Sydney Grammar School

FORM VI

MATHEMATICS 2 UNIT

Thursday 25th February 2016

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 60 Marks

- All questions may be attempted.

Section I-8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 52 Marks

- Questions 9-12 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet
- Reference sheet

Examiner

- Candidature - 87 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The graph of $y=f(x)$ is shown above. At which point is $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$?
(A) A
(B) B
(C) C
(D) D

QUESTION TWO

What is the focal length of the parabola $x^{2}=4 y$?
(A) $\frac{1}{4}$
(B) 1
(C) 4
(D) 8

QUESTION THREE

What is the domain of the curve $y=\log _{e}(x-1)$?
(A) $x>-1$
(B) $x>0$
(C) $x>1$
(D) all real x

QUESTION FOUR

Simpson's Rule is used with three function values to approximate $\int_{1}^{2} x e^{x} d x$.
Which expression is obtained?
(A) $\frac{1}{2}\left(e+3 e^{1.5}+2 e^{2}\right)$
(B) $\frac{1}{4}\left(e+3 e^{1 \cdot 5}+2 e^{2}\right)$
(C) $\frac{1}{6}\left(e+6 e^{1 \cdot 5}+2 e^{2}\right)$
(D) $\frac{1}{12}\left(e+6 e^{1 \cdot 5}+2 e^{2}\right)$

QUESTION FIVE

A parabola with focus $S(-2,0)$ and directrix $y=4$ is shown above. Which of the following is the equation of the parabola?
(A) $(x+2)^{2}=-8(y-2)$
(B) $(x+2)^{2}=-8 y$
(C) $(x-2)^{2}=-8(y+2)$
(D) $(x-2)^{2}=-8 y$

QUESTION SIX

What is the value of k if $\int_{1}^{k} \frac{2}{x} d x=4$?
(A) e^{2}
(B) e^{3}
(C) e^{4}
(D) e^{5}

QUESTION SEVEN

The graph of $y=e^{x}$ is shown above. Which of the following expressions does NOT represent the area of the shaded region?
(A) $e-\int_{0}^{1} e^{x} d x$
(B) $\int_{1}^{e} e^{x} d x$
(C) $\int_{1}^{e} \log _{e} y d y$
(D) $\int_{0}^{1}\left(e-e^{x}\right) d x$

QUESTION EIGHT

The graph of the gradient function $y=f^{\prime}(x)$ is shown above. Which of the labelled x-values corresponds to a stationary point of inflexion on the original curve $y=f(x)$?
(A) a
(B) b
(C) c
(D) d

SECTION II - Written Response
Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION NINE (13 marks) Use a separate writing booklet. Marks
(a) Calculate $\frac{3}{e^{2}}$ correct to 3 significant figures.
(b) Expand and simplify $e^{x}\left(e^{x}+e^{-x}\right)$.
(c) Differentiate:
(i) \sqrt{x}
(ii) $e^{2 x}$
(iii) $\log _{e} 3 x$
(d) Find a primitive of:
(i) $6 x^{2}$
(ii) $e^{4 x}$
(iii) $\frac{3}{x}$
(e) Evaluate $\int_{2}^{3}(2 x-1) d x$.
(f) Find the equation of the parabola with vertex $(0,0)$ and focus $(4,0)$.
(g) Consider the curve whose first derivative is given by $y^{\prime}=x^{2}+x-6$. For what values of x is the curve increasing?
(a) Differentiate the following with respect to x :
(i) $y=\log _{e}\left(x^{2}+3\right)$
(ii) $y=\frac{x+1}{x}$
(b) Find the equation of the tangent to the curve $y=e^{3 x}+1$ at the point $(0,2)$.
(c) Consider the parabola with equation $y^{2}=-8(x+2)$.
(i) Write down the coordinates of the vertex.
(ii) Find the coordinates of the focus.
(iii) Find the equation of the directrix.
(iv) Sketch the parabola clearly showing the vertex, focus and directrix.
(d)

Consider the points $A(-4,0)$ and $B(4,6)$. The point $P(x, y)$ moves so that $P A$ is always perpendicular to $P B$.
(i) Find expressions for the gradients of $P A$ and $P B$.
(ii) Hence show that the equation of the locus of P is $x^{2}+y^{2}-6 y-16=0$.
(iii) Express the above equation in the form $(x-h)^{2}+(y-k)^{2}=r^{2}$.
(iv) Hence, or otherwise, describe the locus of P geometrically.
(a) If $f^{\prime}(x)=\frac{2 x-3}{x^{2}-3 x+1}$ and $f(3)=5$, find $f(x)$.
(b)

The diagram above shows the curves $y=-x^{2}+4 x-3$ and $y=x^{2}-2 x+1$.
(i) Show that the curves intersect at the points where $x=1$ and $x=2$.
(ii) Find the area of the shaded region enclosed between the two curves.

