\qquad

BAULKHAM HILLS HIGH SCHOOL

YEAR 12

HALF YEARLY EXAMINATION

2008

MATHEMATICS EXTENSION 1

GENERAL INSTRUCTIONS:

- Attempt ALL questions.
- \quad Start each of the 7 questions on a new page.
- All necessary working should be shown.
- Write your teacher's name and your name on the cover sheet provided.
- At the end of the exam, staple your answers in order behind the cover sheet.
- Marks indicated for each question are only a guide and could change.
(a) If $P(x)=x^{3}-2 x^{2}+a x+4$ is divisible by $(x+2)$, what is the value of a ?
(b) Differentiate $\log _{e} x^{2}$.
(c) Sketch the graph $y=\frac{4}{x-1}$

Hence or otherwise solve $x+2<\frac{4}{x-1}$.
(d) Find the solution for x if $\cos 2 x=\cos x \quad 0 \leq x \leq 2 \pi$
(e) Find $\int \sin ^{2} x d x$.

QUESTION 2 (Start a new page)

(a) The equation $3 x^{3}-4 x^{2}+2 x+1=0$ has roots α, β and γ.

Find:
(i) $2 \alpha+2 \beta+2 \gamma$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(b) Evaluate $\int_{0}^{\frac{\pi}{3}} \tan ^{2} x d x$. (Leave answer in exact form)
(c) Two points A and B are on the circumference of a circle and $A C$ is the diameter. $A E$ is perpendicular to the tangent at B. Prove $A B$ bisects $\angle C A E$.

(d) The graphs of $y=e^{x}$ and $y=e^{-2 x}$ intersect at $x=0$.

Find the size of the acute angle between the curves at $x=0$.
(a) The volume of a sphere is increasing at a rate of $5 \mathrm{~cm}^{3} / s$.

At what rate is the surface area increasing when the radius is 20 cm .
(b) Show that the point $A\left(\frac{1}{2}, 4\right)$ lies on the line joining the points $P(-3,-3)$ and $Q(1,5)$, and find the ratio in which it divides the line segment $P Q$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{5 x \cos 2 x}{\sin x}$ showing your reasoning.
(d) Use the method of mathematical induction to show that the expression $9^{n}-8 n-1$ is divisible by 64 for all integers $n \geq 2$.

QUESTION 4 (Start a new page)
(a) Find the area of sector $P O Q$ in the circle of radius 6 cm and $\angle P O Q=\frac{\pi}{3}$

(b) (ii) Express $\cos 2 x-\sin 2 x$ in the form $R \cos (2 x+\alpha)$ where α is acute and $R>0$.
(ii) Sketch the curve $y=\cos 2 x-\sin 2 x$ for $0 \leq x \leq 2 \pi$
(iii) Hence or otherwise solve:

$$
\cos 2 x-\sin 2 x=1 \text { for } 0 \leq x \leq 2 \pi .
$$

(c)

$P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are points on the parabola $x^{2}=4 a y$. It is given that $\angle P O Q=90^{\circ} . O$ is the origin.
(i) Prove that $p q=-4$.
(ii) Find the co-ordinates of M, the midpoint of $P Q$.
(iii) Prove that the Cartesian equation of the locus of M is $2 a y=x^{2}+8 a^{2}$.

QUESTION 5 (Start a new page)

(a) Evaluate $\int_{0}^{\ln 4} 3 e^{x} d x$
(b)

The angle of elevation from a boat at P to a point T at the top of a vertical cliff is 30°. The boat sails 1 km to a second point Q, from which the angle of elevation of T is 45°. B is the point at the base of the cliff directly below T and h is the height of the cliff in metres. The bearings of B from P and Q are 50° and 290° respectively.
(i) Show that $\angle P B Q=120^{\circ}$.
(ii) By finding expressions for $P B$ and $Q B$ in terms of h, show that:

$$
\begin{equation*}
h=\frac{1000}{\sqrt{4+\sqrt{3}}} \tag{4}
\end{equation*}
$$

(c) A body cools according to the equation:

$$
\frac{d T}{d t}=-k(T-S)
$$

where T is the temperature of the body at time t,
S is the temperature of the surroundings and k is a constant.
(i) Show that $T=S+A e^{-k t}$ satisfies the equation, where A is a constant.
(ii) A metal rod has an initial temperature of $470^{\circ} \mathrm{C}$ and cools to $250^{\circ} \mathrm{C}$ in 10 minutes.

