e^{x}+3$?
(A) The first derivative is e^{x}.
(B) The function is always increasing.
(C) The function has its y-intercept at $(0,1)$.
(D) A primitive of the function is $e^{x}+3 x$.

QUESTION NINE

The function $f(x)=(x-2)^{2}(x+7)$ has the following first and second derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =3(x-2)(x+4) \\
f^{\prime \prime}(x) & =6(x+1)
\end{aligned}
$$

Which of the following statements is false?
(A) $\quad f(x)$ has stationary points at $x=2$ and $x=-4$.
(B) $\quad f(x)$ is concave up for $x<-1$.
(C) $\quad f(x)$ has x-intercepts at $x=2$ and $x=-7$.
(D) $\quad f(x)$ is a cubic function.

QUESTION TEN

A function $y=f(x)$ is graphed below. The x-axis is an asymptote for the function.

Which of the following statements is true?
(A) $\quad f(x)$ has a global minimum at $y=0$.
(B) $\quad f(x)$ has an asymptote at $x=0$.
(C) $\quad f(x)$ has a single point of inflexion.
(D) $\quad f(x)$ has two stationary points.

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Calculate $\frac{3 e^{2}}{5}$, correct to three decimal places.
(b) Simplify $\frac{\left(e^{x}\right)^{3}}{e^{2 x}}$.
(c) (i) Sketch the locus of a point P which moves so that it is always at a fixed distance of two units below the x-axis.
(ii) Write down the equation of the locus.
(d) A parabola has equation $x^{2}=-4 y$.
(i) Write down the coordinates of the vertex.
(ii) Write down the coordinates of the focus.
(iii) Write down the equation of the directrix.
(iv) Sketch the parabola, showing all the features found in (i) to (iii).
(e) Differentiate the following with respect to x :
(i) $5 x^{3}-3 x^{2}+9$
(ii) $4 e^{5 x}$
(iii) $(2-3 x)^{4}$
(f) Find a primitive for each of the following:
(i) $x^{2}-2$
(ii) $x^{-\frac{1}{2}}$

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) Expand and simplify $\left(e^{x}+e^{-x}\right)^{2}$.
(b) Evaluate the following definite integrals:
(i) $\int_{-2}^{2}\left(3 x^{2}+2 x\right) d x$
(ii) $\int_{1}^{3} \frac{2}{x^{2}} d x$
(c) Given $f^{\prime}(x)=e^{x}+2 x$, find $f(x)$ if $f(0)=0$.
(d) The following diagram shows the graph of $y=f(x)$. A maximum occurs when $x=a$ and a stationary point of inflexion when $x=b$. Sketch a possible graph of $f^{\prime}(x)$.

(e) Find the area of the region bounded by the curve $y=e^{x}-1$, the x-axis and the line $x=2$, as shown in the diagram below. Express your answer in terms of e.

QUESTION TWELVE (Continued)
(f) The curves $y=x^{2}+x+1$ and $y=2 x^{2}-x-2$ meet at two points whose x-coordinates are $x=-1$ and $x=3$.

Find the area of the shaded region enclosed between the two curves, as shown in the diagram above.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks
(a) Consider the curve $y=3 x^{3}-9 x+3$.
(i) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(ii) Find all the stationary points of the curve.
(iii) Determine the nature of each stationary point.
(iv) Sketch the curve, clearly indicating all the stationary points and the y-intercept.

Note, you are not required to find the x-intercepts or any points of inflexion.
(b) Evaluate $\int_{-2}^{2} e^{2 x+1} d x$.
(c) Using Simpson's rule with five function values, estimate $\int_{1}^{5} \frac{1}{x} d x$ correct to three decimal places.
(d) Find the equation of the tangent to the curve $y=e^{3 x}$ at the point where $x=0$.
(a) The cost, C dollars, of running a vehicle at an average speed of $v \mathrm{~km} / \mathrm{h}$ is given by

$$
C=\frac{2}{5} v+2000 v^{-1}, \quad \text { where } v>0
$$

For what average speed will the cost be minimised?
(b) The region bounded by the curve $y=\sqrt{x}$, the x-axis and the line $x=4$, is shown below.

Find the volume of the solid generated when this region is rotated about the x-axis.
(c) A function $f(x)$ has second derivative $f^{\prime \prime}(x)=20(x-1)^{2}(x-4)$. Show that $f(x)$ has only one point of inflexion.
(d) Differentiate the following, leaving your answers in simplest form.
(i) $y=(2 x-1) e^{x}$
(ii) $y=\frac{e^{x}}{2 x+3}$
(e) (i) Differentiate $y=e^{x^{3}}$.
(ii) Hence evaluate the definite integral $\int_{0}^{1} 3 x^{2} e^{x^{3}} d x$.