The points P and Q are located on the curves $y=-x^{2}+4 x-3$ and $y=x^{2}-2 x+1$ respectively, and share the same x-coordinate as shown.
(iii) If the length of $P Q$ is ℓ units, show that $\ell=-2 x^{2}+6 x-4$.
(iv) Hence find the maximum length of $P Q$ for $1 \leq x \leq 2$.
(c)

The region bounded by the curve $y=\frac{3}{\sqrt{4 x-3}}$, the x-axis and the lines $x=1$ and $x=2$ is shown above. Find the volume of the solid generated when this region is rotated about the x-axis.
(a) Solve for x :

$$
\log _{2}\left(x^{2}-2 x\right)=3 .
$$

(b) (i) Show that the function $y=x \log _{e} x$ has derivative $\frac{d y}{d x}=\log _{e} x+1$.
(ii) Hence find $\int \log _{e} x d x$.
(c) Consider the curve with equation $y=\frac{x}{e^{x}}$.
(i) Show that $\frac{d y}{d x}=\frac{1-x}{e^{x}}$ and $\frac{d^{2} y}{d x^{2}}=\frac{x-2}{e^{x}}$.
(ii) Find the coordinates of the stationary point and determine its nature.
(iii) Find the coordinates of the point of inflexion. You must show that it is a point of inflexion.
(iv) Sketch the curve, clearly showing the stationary point, the point of inflexion and any intercepts with the coordinate axes.
(You may use the fact that as $x \rightarrow \infty, \frac{x}{e^{x}} \rightarrow 0^{+}$.)

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 10

BLANK PAGE

Sydney Grammar School

2016
Half-Yearly Examination
FORM VI
MATHEMATICS 2 UNIT
Thursday 25th February 2016

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A
BD \bigcirc

Question Two

A
B

C \bigcirc
D \bigcirc

Question Three

A \bigcirc
B \bigcirc
C
D

Question Four

A

B

C

D

Question Five

A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

A
B

C

D \bigcirc

Question Seven

A \bigcirc
B
\bigcirc
C

Question Eight
A
B \bigcirc
C \bigcirc
D \bigcirc

MATHEMATICS 2 V
Half-Yearly Examination - SOLUTIONS

* Multiple choice

Q1. D pesitive gradient

* concave up

Q2. $B \quad a=1$
Q3. $C \quad x-1>0$

$$
\therefore x>1
$$

Q4.C

x	1	1.5	2
y	e	$\frac{3}{2} e^{1.5}$	$2 e^{2}$

Q5. A $\quad(x-h)^{2}=-4 a(y-k)$

$$
(x-(-2))^{2}=-4 \times 2(y-2)
$$

Q6. $A \quad \int_{1}^{k} \frac{2}{x} d x=4 \rightarrow[2 \ln x]_{1}^{k}=4$

$$
\begin{gathered}
2 \operatorname{In} k-2 \ln 0^{0}=4 \\
\ln k=2 \\
\therefore e^{2}=k
\end{gathered}
$$

Q7. B
Q8. D for stationary point of inflexion euther

$$
\stackrel{c}{l}^{+} \text {of } \frac{t^{\prime}(x) \text { nas a curve }}{}
$$

$\rightarrow a^{t} d$:
$f^{\prime}(x)$ has a
tre value eithe-side f ${ }_{\leftarrow}<0$ at point d.

* QUESTION 9:
a) $\frac{3}{e^{2}}=0.4060058 \ldots$

$$
=0.406(+03 \text { sig.fig. })
$$

b) $e^{x}\left(e^{x}+e^{-x}\right)=e^{2 x}+e^{0}$

$$
=e^{2 x}+1
$$

c) i)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{\frac{1}{2}}\right) & =\frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

ii) $\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}$
iii)

$$
\begin{aligned}
\frac{d}{d x}\left(\log _{e} 3 x\right) & =\frac{1}{3 x} \times 3 \\
& =\frac{1}{x}
\end{aligned}
$$

d)

$$
\begin{aligned}
y^{\prime} & =6 x^{2} \\
y & =\frac{6 x^{3}}{2}(+c) \\
& =2 x^{3}(+c)
\end{aligned}
$$

ii)

$$
\begin{aligned}
& y^{\prime}=e^{4 x} \\
& y=\frac{e^{4 x}}{4}(+c)
\end{aligned}
$$

