BAULKHAM HILLS HIGH SCHOOL

2009
YEAR 12 HALF YEARLY
EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work

Total marks - 84

- Attempt Questions 1 - 7
- All questions are of equal value

Total marks - 84

Attempt Questions 1-7
All questions are of equal value
Answer each question on a SEPARATE piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.

Marks

Question 1 (12 marks) Use a separate piece of paper
a) Find the acute angle between the lines $2 x+y=15$ and $3 x-y=7$
b)

P is the point $(-3,5)$.
$R(5,-3)$ divides $P Q$ externally in the ratio 2:1. Find the coordinates of S which divides $P Q$ internally in the ratio $2: 1$.
c) Find the Cartesian equation of the curve whose parametric coordinates are

$$
\begin{aligned}
& x=\cos 2 t \\
& y=\cos t
\end{aligned}
$$

d) Evaluate $\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{3}\right)}{3 x}$
e) $x^{2}-x-2$ is a factor of $x^{4}+3 x^{3}+a x^{2}-2 x-b$. Find the values of a and b.
a) The equation $x^{3}-3 x^{2}+4 x+2=0$ has roots α, β and γ. Find the values of;
(i) $\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}$
(ii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
b) (i) On the same diagram sketch $y=x$ and $y=|x-2|$
(ii) Hence or otherwise solve $\frac{|x-2|}{x} \geq 1$
c) The line $P Q$ is a tangent to the circle at the point A. $A B=B C$ and $A D=D C . \angle Q A B=x^{\circ}$ and $\angle P A D=y^{\circ}$

(i) Deduce that $x+y=90^{\circ}$
(ii) Explain why $B D$ is a diameter of the circle.

Question 3 (12 marks) Use a separate piece of paper
a) Find $\int \cos ^{2} 2 x d x$
b) If $\tan x=2,0^{\circ}<x<90^{\circ}$ and $\tan y=\frac{-1}{3}, 90^{\circ}<y<180^{\circ}$, find the exact value of $x+y$
c) Use $x=0.5$ to find an approximation for the root of $\cos x=x$ using one application of Newton's Method, correct to 2 decimal places.
d) (i) Express $\sin x+\sqrt{3} \cos x$ in the form $A \sin (x+\alpha)$
(ii) Hence, or otherwise, solve $\sin x+\sqrt{3} \cos x=1$ for $0 \leq x \leq 2 \pi$

Question 4 (12 marks) Use a separate piece of paper
a) Show that $\frac{1+\cos 2 \theta}{\sin 2 \theta} \equiv \cot \theta$
b) A point moves along the curve $y=\frac{1}{x}$ such that the x value is changing at a rate 3 of 2 units per second.
At what rate is the y value decreasing when $x=5$?
c) A surveyor at X observes a tower due north. The angle of elevation to the top of the tower is 10°. He then walks 400 metres to a position Y which is due east of the tower. The angle of elevation from Y to the top of the tower is 15°.

(i) Write equations for OX and OY in terms of h. 2
(ii) Calculate h to the nearest metre. 3
(iii) Find the bearing of X from Y , to the nearest degree.

Question 5 (12 marks) Use a separate piece of paper
a) Solve the equation $3 x^{3}-17 x^{2}-8 x+12=0$ given that the product of two of the roots is 4 .
b) (i) Show that $\frac{d}{d x}\left(\tan ^{3} x\right)=3\left(\sec ^{4} x-\sec ^{2} x\right)$
(ii) Hence find $\int \sec ^{4} x d x$
c) At time t minutes, the temperature T° of a body in a room of constant temperature 20° is decreasing according to the equation $\frac{d T}{d t}=-k(T-20)$ for some constant $k>0$
(i) Verify that $T=20+A e^{-k t}$, where A is constant, is a solution of the equation.
(ii) The initial temperature of the body is 90° and it falls to 70° after 10 minutes. 3 Find the temperature of the body after a further 5 minutes, correct to the nearest degree.

Question 6 (12 marks) Use a separate piece of paper
a) $P\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$. The focus is $S(0, a)$.
$P N$ is perpendicular to the tangent at P. $S N$ is parallel to the tangent at P.
(i) Show that the equation of $P N$ is $x+p y=a p^{3}+2 a p$
(ii) Show that the coordinates of N are $\left(a p, a p^{2}+a\right)$
(iii) Find the Cartesian equation of the locus of N.
b) Mayank borrows $\$ 30000$ at 9% per annum reducible interest calculated monthly. The loan is to be repaid in 60 equal monthly instalments of $\$ \mathrm{M}$.
(i) Show that the amount A_{n} owing after n monthly repayments have been made is

$$
A_{n}=30000(1.0075)^{n}-M\left(\frac{1.0075^{n}-1}{0.0075}\right)
$$

(ii) Show that the monthly repayments should be $\$ 622.75$
(iii) With the $12^{\text {th }}$ repayment, Mayank pays an additional $\$ 6000$, so this repayment is $\$ 6622.75$.

