

SYDNEY GRAMMAR SCHOOL

2016 Half-Yearly Examination

FORM VI

MATHEMATICS 2 UNIT

Thursday 25th February 2016

General Instructions

- Writing time 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 60 Marks

• All questions may be attempted.

Section I - 8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II – 52 Marks

- Questions 9–12 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Reference sheet
- Candidature 87 boys

Examiner LRP

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The graph of y = f(x) is shown above. At which point is f'(x) > 0 and f''(x) > 0?

- (A) A
- (B) B
- (C) C
- (D) *D*

QUESTION TWO

What is the focal length of the parabola $x^2 = 4y$?

- (A) $\frac{1}{4}$
- (B) 1
- (C) 4
- (D) 8

QUESTION THREE

What is the domain of the curve $y = \log_e (x - 1)$?

(A) x > -1(B) x > 0(C) x > 1(D) all real x

Exam continues next page ...

1

1

QUESTION FOUR

Simpson's Rule is used with three function values to approximate $\int_{1}^{2} xe^{x} dx$. 1 Which expression is obtained?

(A)
$$\frac{1}{2} \left(e + 3e^{1 \cdot 5} + 2e^2 \right)$$

(B) $\frac{1}{4} \left(e + 3e^{1 \cdot 5} + 2e^2 \right)$
(C) $\frac{1}{6} \left(e + 6e^{1 \cdot 5} + 2e^2 \right)$
(D) $\frac{1}{12} \left(e + 6e^{1 \cdot 5} + 2e^2 \right)$

QUESTION FIVE

A parabola with focus S(-2,0) and directrix y = 4 is shown above. Which of the following is the equation of the parabola?

(A) $(x+2)^2 = -8(y-2)$ (B) $(x+2)^2 = -8y$ (C) $(x-2)^2 = -8(y+2)$ (D) $(x-2)^2 = -8y$

Exam continues overleaf ...

QUESTION SIX

What is the value of k if $\int_{1}^{k} \frac{2}{x} dx = 4$?

- (A) e^2
- (B) e^{3}
- (C) e^4
- (D) e^5

QUESTION SEVEN

The graph of $y = e^x$ is shown above. Which of the following expressions does NOT represent the area of the shaded region?

(A)
$$e - \int_0^1 e^x dx$$

(B) $\int_1^e e^x dx$
(C) $\int_1^e \log_e y dy$
(D) $\int_0^1 (e - e^x) dx$

Exam continues next page ...

1

QUESTION EIGHT

1

The graph of the gradient function y = f'(x) is shown above. Which of the labelled *x*-values corresponds to a stationary point of inflexion on the original curve y = f(x)?

- (A) a
- (B) *b*
- (C) c
- (D) d

End of Section I

Exam continues overleaf ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

\mathbf{QU}	ESTION NINE (13 marks) Use a separate writing booklet.	Marks
(a)	Calculate $\frac{3}{e^2}$ correct to 3 significant figures.	1
(b)	Expand and simplify $e^x (e^x + e^{-x})$.	1
	Differentiate: (i) \sqrt{x} (ii) e^{2x} (iii) $\log_e 3x$ Find a primitive of: (i) $6x^2$ (ii) e^{4x}	1 1 1 1
	(iii) $\frac{3}{x}$	1
(e)	Evaluate $\int_{2}^{3} (2x-1) dx$.	2
(f)	Find the equation of the parabola with vertex $(0,0)$ and focus $(4,0)$.	1
(g)	Consider the curve whose first derivative is given by $y' = x^2 + x - 6$. For what values of x is the curve increasing?	2

QUESTION TEN (13 marks) Use a separate writing booklet.

(a) Differentiate the following with respect to x:

(i)
$$y = \log_e (x^2 + 3)$$

(ii) $y = \frac{x+1}{x}$
2

- (b) Find the equation of the tangent to the curve $y = e^{3x} + 1$ at the point (0,2).
- (c) Consider the parabola with equation $y^2 = -8(x+2)$.
 - (i) Write down the coordinates of the vertex.
 - (ii) Find the coordinates of the focus.
 - (iii) Find the equation of the directrix.

(d)

(iv) Sketch the parabola clearly showing the vertex, focus and directrix.

Consider the points A(-4,0) and B(4,6). The point P(x,y) moves so that PA is always perpendicular to PB.

arrow x

4

- (i) Find expressions for the gradients of PA and PB.
- (ii) Hence show that the equation of the locus of P is $x^2 + y^2 6y 16 = 0$.
- (iii) Express the above equation in the form $(x h)^2 + (y k)^2 = r^2$.
- (iv) Hence, or otherwise, describe the locus of P geometrically.