iii)

$$
\begin{aligned}
& y^{\prime}=\frac{3}{x} \\
& y=3 \ln x(+c)
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
\int_{2}^{3}(2 x-1) d x & =\left[x^{2}-x\right]_{2}^{3} \\
& =3^{2}-3-\left(2^{2}-2\right) \\
& =4
\end{aligned}
$$

f)

$$
\begin{aligned}
& y^{2}=4 a x \\
& y^{2}=16 x
\end{aligned}
$$

g) increasing $\rightarrow y^{\prime}>c$

$$
\begin{aligned}
& x^{2}+x-6>0 \\
& (x+3)(x-2)>0 \\
& x<-3 \text { or } x>2
\end{aligned}
$$

* QUESTION $10:$
a) i)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{x^{2}+3} \times 2 x \\
& =\frac{2 x}{x^{2}+3}
\end{aligned}
$$

ii)

$$
\begin{aligned}
y & =\frac{x}{x}+\frac{1}{x} \\
& =1+x^{-1} \\
\frac{d y}{d x} & =-x^{-2} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TOR// Let } \begin{array}{l}
u=x+1 \quad v=x \\
u^{\prime}=1 \\
\frac{d y}{d x}
\end{array}=\frac{x(1)-(x+1)(1)}{x^{2}} \\
& \\
& =
\end{aligned}
$$

b) $\frac{d y}{d x}=3 e^{3 x}$
when $x=0, \quad \frac{d y}{d x}=3$

$$
\begin{aligned}
y-2 & =3(x-0) \\
\therefore y & =3 x+2
\end{aligned}
$$

c) $y^{2}=-8(x+2)$
i) $v=r t c x \quad(-2,0)$
ii)

$$
\begin{aligned}
4 a & =8 \\
a & =2
\end{aligned}
$$

Focus $(-4,0)$
iii) Directrix $\quad x=0$
iv)

d) i)

$$
\begin{aligned}
& m_{P A}=\frac{y}{x+4} \\
& m_{D B}=\frac{y-6}{x-4}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& m_{p A} \times m_{p B}=-1 \\
& \frac{y}{x+4} \times \frac{y-6}{x-4}=-1 \\
& y^{2}-6 y=-x^{2}+16 \\
& \therefore x^{2}+y^{2}-6 y-16=0
\end{aligned}
$$

iii)

$$
\begin{aligned}
& x^{2}+y^{2}-6 y+9= \\
& x^{2}+(y-3)^{2}=25 \\
& (x-0)^{2}+(y-3)^{2}=5^{2}
\end{aligned}
$$

iv) The locus of P is a circle with centre $(0,3) \neq$ radius 5 units

* QUESTION 11:

$$
\text { a) } \begin{aligned}
f(x) & =\log _{e}\left(x^{2}-3 x+1\right)+c \\
5 & =\log _{e}(9-9+1)+c \\
5 & =\log _{e}+c \\
\therefore f(x) & =\log _{e}\left(x^{2}-3 x+1\right)+5
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& x^{2}-2 x+1=-x^{2}+4 x-3 \\
& 2 x^{2}-6 x+4=0 \\
& x^{2}-3 x+2=0 \\
& (x-2)(x-1)=0 \\
& \therefore x=1 \text { or } x=2 .
\end{aligned}
$$

Alternatively show the substitutions of both x values into both equations \rightarrow four substitutions
ii) $A=\int_{i}^{2}\left(-x^{2}+4 x-3-\left(x^{2}-2 x+1\right)\right) d x$

$$
\begin{aligned}
& =\int_{1}^{2}\left(-2 x^{2}+6 x-4\right) d x \\
& =-2 \int_{1}^{2}\left(x^{2}-3 x+2\right) d x \\
& =-2\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]_{1}^{2} \\
& =-2\left(\frac{8}{3}-6+4-\left(\frac{1}{3}-\frac{3}{2}+2\right)\right) \\
& =\frac{1}{3} u^{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\lambda & =y_{p}-y_{Q} \\
& =-x^{2}+4 x-3-\left(x^{2}-2 x+1\right) \\
& =-2 x^{2}+6 x-4
\end{aligned}
$$

$$
\begin{aligned}
& \text { show } \\
& \text { that... }
\end{aligned}
$$

iv) $\frac{d l}{d x}=-4 x+6$

$$
\begin{aligned}
\frac{d l}{d x} & =-4 x+6 \\
& =0 \text { when } \quad x=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =0 \text { when } x=\frac{3}{2} \\
\frac{d^{2} l}{d x^{2}} & =-4 \\
& <0 \quad \therefore \square \therefore \text { max occurs when } x=\frac{3}{2} \\
\therefore \Lambda_{\text {max }} & =-2\left(\frac{3}{2}\right)^{2}+6\left(\frac{3}{2}\right)-4 \\
& =\frac{1}{2} \text { units }
\end{aligned}
$$