The surrounding temperature is $30^{\circ} \mathrm{C}$.
(α) Find the value of A and show that $k=\frac{1}{10} \log _{e} 2$.
(β) Find how much longer it will take the rod to cool to $70^{\circ} \mathrm{C}$, giving your answer to the nearest minute.

QUESTION 6 (Start a new page)

(a) (i) Find the polynomial $P(x)$, if $P(x)$ has:

- \quad degree 4.
- factors $(x+3)^{2}$ and $(x-3)^{2}$ and
- a remainder of -50 when divided by $(x+2)$.
(ii) Sketch this curve.
(b) An arc of a circle subtends an angle θ radians at the centre.

The length of the arc is ℓ and the length of the chord is d.
If $\ell: d=4: 3$, show that $3 \theta-8 \sin \frac{\theta}{2}=0$
(c) Find the exact value of x if $\log _{e}\left(2 \log _{e} x\right)=1$
(d) Find $\int 7^{x} d x$
(e) An amount of $\$ 25,000$ is borrowed and an interest rate of 6% pa is charged. An amount M is repaid in monthly amounts.
(i) Show that the amount owing after n months is:

$$
A_{n}=25000(1.005)^{n}-M\left(\frac{1.005^{n}-1}{0.005}\right)
$$

(ii) If the loan is paid off in 5 years, calculate the repayment M to the nearest dollar.
(a) A particle is moving in a straight line and its velocity v metres/second at time t seconds is given by:

$$
v=\frac{d x}{d t}=1-2 \sin 2 t \quad t \geq 0
$$

Initially the particle is at the origin.
(i) Express the displacement x, as a function of t.
(ii) Find the position of the particle when $t=\frac{\pi}{6}$.
(iii) Find an expression for the acceleration $a=\frac{d^{2} x}{d t^{2}}$.
(iv) Sketch the graph of the acceleration as a function of time, $0 \leq t \leq \pi$.
(v) What is the maximum acceleration of the particle?
(b)

The diagram shows the part of the circle $x^{2}+y^{2}=16$ that lies in the first quadrant. The point $P(x, y)$ is on the circle with centre at the origin $O . \mathrm{M}$ is on the x-axis at $x=2$ and N is on the y-axis at $y=1$. The size of angle $M O P$ is θ radians.
(i) Show that the area, A of the quadrilateral $O M P N$ is given by

$$
A=4 \sin \theta+2 \cos \theta
$$

(ii) Find the value of $\tan \theta$ for which A is maximum.
(iii) Hence determine in surd form the coordinates of P for which A is a maximum.

Quest 1.
$2008 \frac{1}{2} y r^{4} y$ yr 12 Ext 1. Solus.

$$
\text { a) } \begin{align*}
& P(x)=x^{3}-2 x^{2}+a x+4 \\
& P(-2)=-8-8-2 a+4=0 \\
& 2 a=-12 \\
& a=-6 \tag{2}
\end{align*}
$$

c) $y=\frac{4}{x-1}$

12
(e)

$$
\begin{aligned}
\int \sin ^{2} x d x & =\int \frac{1}{2}(1-\cos 2 x) d x \\
& =\frac{1}{2}\left(x-\frac{1}{2} \sin 2 x\right)+C
\end{aligned}
$$

(1)