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.
(a) Consider the function $f(x)=\frac{1}{(x+4)^{2}}$.
(i) Find $f^{\prime \prime}(x)$.
(ii) Explain why $y=f(x)$ is concave up for all real x except $x=-4$.
(b) Show that the function $y=x e^{-2 x}$ satisfies the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$.
(c) A sector with radius 5 cm , arc length $\ell \mathrm{cm}$ and angle θ degrees at its centre is bent to form a cone, as shown in the diagram below. The resultant cone has base radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$.

(i) Show that $\ell=\frac{\pi \theta}{36}$.
(ii) Hence show that $r=\frac{\theta}{72}$.
(iii) Show that $h=\sqrt{25-\left(\frac{\theta}{72}\right)^{2}}$.
(iv) Construct an equation for the volume of the cone $V \mathrm{~cm}^{3}$ as a function of θ only.
(v) Find, to the nearest degree, the value of θ for which the volume of the cone is maximised.

END OF EXAMINATION

SGS Half-Yearly 2013 Form VI Mathematics 2 Unit Page 12

BLANK PAGE

SGS Half-Yearly 2013 Form VI Mathematics 2 Unit Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

2013
Half-Yearly Examination
FORM VI
MATHEMATICS 2 UNIT
Thursday 21st February 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Candidate number:

Question One

A
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

Question Three
AB
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A

B

D

Question Five

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six
A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

A
B

D \bigcirc

Question Eight

A
B
C
D \bigcirc

Question Nine

A \bigcirc
B
\bigcirc
C

D

Question Ten

ABD \bigcirc

FORM VT 2 UNT HALF-YEARLY SOCUTIONS, 2013

Q1. B
Q2 A
Q3 $\quad A$
Q4 $\quad D$ \qquad
\qquad
Q5 B
Q6. B \qquad
Q7 $\quad A$
Q8. \quad C
Q9 B
Q. 10

$$
c
$$

\qquad

Quill.
(a) $\frac{3 e^{2}}{5} \div 4.433$
(b) $\frac{\left(e^{x}\right)^{3}}{e^{2 x}}=\frac{e^{3 x}}{e^{2 x}}$

$$
\begin{equation*}
=e^{x} \tag{2}
\end{equation*}
$$

(c) (i)

(ii) $y=-2$
(d) (i) $(0,0)$
(ii) $4 a=4 \rightarrow a=1 \quad$ Parabola concave down, so focus at $S(0,-1)$.
(iii) Directrix one unit above vertex: $y=1$

Directrix, vertex, focus needed on sketch for mack.
(e) (i) $\frac{d}{d x}\left(5 x^{3}-3 x^{2}+9\right)=15 x^{2}-6 x$
(i) $\frac{d}{d x} 4 e^{5 x}=20 e^{5 x}$
(eii)

$$
\begin{align*}
\frac{d}{d x}(2-3 x)^{4} & =4(2-3 x)^{3}(-3) \\
& =-12(2-3 x)^{3} \tag{4}
\end{align*}
$$

(f) (i) $x^{3}-2 x+c \quad($ ary c; coustant)
(ii) $\int x^{-1 / 2}=2 x^{1 / 2}+c$ (aycc), coustant.) 115

Q12
(a) $\left(e^{x}+e^{-x}\right)^{-2}=s e^{2 x}+2 e^{x} e^{-x}+e^{-2 x}$

$$
\begin{equation*}
=e^{2 x}+e^{-2 x}+2 \tag{2}
\end{equation*}
$$

(b) (i) $\int_{-2}^{2}\left(3 x^{2}+2 x\right) d x=x^{3}+\left.x^{2}\right|_{-2} ^{2}$

$$
\begin{aligned}
& =\left(2^{3}+2^{2}\right)-\left((-2)^{3}+(-2)^{2}\right) \\
& =16
\end{aligned}
$$

(ii)

$$
\begin{align*}
\int_{1}^{3} \frac{2}{x^{2}} d x & =\int_{1}^{3} 2 x^{-2} d x \\
& =\left[-2 x^{-1}\right]_{1}^{3} \\
& =-2\left(\frac{1}{3}-1\right) \\
& =\frac{4}{3} \text { or } 1-\frac{1}{3} \tag{4}
\end{align*}
$$