Marks

 $\mathbf{2}$

1

QUESTION ELEVEN (13 marks) Use a separate writing booklet.

y

(b)

(c)

(a) If
$$f'(x) = \frac{2x-3}{x^2-3x+1}$$
 and $f(3) = 5$, find $f(x)$. 2

The diagram above shows the curves $y = -x^2 + 4x - 3$ and $y = x^2 - 2x + 1$.

- (i) Show that the curves intersect at the points where x = 1 and x = 2.
- (ii) Find the area of the shaded region enclosed between the two curves.

The points P and Q are located on the curves $y = -x^2 + 4x - 3$ and $y = x^2 - 2x + 1$ respectively, and share the same x-coordinate as shown.

- (iii) If the length of PQ is ℓ units, show that $\ell = -2x^2 + 6x 4$.
- (iv) Hence find the maximum length of PQ for $1 \le x \le 2$.

The region bounded by the curve $y = \frac{3}{\sqrt{4x-3}}$, the *x*-axis and the lines x = 1 and x = 2 is shown above. Find the volume of the solid generated when this region is rotated about the *x*-axis.

Exam continues next page ...

l	Т
	3

1

Marks

	1	
	3	
ĺ	3	

QUESTION TWELVE (13 marks) Use a separate writing booklet.

(a) Solve for x: $\log_2\left(x^2 - 2x\right) = 3.$

(b) (i) Show that the function
$$y = x \log_e x$$
 has derivative $\frac{dy}{dx} = \log_e x + 1$.

(ii) Hence find $\int \log_e x \, dx$.

(c) Consider the curve with equation
$$y = \frac{x}{e^x}$$
.

- (i) Show that $\frac{dy}{dx} = \frac{1-x}{e^x}$ and $\frac{d^2y}{dx^2} = \frac{x-2}{e^x}$.
- (ii) Find the coordinates of the stationary point and determine its nature.
- (iii) Find the coordinates of the point of inflexion. You must show that it is a point of inflexion.
- $\mathbf{2}$ (iv) Sketch the curve, clearly showing the stationary point, the point of inflexion and any intercepts with the coordinate axes.

(You may use the fact that as $x \to \infty, \frac{x}{e^x} \to 0^+$.)

End of Section II

END OF EXAMINATION

Marks

 $\mathbf{2}$

1

 $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$

 $\mathbf{2}$

BLANK PAGE

SYDNEY GRAMMAR SCHOOL

2016 Half-Yearly Examination FORM VI MATHEMATICS 2 UNIT Thursday 25th February 2016

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One						
A ()	В ()	С ()	D ()			
Question Two						
A ()	В ()	С ()	D ()			
Question Three						
A ()	В ()	С ()	D ()			
Question Four						
A ()	В ()	С ()	D ()			
Question Five						
A ()	В ()	С ()	D ()			
Question Six						
A 🔿	В ()	С ()	D ()			
Question Seven						
A 🔿	В ()	С ()	D ()			
Question Eight						
A 🔾	В ()	С ()	D ()			

* QUESTION 9: a) $e^2 = 0.4060058...$ = 0.406 (to 3 sig. fig.) b) $\varrho^{x}(\varrho^{x} + \varrho^{-x}) = \varrho^{2x} + \varrho^{\circ}$ = $\varrho^{2x} + 1$ $(c) i) \frac{d}{dx} (x^{\frac{1}{2}}) = \frac{1}{2} x^{-\frac{1}{2}}$ 1 either = 25 $ii) \frac{d}{dx} \left(\varrho^{2x} \right) = 2 \varrho^{2x}$ iii) $\frac{d}{dx} (\log_e 3x) = \frac{1}{3x} \times 3$ = + $d)) y' = 6x^{2}$ $y = \frac{6\chi^3}{2} \left(+ C \right)$ $= 2x^{3}(+c) /$ don't penalise ii) $y' = e^{4x}$ missing tC. $y = \frac{e^{4x}}{4} (t C) V$ $\frac{3}{11} \cdot \frac{3}{5}$ $y = 3 \ln x (+ C)$

e) $\int_{2}^{3} (2x-1) dx = \left[x^2 - x \right]_{2}^{3} V$ $= 3^2 - 3 - (2^2 - 2)$ $V(0,0) = \frac{y^2 = 4ax}{s(4,0)}$ $y^2 = 16x$ g) increasing > y'> 0 $x^{2}+x-6>0$ (x+3)(x-2)>0 x < -3 or x > 2