Question 2.
a) $3 x^{3}-4 x^{2}+2 x+1=0$

$$
\begin{aligned}
\alpha+\beta+\gamma & =-\frac{b}{a} & \alpha \beta+\alpha \gamma+\beta \gamma & =\frac{c}{a} \\
& =\frac{4}{3} & & =\frac{2}{3}
\end{aligned}
$$

$$
\alpha \beta \gamma=-\frac{d}{a}
$$

$$
=-\frac{1}{3}
$$

$$
\begin{aligned}
\therefore \text { 人) } 2(\alpha+\beta+\gamma) & =2 \times \frac{4}{3} \\
V & =\frac{8}{3} V \\
\text { ii } \alpha \beta+\alpha \gamma+\beta \gamma & \frac{2}{2}
\end{aligned}
$$

iii) $\frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma}=\frac{\frac{2}{3}}{-\frac{1}{3}}=-2^{V}$

$$
\text { b) } \begin{align*}
\int_{0}^{\frac{\pi}{3}} \tan ^{2} x d x & =\int_{0}^{\frac{\pi}{3}}\left(\sec ^{2} x-1\right) d x \tag{3}\\
& =[\tan x-x]_{0}^{\frac{\pi}{3}} \\
& =\left(\tan \frac{\pi}{3}-\frac{\pi}{3}\right)-0 \\
& =\sqrt{3}-\frac{\pi}{3} \text { or } \frac{3 \sqrt{3}-\pi}{3} \tag{3}
\end{align*}
$$

C) Construct $C B$

Proof: $A \hat{B E}=\hat{A C B}$ (angle formed between
b)

$$
\begin{aligned}
\frac{d}{d x} \log _{e} x^{2} & =\frac{2 x}{x^{2}} \\
& =\frac{2}{x}
\end{aligned}
$$

(2)
d) $\begin{array}{ll}\cos 2 x=\cos x & 0 \leqslant x \leqslant 2 \pi \\ 2 \cos ^{2} x-1-\cos x=0\end{array}$
$(2 \cos x+1)(\cos x-1)=0$
$=x$ chord and tangent at pt of contact is equal to the angle in the alternate segment)
$\checkmark \hat{A B C}=90^{\circ}$ (angle in a semicircle)

$$
\begin{aligned}
\therefore \hat{E A B} & =180-(90+x)(\text { angle sum of } \Delta) \\
& =90-x
\end{aligned}
$$

$\widehat{C A B}=90-x($ angle sum of $\Delta)$

$$
=\hat{E} \widehat{A} B
$$

$\therefore A B$ bisects $C \hat{A E}$

$$
\begin{aligned}
& \cos x=-\frac{1}{2} \quad \cos x=1 \\
& x=\pi+\frac{\pi}{3}, \pi-\frac{\pi}{3} \quad x=0,2 \pi \\
& \therefore x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, 2 \pi \text {. }
\end{aligned}
$$

(3)
quest 2 cont.

$$
\begin{align*}
\text { d) } y=e^{x} & \quad y=e^{-2 x} \\
\frac{d y}{d x} & =e^{x} \quad \frac{d y}{d x}=-2 e^{-2 x} \\
m_{1} & =e^{0} \quad \quad m_{2}=-2 \cdot e^{0} \\
& =1 \quad V-2 \\
& =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
\therefore \tan \theta & =\left|\frac{1+2}{1-2}\right|=3 \\
\theta & =71^{0} 34^{\prime}
\end{align*}
$$

Question 3

$$
\text { a) } V=\frac{4}{3} \pi r^{3} \quad \delta A=4 \pi r^{2}
$$

$$
\frac{d v}{d t}=5 \quad \frac{d v}{d r}=4 \pi r^{2} \quad \frac{d A}{d r}=8 \pi r .
$$