(c) $\quad f^{\prime}(x)=e^{x}+2 x \rightarrow f(x)=e^{x}+x^{2}+c$

Now, $\quad f(0)=e^{0}+0+c$

$$
=0
$$

i.e. $\quad 1+c=0$

$$
\begin{equation*}
\therefore \quad c=-1 \tag{2}
\end{equation*}
$$

Hence $-f(x)=e^{x}+x^{2}+-\quad<$
(d)

1 For any $f(\oplus)$ or 2 for bsth $(\theta+$ (B)

$$
\begin{align*}
\text { (e) } \int_{0}^{2}\left(e^{x}-1\right) d x & =\left[e^{x}-x\right]_{0}^{2} \\
& =\left(e^{2}-2\right)-\left(e^{0}-0\right) \\
& =e^{2}-3 \tag{2}
\end{align*}
$$

(f) $\int_{-1}^{3}\left(x^{2}+x+1\right)-\left(2 x^{2}-x-2\right) d x=\int_{-1}^{3}-x^{2}+2 x+3 d x$

$$
=\left[\frac{-x^{3}}{3}+x^{2}+3 x\right]_{-1}^{3}
$$

$$
=\left(\left(-\frac{3^{3}}{3}+3^{2}+3(3)\right)-\left(-\frac{(-1)^{3}}{3}+(-1)^{2}+3(-1)\right)\right.
$$

$$
\begin{equation*}
=\frac{32}{3} \tag{3}
\end{equation*}
$$

15

Q13
(a) $\quad y=3 x^{3}-9 x+3$
(i)

$$
\begin{aligned}
\frac{d y}{d x} & \left.=9 x^{2}-9\right\}_{\sqrt{ }}, \frac{d^{2} y}{d x^{2}}=18 x \\
& \left.=9\left(x^{2}-1\right)\right\}_{\text {either }}
\end{aligned}
$$

(ii) Need all x : $\frac{d y}{d x}=0$.

Hence $q\left(x^{2}-1\right)=0 \rightarrow x= \pm 1$

Comesponding y-coordinates: $y(1)=3-9+3=-3$
$\quad y(-1)=-3+9+3=9$
Stationary pants: $(1,-3)$ and $(-1,9)$
(ii) Nature: $\frac{d^{2} y}{d x^{2}}=18 x$, so for:
$x=1, \frac{d^{2} y}{d x^{2}}=18>0 \rightarrow$ concoueup, local min
$x=-1, \frac{d^{2} y}{d x^{2}}=-18 \leq 0 \rightarrow$ concave down, Local max.
Hence $(1,-3)$ local una
$(-1,9) \quad$ Local max.
OR use table of gradients:

$$
\begin{array}{cccccc}
x & -2 & -1 & 0 & 1 & 2 \\
\frac{d y}{d x} & 27 & 0 & -9 & 0 & 27
\end{array}
$$

implies $(1,-3)$ locatruin. ($-1,9$) local max.
 y-interept at $\left(0_{1}, 3\right)$.

Full marks (2) only for both y-interapt \&
(b)

$$
\left.\begin{array}{rl}
\int_{-2}^{2} e^{2 x+1} d x & =\left[\left.\frac{1}{2} e^{2 x+1}\right|_{-2} ^{2}\right. \\
& =\frac{1}{2}\left(e^{5}-e^{-3}\right) \tag{2}\\
\text { or } & =\frac{e^{8}-1}{2 e^{3}}
\end{array}\right\}
$$

(c) $\int_{1}^{5} \frac{1}{x} d x \simeq \frac{3-1}{6}\left[1+4 \times \frac{1}{2}+\frac{1}{3}\right]+\frac{5-3}{6}\left[\frac{1}{2}+4 \times \frac{1}{4}+\frac{1}{5}\right]$.

$$
\begin{array}{rlllll}
x & 1 & 2 & 3 & 4 & 5 \tag{2}\\
f(x) & 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array} \quad=\frac{73}{45},
$$

(d) $\quad y=e^{3 x} \rightarrow y^{\prime}=3 e^{3 x}$

At $x=0, y^{\prime}(0)=3$
Also, $\quad y(0)=e^{0}=1$
\therefore line is: $y-1=3(x-0)$

$$
\begin{equation*}
y=3 x+1 \tag{3}
\end{equation*}
$$

$$
\text { or } \quad 3 x-y+1=0
$$

Q14 (a) $\ldots \quad C=\frac{2}{5} x+2000 v^{-1}, \quad v>0$.