Alternatively, for middle mark:

x	1	$\frac{2}{2}$	2
$\frac{d l}{d x}$	2	0	-2

\therefore max occurs when $x=\frac{3}{2}$
c)

$$
\begin{aligned}
V & =\pi \int_{1}^{2} \frac{9}{4 x-3} d x \\
& =\frac{9 \pi}{4} \int_{1}^{2} \frac{4}{4 x-3} d x \\
& =\frac{9 \pi}{4}\left[10 g_{e}(4 x-3)\right]_{1}^{2} \\
& =\frac{9 \pi}{4}\left(109 e 5-1 \lg _{e} 1\right) \\
& =\frac{9 \pi}{4} \operatorname{loge5} u^{3}
\end{aligned}
$$

* QUESTION 12:
a) $2^{3}=x^{2}-2 x$

$$
\begin{aligned}
& x^{2}-2 x-8=0 \\
& (x-4)(x+2)=0 \\
& \therefore x=-2 \text { or } x=4
\end{aligned}
$$

Check $x^{2}-2 x>0$:
validity
when $x=-2:(-2)^{2}-2(-2)=8$

$$
>0
$$

$$
x=4:(4)^{2}-2(4)=8
$$

$>0 \quad \therefore b e^{t h}$ valid
b) 1) $y=x \log _{e} x$

Let $u=x$

$$
u^{\prime}=1
$$

$$
\begin{aligned}
& v=\log _{e} x \\
& w^{\prime}=\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime} & =\log _{e} x \times 1+x \times \frac{1}{x} \quad \text { shew that... } \\
& =\log _{e} x+1
\end{aligned}
$$

ii) $\frac{d}{d x}\left(x \log _{e} x\right)=\log _{e} x+1$

$$
\begin{aligned}
& \therefore \int\left(\log _{e} x+1\right) d x=x \log _{e} x+c_{1} \\
& \int \log _{e} x d x+\int 1 d x=x \log _{e} x+c_{1} \\
& \therefore \int \log _{e} x d x=x \log _{e} x-\int \operatorname{ld} x+c_{1} \\
&=x \log _{e} x-x+c_{2}
\end{aligned}
$$

c) $y=\frac{x}{e^{x}}$
i) Let $u=x \quad v=e^{x}$

$$
\begin{aligned}
u^{\prime} & =1 \quad v^{\prime}=e^{x} \\
\frac{d y}{d x} & =\frac{e^{x} \times 1-x \times e^{x}}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x}(1-x)}{\left(e^{x}\right)^{x}} \\
& =\frac{1-x}{e^{x}}
\end{aligned}
$$

Let $u=1-x \quad v=e^{x}$

$$
\begin{aligned}
u^{\prime}=-1 & w^{\prime}=e^{x} \\
\frac{d^{2} y}{d x^{2}} & =\frac{e^{x} \times-1-(1-x) e^{x}}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x}(-1-1+x)}{\left(e^{x}\right)^{x}} \\
& =\frac{x-2}{e^{x}}
\end{aligned}
$$

ii) $\frac{d y}{d x}=0$ when $x=1 \quad$, $y=\frac{1}{e}$
when $x=1: \quad \frac{d^{2} y}{d x^{2}}=\frac{1-2}{e^{\prime}}$

$$
\begin{aligned}
& =-\frac{1}{e} \\
& <0 \quad \therefore \sqrt{ }<\max \text { tip. occurs }
\end{aligned}
$$ at $\left(1, \frac{1}{e}\right)$

iii) $\frac{d^{2} y}{d x^{2}}=0$ when $x=2 \quad y=\frac{2}{e^{2}}$

x	1	2	3
$\frac{d^{2} y}{d x^{2}}$	-1	0	$\frac{1}{e^{3}}$

\therefore change in concavity * point of inflexion at $\left(2, \frac{2}{e^{2}}\right)$
iv) when $x=0, y=0$

$$
\max +p \cdot\left(1, \frac{1}{e^{2}}\right)^{-0.36 \ldots}
$$

$p+$ of infl. $\left(2, \frac{2}{e^{2}}\right)^{\circ 0.27 \ldots}$

$$
\text { as } x \rightarrow \infty, y \rightarrow 0^{+}
$$