$\therefore \frac{d v}{d t}=\frac{d v}{d r} \cdot \frac{d r}{d t}<\frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t}$

$$
\frac{d A}{d t}=\frac{10}{20}=0.5
$$

at $0.5 \mathrm{~cm}^{2}$. A increasing
b)

$$
\begin{aligned}
& P(-3,-3) \quad Q(1,5) \\
& m_{P Q 2}=\frac{5+3}{1+3}=\frac{8}{4} \quad \text { line } P Q . \\
& =2 \quad y+3=2(x+3) \quad y=2 x+3
\end{aligned}
$$

odors $A\left(\frac{1}{2}, 4\right)$ satisfy line

$$
\text { io. } 4=2 \times \frac{1}{2}+3
$$

- ratio

$$
=4 \text { True }
$$

$$
\begin{aligned}
x & =\frac{m x_{2}+n x_{1}}{m+n} \\
\frac{1}{2} & =\frac{m \times 1+n x-3}{m+n} \\
m+n & =2 m-6 n \\
7 n & =m \quad \therefore \frac{m}{n}=\frac{7}{1} \text { or } m: n=7: 1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{d v}{d r} \cdot \frac{d r}{d t}\left\{\frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t}\right. \\
& 5=4 \pi r^{2} \times \frac{d r}{d t} V\left\{\begin{array}{l}
=8 \pi r \cdot \frac{5}{4 \pi r^{2}} \text {. }
\end{array}\right. \\
& \frac{d r}{d t}=\frac{5}{4 \pi r^{2}} \quad\left\{=\frac{10}{r}\right. \\
& \text { at } r=20
\end{aligned}
$$

$$
\text { c) } \begin{align*}
\lim _{x \rightarrow 0} \cos 2 x \cdot \frac{5 x}{\sin x} & =\lim _{x \rightarrow 0} \cos 2 x .5 \lim _{x \rightarrow 0} \frac{x}{\sin x} x \\
& =5 \sqrt{\text { some }} \text { working } \\
& \text { (2) } \tag{2}
\end{align*}
$$

d) $9^{n}-8 n-1$
let $n=2$

$$
\begin{aligned}
9^{2}-16-1 & =81-17 \\
& =64 . \omega
\end{aligned}
$$

$$
\begin{aligned}
& =81-17 \\
& =64 . \text { which is divisible by }
\end{aligned}
$$

$$
64
$$

assure true. \therefore true for $n=2$.
for $n=k$

$$
\therefore \frac{a^{k}-8 k-1}{64}=P(\text { some integer) }
$$

prove true for $a^{k}-8 k-1=64 P$)

$$
n=k+1
$$

$$
\text { ie. } 9^{k+1}-8(k+1)-1
$$

$$
\begin{aligned}
& =9^{k} \times 9-8 k-9 V 1
\end{aligned}
$$

but $q^{k}=64 p+8 k+1$]

$$
\begin{aligned}
\therefore & =(64 p+8 k+1) \times 9-8 k-9 \\
& =9 \times 64 p+72 k+9-8 k-9 \\
& =64 p+k) \text { which is }
\end{aligned}
$$

$=64(9 p+k)$ which is divisible by 64
\therefore if true for $n=k$ then true for? $n=k+1$
since true for $n=2$ then by $m I$. also true for $n=2+1=3, n=3+1=4$ for all integers $n \geq 2$.
Question 4.

$$
\text { a) } \begin{align*}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 36-\frac{\pi}{3} \\
& =6 \pi \mathrm{~cm}^{2} \tag{2}
\end{align*}
$$

b) $\cos 2 x-\sin 2 x=\cos 2 x \cos \alpha-\sin 2 x \sin \alpha$

$$
\begin{aligned}
\therefore \tan \alpha & =1 \quad \vee \quad R=\sqrt{2} . \\
\alpha & =\frac{\pi}{4} \quad \sqrt{2} \quad \cos / 2 x
\end{aligned}
$$

