TEACHER: _____

BAULKHAM HILLS HIGH SCHOOL

YEAR 12

HALF YEARLY EXAMINATION

2008

MATHEMATICS EXTENSION 1

GENERAL INSTRUCTIONS:

- Attempt **ALL** questions.
- Start each of the 7 questions on a new page.
- All necessary working should be shown.
- Write your teacher's name and your name on the cover sheet provided.
- At the end of the exam, staple your answers in order behind the cover sheet.
- Marks indicated for each question are only a guide and could change.

QUESTION 1

Marks

(c) Sketch the graph
$$y = \frac{4}{x-1}$$

Hence or otherwise solve $x + 2 < \frac{4}{x-1}$.

(d) Find the solution for x if
$$\cos 2x = \cos x$$
 $0 \le x \le 2\pi$ 3

(e) Find
$$\int \sin^2 x \, dx$$
. 2

QUESTION 2 (Start a new page)

(a) The equation $3x^3 - 4x^2 + 2x + 1 = 0$ has roots α, β and γ . 3 Find: 3

(i)
$$2\alpha + 2\beta + 2\gamma$$

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

(b) Evaluate
$$\int_{0}^{\frac{x}{3}} \tan^2 x \, dx$$
. (Leave answer in exact form) 3

(c) Two points *A* and *B* are on the circumference of a circle and *AC* is the

diameter. AE is perpendicular to the tangent at B. Prove AB bisects $\angle CAE$.

(d) The graphs of $y = e^x$ and $y = e^{-2x}$ intersect at x = 0. Find the size of the acute angle between the curves at x = 0.

3

QUESTION 3 (Start a new page)

Marks

(a) The volume of a sphere is increasing at a rate of $5cm^3/s$. 3 At what rate is the surface area increasing when the radius is 20cm.

(b) Show that the point $A(\frac{1}{2}, 4)$ lies on the line joining the points **3** P(-3, -3) and Q(1,5), and find the ratio in which it divides the line segment PQ.

(c) Evaluate
$$\frac{\lim_{x \to 0} \frac{5x \cos 2x}{\sin x}}{\sin x}$$
 showing your reasoning. 2

(d) Use the method of mathematical induction to show that the expression $9^n - 8n - 1$ is divisible by 64 for all integers $n \ge 2$.

QUESTION 4 (Start a new page)

(a) Find the area of sector *POQ* in the circle of radius 6*cm* and $\angle POQ = \frac{\pi}{3}$ 2

(b)	(ii)	Express $\cos 2x - \sin 2x$ in the form $R\cos(2x + \alpha)$ where α is acute and $R > 0$.	2
	(ii)	Sketch the curve $y = \cos 2x - \sin 2x$ for $0 \le x \le 2\pi$	2

(iii) Hence or otherwise solve: 2
$$\cos 2x - \sin 2x = 1$$
 for $0 \le x \le 2\pi$.

Marks

 $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are points on the parabola $x^2 = 4ay$. It is given that $\angle POQ = 90^\circ$. O is the origin.

- (i) Prove that pq = -4. 1
- (ii) Find the co-ordinates of M, the midpoint of PQ. 1
- (iii) Prove that the Cartesian equation of the locus of *M* is $2ay = x^2 + 8a^2$. 2

QUESTION 5 (Start a new page)

(a) Evaluate
$$\int_{0}^{m^{4}} 3e^{x} dx$$
 2
(b) \bigwedge^{T}

The angle of elevation from a boat at *P* to a point *T* at the top of a vertical cliff is 30° . The boat sails 1km to a second point *Q*, from which the angle of elevation of T is 45° . B is the point at the base of the cliff directly below *T* and *h* is the height of the cliff in metres. The bearings of *B* from *P* and *Q* are 50° and 290° respectively.

- (i) Show that $\angle PBQ = 120^{\circ}$.
- (ii) By finding expressions for *PB* and *QB* in terms of *h*, show that:

$$h = \frac{1000}{\sqrt{4+\sqrt{3}}}$$

Marks

QUESTION 5 (Continued)

A body cools according to the equation: dT(c)

$$\frac{11}{dt} = -k(T-S)$$
where *T* is the temperature of the body at time *t*,
S is the temperature of the surroundings and
k is a constant.