* QUESTION IO (a) i) $\frac{dy}{dx} = \frac{1}{x^2+3} \times 2x$ $= \frac{2x}{x^2+3}$ $ii) y = \frac{x}{x} + \frac{1}{x}$ $= 1 + \infty^{-1}$ $\frac{dy}{dx} = -x^{-2}$ $= -\frac{1}{\chi^2}$ $OR / Let U = x + I \quad U = x$ $U' = I \quad U' = I$ $\frac{dy}{dx} = \frac{\chi(1) - (\chi+1)(1)}{\chi^2}$ $= -\frac{1}{\chi^2}$ b) $\frac{dy}{dx} = 3e^{3x}$ when x = 0, $\frac{dy}{dx} = 3$ V y - 2 = 3(x - 0)y = 3x + 2

iii) $x^2 + y^2 - 6y + 9 = 16 + 9$ $\frac{x^{2} + (y - 3)^{2}}{(x - 0)^{2} + (y - 3)^{2}} = 5^{2}$ iv) The locus of P is a circle with centre (0,3) \$ radius 5 units V

* QUESTION II: a) $f(x) = \log_{e}(x^{2} - 3x + 1) + C$ $5 = log_e(q-q+1) + C$ $5 = log_e(1+C)$ $f(x) = \log_e(x^2 - 3x + 1) + 5$ b)i) $x^2 - 2x + 1 = -x^2 + 4x - 3$ $2\chi^2 - 6\chi + 4 = 0$ $3x^{2} - 3x + 2 = 0$ (2c-2)(2c-1) = 0x = 1 or x = 2. Alternatively show the substitutions of both x values into both equations -> four substitutions ii) $A = \int_{1}^{2} (-x^{2} + 4x - 3 - (x^{2} - 2x + 1)) dx$ $= \int_{-2x^{2}}^{2} (-2x^{2} + 6x - 4) dx$ $= -2 \int_{-2}^{2} (x^{2} - 3x + 2) dx$ $= -2\left[\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right]^{2}$ $= -2\left(\frac{8}{3}-6+4-\left(\frac{1}{3}-\frac{3}{2}+2\right)\right)$ = + 42

iii)
$$\lambda = y_{p} - y_{q}$$

 $= -x^{2} + 4x - 3 - (x^{2} - 2x + 1)$ show
 $= -2x^{2} + 6x - 4$
iv) $d\lambda = -4x + 6$
 $= 0$ when $x = \frac{3}{2}$
 $\frac{d^{2}\lambda}{dx^{2} - 4}$
 < 0 $\therefore 6V$ \therefore max occurs when $x = \frac{3}{2}$
 $\therefore \int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
i. $\int_{max} = -2(\frac{3}{2})^{2} + 6(\frac{3}{2}) - 4$
 $= \frac{1}{2}$ units
 $= \frac{1}{2}$ u

XQUESTION 12: a) $2^3 = x^2 - 2x$ V x2-2x-8=0 (x - 4)(x + 2) = Cx=-2 or x=4 V Validity check not check x2-2x>0: when x = -2: $(-2)^2 - 2(-2) = 8$ veguired > 0 for full marks $\chi = 4 + (4)^2 - 2(4) = 8$ iboth valid 70 b) i) y= x loge x Let u = x $v = \log_e x$ u' = 1 $v' = \pm x$ y'= logexx1 + xx + Show that ... = 10gex + 1 ii) $\frac{d}{dx}(x \log x) = \log x + 1$ $\therefore \left((\log_e x + 1) dx = x \log_e x + C_1 \right)$ Slogexdx + Sldx = xlogex + C, = Slagerdx = xlager - Sldx + C, = $x \log_e x - x + C_2 V$

c)
$$y = \frac{x}{e^{x}}$$

i) Let $u = x$ $u = e^{x}$
 $u' = 1$ $u' = e^{x}$
 $dy = e^{x} \times 1 - x \times e^{x}$
 $dy = e^{x} \times 1 - x \times e^{x}$
 $dy = e^{x} \times 1 - x \times e^{x}$
 $dy = e^{x} \times 1 - x \times e^{x}$
 $(e^{x})^{x}$
 \vdots $(e^{x})^{x}$
 \vdots $(e^{x})^{x}$
 $dy = e^{x} \times -1 - (1 - x) e^{x}$
 $dy = e^{x} (-1 - 1 + x)$
 $i = e^{x} (-1 - 1 +$

iii)
$$\frac{d^2y}{dx^2} = 0$$
 when $x = 2$ $y = \frac{2}{e^2}$

$$\frac{x}{dx^2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{2}{3}$$

$$\frac{d^2y}{dx^2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{2}{2}$$
ichange in ceneavity
ichange i