$\therefore \cos 2 x-\sin 2 x=\sqrt{2} \cos \left(2 x+\frac{\pi}{4}\right)$
ii) ${ }_{1} \sqrt{2}$
$\left.\begin{array}{c}i)_{1}^{1} \\ -1 \\ -12\end{array}\right]^{\frac{\pi}{8}}$
quest 4 cont.
ii)

$$
\begin{aligned}
& \cos 2 x-\sin 2 x=1 \quad 0 \leqslant x \leq 2 \pi \\
& \left.\sqrt{2} \cos \left(2 x+\frac{\pi}{4}\right)=1 \quad \frac{\pi}{4} \leq 2 x+\frac{\pi}{4} \leq \frac{4 \pi+\pi}{4}\right] \\
& \cos \left(2 x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\
& 2 x+\frac{\pi}{4}=\frac{\pi}{4}, \frac{7 \pi}{4}, \frac{9 \pi}{4}, \frac{15 \pi}{4}, \frac{17 \pi}{4} \\
& 2 x=0, \frac{6 \pi}{4}, \frac{8 \pi}{4}, \frac{14 \pi}{4}, \frac{16 \pi}{4}[6) \text { nato] } \\
& x=0, \frac{3 \pi}{4}, \pi, \frac{7 \pi}{4}, 2 \pi
\end{aligned}
$$

ii) $\ln \triangle T B P$
in $\triangle T B Q$
$\tan 30=\frac{n}{P B}$

$$
\begin{aligned}
P B & =\frac{h}{\tan 3 D} \\
& =\sqrt{3} h
\end{aligned}
$$

$$
\begin{aligned}
\tan 45 & =\frac{h}{B Q} \\
B Q & =\frac{h}{\tan 45} \\
& =h
\end{aligned}
$$

\therefore in $\triangle P B Q$.

$$
\begin{gathered}
\text { c) } i) M_{P O}=\frac{a p}{2 a p-0}=\frac{p}{2} \quad M_{Q O}=\frac{q}{2} \\
\text { since } m_{P O} \times M_{Q O}=-1 \quad \theta \hat{O P}=90^{\circ} \\
\therefore \frac{p}{2} \times \frac{q}{2}=-1 \\
p q=-4 .
\end{gathered}
$$

$$
\begin{aligned}
& \text { ii) midpt PQ } \\
& x=\frac{2 a p+2 a q}{2} \quad\left(y=\frac{a p^{2}+a q^{2}}{2}\right. \\
& =a(p+q) \quad
\end{aligned} \quad=\frac{a}{2}\left(p^{2}+q^{2}\right) .
$$

Questions
a)

$$
\begin{align*}
\int_{0}^{\ln 4} 3 e^{x} d x & =\left[3 e^{x}\right]_{0}^{\ln 4} \sqrt{12} \\
& =3 e^{\ln 4}-3 e^{0} \\
& =3 \times 4-3 \\
& =9 \tag{2}
\end{align*}
$$

Question 6.
a) i) $p(x)=a(x+3)^{2}(x-3)^{2}$

$$
P(-2)=a(1)(-5)^{2}=-50
$$

$$
\therefore a=-2
$$

$$
\therefore P(x)=-2(x+3)^{2}(x-3)^{2}
$$

2i)

b)

$$
\text { now } \quad \rightarrow l=r \theta \text {. }
$$

$$
\begin{aligned}
& \frac{d}{2} \sin \frac{\theta}{2}=\frac{d}{2} \\
& r \sin \frac{\theta}{2}=\frac{d}{2} \\
& \Rightarrow d=2 r \sin \frac{\theta}{2} . \\
& \rightarrow 0-r a .
\end{aligned}
$$

$$
l: d=r \theta: 2 r \sin \frac{\theta}{2}=4: 3
$$

$$
\frac{k \theta}{2 k \sin \frac{\theta}{2}}=\frac{4}{3} V
$$

$$
3 \theta=8 \sin \frac{\theta}{2}
$$

or $3 \theta-8 \sin \frac{\theta}{2}=0$.
c) $\log _{e}\left(2 \log _{e} x\right)=1$