$$
\frac{d C}{d v}=\frac{2}{5}-\frac{2000}{v^{2}}
$$

Extrema for v such that $\frac{d c}{d v}=0$.
Hence,

$$
\frac{2}{5}-\frac{2000}{r^{2}}=0
$$

$$
\frac{2000}{v^{2}}=\frac{2}{5}
$$

$$
\begin{aligned}
v^{2} & =5000 \\
\therefore v^{2} & = \pm \sqrt{5000} \quad \\
& \left.= \pm 50 \sqrt{2} \quad \rightarrow \quad r=50 \sqrt{2} \mathrm{kmh}^{(} v>0\right)
\end{aligned}
$$

Test nature:

$$
\frac{d^{2} c}{d v^{2}}=-2000 \times(-2) v^{-3}
$$

>0 for au $v>0$, so: global win. where $r=50 \sqrt{2} \mathrm{~km} / \mathrm{h}$.
08
$\frac{d^{2} c}{d v^{2}}$ at $v=50 \sqrt{2}: \frac{-2000 \times(-2)}{(50 \sqrt{2})^{3}}>0$ accepted.
\therefore Local minimum $r=50 \sqrt{2} \mathrm{~km} / \mathrm{h}$

Accept approximations too: $50 \sqrt{2} \mathrm{~km} / \mathrm{h} \approx 70.71 \mathrm{~km} / \mathrm{h}$.
OR table of gradients used to test nature of stationary port for one mark.
(b) $\quad y=\sqrt{x}$

Rotation about x-axis: $\quad V=\pi \int_{0}^{4}(\sqrt{x})^{2} d x$

$$
=\pi \int_{0}^{-4} x d x
$$

$$
=\pi\left[\left.\frac{x^{2}}{2}\right|_{0} ^{4}\right.
$$

$$
=\pi\left[\frac{4^{2}}{2}-0\right]
$$

$$
\begin{equation*}
=8 \pi \quad u^{3} \tag{2}
\end{equation*}
$$

(c) $f^{\prime \prime}(x)=20(x-1)^{2}(x-4)$
$f(x)$ will have pstentitul points of inflexion for $f^{\prime \prime}(x)=0$.
Hence, $\quad 20(x-1)^{2}(x-4)=0$
implies $\quad x=1$ or $x=4$
Test concavity change:

$$
\begin{array}{ccccc}
x & 0 & 1 & 2 & 4 \\
f^{\prime \prime}(x)<0 & <0 & 5 & >0 \\
\text { concavity } \sim & \sim & \sim & & >
\end{array}
$$

Change in concavity only where $x=4$.
$\therefore f(x)$ has only one pout \Rightarrow inflexion
(d) (i)

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x}(2)+(2 x-1) e^{x} \\
& =e^{x}(2+2 x-1) \\
& =(2 x+1) e^{x}
\end{aligned}
$$

(ii)

$$
\begin{align*}
\frac{d y}{d x} & =\frac{(2 x+3) e^{x}-e^{x}(2)}{(2 x+3)^{2}} \\
& =\frac{e^{x}(2 x+1)}{(2 x+3)^{2}} \tag{4}
\end{align*}
$$

(e) (i) $y=e^{x^{3}} \rightarrow \frac{d y}{d x}=3 x^{2} e^{x^{3}}$

OR $y=e^{x^{-3}}$ Let $u=x^{3}$ Then $y=e^{u}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \frac{d u}{d x} \\
& =e^{u} \cdot 3 x^{2} \\
& =3 x^{2} e^{x^{3}}
\end{aligned}
$$

(ii)

$$
\begin{align*}
\int_{0}^{1} 3 x^{2} e^{x^{3}} d x & =\left.e^{x^{3}}\right|_{0} ^{1} \\
& =e^{1}-e^{0} \\
& =e^{-1} \tag{4}
\end{align*}
$$

Q15

$$
\begin{aligned}
\text { (a) } \left.\begin{array}{rl}
f(x) & =\frac{1}{(x+4)^{2}}, x \neq-4 . \\
& =(x+4)^{-2} \\
\& f^{\prime}(x) & =-2(x+4)^{-3} \\
\& & \therefore f^{\prime \prime}(x)
\end{array}\right) \frac{6}{(x+4)^{4}}
\end{aligned}
$$

No, $(x+4)^{4}>0$ for all real $x, x \neq-4$. Hence $\frac{6}{(x+4)^{4}}$ so for all real $x, x \neq-4$.