(i) Show that $T = S + Ae^{-k}$ satisfies the equation, where *A* is a constant.

(i) A metal rod has an initial temperature of 470°C and cools to 250°C
in 10 minutes.

The surrounding temperature is 30°C.

(α) Find the value of A and show that $k = \frac{1}{10} \log_{e} 2$.
(β) Find how much longer it will take the rod to cool to 70°C,
giving your answer to the nearest minute.

QUESTION 6 (Start a new page) Marks
(a) (i) Find the polynomial $P(x)$, if $P(x)$ has:
 $\frac{1}{10} \operatorname{degree} 4$.
 $\frac{1}{10} \operatorname{factors} (x + 3)^2 \operatorname{and} (x - 3)^2 \operatorname{and} \frac{1}{10} \operatorname{a remainder of -50}$ when divided by $(x + 2)$.
(ii) Sketch this curve.
(b) An arc of a circle subtends an angle θ radians at the centre.
The length of the arc is ℓ and the length of the chord is *d*.
If ℓ : $d = 4$: 3, show that $30 - 8\sin\frac{\theta}{2} = 0$
(c) Find the exact value of x if $\log_{e}(2\log_{e} x) = 1$
(d) Find $\int 7^x dx$
(i) Show that the amount owing after *n* months is:
2

$$A_n = 25000(1.005)^n - M\left(\frac{1.005^n - 1}{0.005}\right)$$

(ii) If the loan is paid off in 5 years, calculate the repayment M1 to the nearest dollar.

Marks

3

2

QUESTION 7 (Start a new page)

maximum.

(b)

(a) A particle is moving in a straight line and its velocity v metres/second at time *t* seconds is given by:

$$v = \frac{dx}{dt} = 1 - 2\sin 2t \qquad t \ge 0$$

Initially the particle is at the origin.

(i) Express the displacement
$$x$$
, as a function of t . 2

(ii) Find the position of the particle when
$$t = \frac{\pi}{6}$$
. 1

(iii) Find an expression for the acceleration
$$a = \frac{d^2 x}{dt^2}$$
. 1

- (iv) Sketch the graph of the acceleration as a function of time, $0 \le t \le \pi$. 1
- What is the maximum acceleration of the particle? **(v)**

(i)	Show that the area, A of the quadrilateral OMPN is given by $A = 4\sin\theta + 2\cos\theta$		
(ii)	Find the value of $tan \theta$ for which A is maximum.	2	
(iii)	Hence determine in surd form the coordinates of <i>P</i> for which <i>A</i> is a	2	

$$4$$
 p
 N M y y
 N M y y z
 y y z y z

$$\frac{2003}{4} \frac{1}{91} \frac{1}{2} \frac{1}{2}$$

-

.

Build T. Cord.
b. Area of 0 m pN
= Aorm + Ao pN

$$A_{aorn} = \frac{1}{2}x_{4} \times 2x \sin \theta$$

 $= 450 h \theta$
 $A_{aorn} = \frac{1}{2}x_{4} \times 2x \sin \theta$
 $= 2 \cos \theta$
 $\therefore Total Area = 450 h c + 2 \cos \theta$
 $\frac{1}{2} = 2 \sin \theta$
 $2 = 4 \sin \theta$
 $2 = 4 \sin \theta$
 $\frac{1^{2} A}{d\theta} = 4 \cos \theta - 2 \sin \theta = 0$
 $4 \cos \theta = 2 \sin \theta$
 $2 = 4 \sin \theta$
 $\frac{1^{2} A}{d\theta} = -4 \sin \theta - 2 \cos \theta$
 $= -(4 \sin \theta + 2 \cos \theta)$
 $\therefore \frac{a^{2} A}{d\theta^{2}} = 20 \text{ for any value}$
 $\frac{a^{2} A}{d\theta^{2}} = 2 \cos \theta$
 $\therefore \frac{a^{2} A}{d\theta^{2}} = 2 \cos \theta$
 $\therefore \frac{a^{2} A}{d\theta^{2}} = 2 \sqrt{2} \frac{1}{2} \frac{$