$$
\begin{aligned}
e^{\prime} & =2 \log _{e} x \\
\frac{e}{2} & =\log _{e} x \\
\therefore e^{\frac{e^{2}}{2}} & =x
\end{aligned}
$$

d) $\int 7^{x} d x=\frac{1}{\ln 7} \cdot 7^{x}+c$
musthave
e) $r=\frac{0.06}{12}=0.005$

$$
\begin{aligned}
& \\
& \\
& A_{1} A_{1} h_{1}=25000(1.005)-m \\
& A_{2}=A_{1}(1.005)-m \\
&=25000(1.005)^{2}-m(1.005)-m \\
& A_{3}=A_{2}(1.005)-m \\
&=25000(1.005)^{3}-m(1.005)^{2}-m(1.005) \\
& \vdots \\
& A_{n}=25000(1.005)^{n}-m(1.005)^{n-1}-m(1.005)^{n-2} \cdots
\end{aligned}
$$

$$
c=-1
$$

(3) $\ddot{i i})$

(3) a) $v=\frac{d x}{d t}=1-2 \sin 2 t$
i) $x=t+\cos 2 t+c V$ at $t=0 \quad x=0$

$$
0=0+\cos 0+c
$$

$$
\begin{aligned}
& c=-1 \\
& \therefore x=t+\cos 2 t-11
\end{aligned}
$$

ii) $t=\frac{\pi}{6}$

$$
\begin{aligned}
& x=\frac{\pi}{6} \\
& x=\frac{\pi}{6}+\cos \frac{\pi}{3}-1 \\
& =\left(\frac{\pi}{6}-\frac{1}{2}\right) m \text { or } 0.02 m \text { tothe righ }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=1-2 \sin 2 t \\
& \frac{d^{2} x}{d t^{2}}=-4 \cos 2 t
\end{aligned}
$$

v) max accel. $=4 \mathrm{~m} / \mathrm{sec}^{2}$

Quest 7. Cont:
b. Area of 0 MPN

$$
\begin{aligned}
&=A_{O P M}+A_{O P N} \\
& \therefore A_{\triangle O P M}=\frac{1}{2} \times 4 \times 2 \times \sin \theta \\
&=4 \sin \theta \\
& A_{\triangle O P N}=\frac{1}{2} \times 1 \times 4 \times \sin (90-\theta) \\
&=2 \cos \theta
\end{aligned}
$$

\therefore Total Area $=4 \sin \theta+2 \cos \theta$

$$
\text { ii) } \begin{array}{r}
\frac{d A}{d \theta}= \\
4 \cos \theta-2 \sin \theta=0 \\
4 \cos \theta=2 \sin \theta \\
2=\tan \theta
\end{array}
$$

$d^{2} A$

$$
\frac{d \pi}{d \theta^{2}}=-4 \sin \theta-2 \cos \theta
$$

$$
=-(4 \sin \theta+2 \cos \theta)
$$

$$
\begin{align*}
&=-(4 \sin \theta+2 \cos \theta) \\
& \therefore \frac{d^{2} A}{d \theta^{2}}<0 \text { for any vale }
\end{align*}
$$

$\left(\begin{array}{c}-4.47 \text { when } \\ \text { using } \\ \text { i }\end{array}=63.4^{\circ}\right.$
\therefore for A maximum $\tan \theta=2$
iii) let P be (x, y)

$$
\begin{array}{r}
x^{2}+y^{2}=16 \\
\tan \theta=\frac{y}{x}=2 \\
y=2 x \\
\therefore x^{2}+4 x^{2}=16 \\
5 x^{2}=16 \\
x=\frac{4}{\sqrt{5}} \\
y=2 \times \frac{4}{\sqrt{5}}=\frac{8}{\sqrt{5}} \\
\therefore P_{\text {is }}\left(\frac{4}{\sqrt{5}}, \frac{8}{\sqrt{5}}\right)
\end{array}
$$