Therefore $f^{\prime \prime}(x)>0$ on this domain, So $f(x)$ is concave up for att x real, $x \neq-4$
(b)

$$
\begin{align*}
y=x e^{-2 x} \rightarrow y^{\prime} & =x \cdot(-2) e^{-2 x}+e^{-2 x} \cdot 1 \tag{3}\\
& =-2 x e^{-2 x}+e^{-2 x}
\end{align*}
$$

$$
\begin{aligned}
\& y^{\prime \prime} & =-2 x \cdot(-2) e^{-2 x}+e^{-2 x} \cdot(-2)+(-2) e^{-2 x} \\
& =4 x e^{-2 x}-4 e^{-2 x}
\end{aligned}
$$

Now, $y^{\prime \prime}+4 y^{\prime}+4 y=4 x e^{-2 x}-4 e^{-2 x}+4\left(-2 x e^{-2 x}+e^{-2 x}\right)$

$$
+4\left(x e^{-2 x}\right)
$$

$$
=4 x e^{-2 x}-4 e^{-2 x}-8 x e^{-2 x}+4 x^{2 x}+4 x x^{2 x}
$$

$$
=0
$$

(c) (i) $\frac{l}{2 \pi(s)}=\frac{\theta}{360} \quad l=\frac{10 \pi \theta}{360} \quad$ Accept: $l=r \theta \times \frac{\pi}{180}$

$$
\begin{aligned}
\text { ie } l=\frac{\pi \theta}{36} & =5 \theta \times \frac{\pi}{180} \\
& =\frac{\pi \theta}{36}
\end{aligned}
$$

(ii) Circumference of base of cone is equal to are length of sector:

$$
\therefore \quad l=2 \pi
$$

Since $l=\frac{\pi \theta}{36}, \quad$ it follows,

$$
\begin{aligned}
& \frac{\pi \theta}{36}=2 \pi r \\
& \therefore r=\frac{\theta}{72}
\end{aligned}
$$

(ii) By Pythagoras theorem,

$$
s^{2}=r^{2}+h^{2}
$$

$h \quad h=\sqrt{25-r^{2}}$

$$
=\sqrt{25-\left(\frac{\theta}{72}\right)^{2}}
$$

(iv) $V=\frac{1}{3} \pi r^{2} h$

$$
\therefore V=\frac{1}{3} \pi\left(\frac{\theta}{72}\right)^{2} \sqrt{25-\left(\frac{\theta}{72}\right)^{2} \quad \text { or equivalent }}
$$

$$
(v) \frac{d V}{d \theta}=\frac{1}{3} \frac{\pi}{72^{2}}\left[2 \theta \sqrt{25-\theta^{2} / 72^{2}}+\theta^{2} \cdot \frac{1}{2 \sqrt{25-\theta^{2} / 75}} \cdot \frac{-2 \theta}{72^{2}}\right]
$$

Set $d N=0$ \& solve for θ : implies, da

$$
2 \theta \sqrt{25-\theta^{2} / 72^{2}}-\frac{\theta^{3}}{72^{2}} \cdot \frac{1}{\sqrt{25-\theta^{2} / 72^{2}}}=0
$$

$$
\theta\left(2 \sqrt{25-\theta^{2} / 72^{2}}-\frac{\theta^{2}}{72^{2}} \frac{1}{\sqrt{25-\theta^{2} / 22^{2}}}\right)=0
$$

$\therefore \theta=0 \quad$ (reject
\rightarrow cone volume clearly not maximised for $\theta=0$)
or

$$
2 \sqrt{25-\theta^{2} / 72^{2}}=\frac{\theta^{2}}{72^{2} \sqrt{25-\theta^{2} / 72^{2}}}
$$

$\therefore=$

$$
\begin{aligned}
2 \cdot 72^{2}\left(25-\theta^{2} / 72^{2}\right) & =\theta^{2} \\
2 \cdot 25 \cdot 72^{2}-2 \theta^{2} & =\theta^{2} \\
\theta^{2} & =864 \theta 0
\end{aligned}
$$

So

$$
\begin{aligned}
\theta & =120 \sqrt{6} \\
& =293.938 \\
& \simeq 294^{\circ}
\end{aligned}
$$

(tue sod only)

Test natuse $\frac{8}{7}$ stationary point.
\qquad $\theta \quad 290^{\circ} \quad 120 \sqrt{6}^{\circ} \quad 300^{\circ}$

$$
\frac{d V}{d \theta} \simeq 0.026 \quad 0 \quad \simeq-0.046
$$

Slope $/$ -
\therefore volume is at a maximum when $\theta^{\circ}=120 \sqrt{6}^{\circ}$ or $\theta \simeq 294^{\circ}$

Note: incorrect response to port (iv) but correct differentiation received full marks.