How many more repayments will be needed?

Question 7 (12 marks) Use a separate piece of paper
a)

Consider the above graph of $y=g(x)$. There is a root between $x=2$ and $x=3$.
Explain why $x=2.9$ is not a suitable first approximation for Newton's method to find this root.

Question 7 (continued)

b) (i) Use mathematical induction to prove for positive integral values of n;

$$
\frac{1}{1 \times 3}+\frac{1}{2 \times 4}+\frac{1}{3 \times 5}+\ldots+\frac{1}{n(n+2)}=\frac{n(3 n+5)}{4(n+1)(n+2)}
$$

(ii) Hence, or otherwise, find $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k(k+2)}$
c) Two lifeguards, David and Pamela, were having an argument on the beach.

David bet Pamela $\$ 50$ that he could outrun his own shadow. That night they return to the beach so David could prove his argument.

In the diagram, h represents the height of the lighthouse, D represents David's height, x is David's displacement from the lighthouse and s is the length of David's shadow.
David runs with a velocity of v metres per second.
(i) Prove that $x=s\left(\frac{h}{D}-1\right)$.
(ii) Hence, or otherwise, show that $\frac{d s}{d t}=\frac{D v}{h-D}$
(iii) Assuming the lighthouse is 5 metres tall and David is 1.2 metres tall, show that $\frac{d s}{d t}<v$
(iv) David believed that he had proven his point and stated; "If the velocity of the 1 shadow is always less than my velocity, then eventually I must overtake it." However Pamela saw a mistake in David's argument and refused to pay him $\$ 50$. What was David's mistake?

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
& =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan \frac{1}{a} \frac{x}{a}, a \neq 0 \\
\int \sec ^{2} a x d x \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
\int
\end{array}
$$

NOTE: $\ln x=\log x, \quad x>0$

2009 Extonsion I Half Vrly Solutions

Question 1 (12)
a)

$$
\begin{align*}
& 2 x+y=15 \Rightarrow m_{1}=-2 \\
& 3 x-y=7 \Rightarrow m_{2}=3 \\
& \tan \alpha=\left|\frac{-2-3}{1+(-2 \times 3)}\right| \\
& =\left|\frac{-5}{-5}\right| \\
& =1 \\
& \alpha=45^{\circ} \tag{2}
\end{align*}
$$

$\therefore \begin{gathered}a=3 b \\ \therefore \text { divicles } P R \text { internally }\end{gathered}$ in the ratio

$$
\begin{gather*}
2: 4=1: 2 \\
P(-3,5) \quad \underbrace{}_{1: 2} R(5,-3) \\
S
\end{gather*}=\left(-\frac{6+5}{3}, \frac{10-3}{3}\right) .
$$

c)

$$
\begin{align*}
\text { c) } & x=\cos 2 t \quad y=\cos t \\
x & =2 \cos ^{2} t-1 \\
& x=2 y^{2}-1 \tag{2}\\
\text { d) } & \lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{3}\right)}{3 x} \\
= & \lim _{x \rightarrow 0} \frac{1}{9} \times \frac{\sin \left(\frac{x}{3}\right)}{\frac{\pi}{3}} \\
= & \frac{1}{9} \tag{2}
\end{align*}
$$

e) $\dot{x}^{2}-x-2=(x-2)(x+1)$

$$
\begin{array}{ll}
\therefore P(2)=0 & P(-1)=0 \\
16+24+4 a-4-b=0 & 1-3+a+2-b=0
\end{array}
$$

$4 a-b=-36$

$$
3 a=-36
$$

$$
a-b=0
$$

$$
a=-12
$$

$$
\begin{equation*}
\therefore a=-12, b=-12 \tag{3}
\end{equation*}
$$

Question 2 (12)
a) $x^{3}-3 x^{2}+4 x+2=0$
(i) $\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}$

$$
\begin{align*}
& =\frac{\gamma+\beta+\alpha}{\alpha \beta \gamma} \\
& =-\frac{3}{2} \tag{2}
\end{align*}
$$

(ii) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$

(ii) $\frac{|x-2|}{x} \geqslant 1$

$$
\begin{array}{cc}
\text { If } x>0 & x<0 \\
|x-2| \geqslant x & |x-2| \leqslant x \\
0<x \mid \leqslant 1 & \text { no solutic }
\end{array}
$$

$$
0<x \leq 1 \text { no solutions }
$$

$$
\begin{equation*}
\therefore 0<x \leqslant 1 \tag{2}
\end{equation*}
$$

c) $A B=C B$ (givos)
$A D=C D \quad$ (giver)
BD is common
$\therefore \triangle A B D \equiv \triangle C B D$ (SSB)
$\angle B A D=\angle B C D$ (matoning $\angle{ }^{\prime}$
$\begin{aligned} & \angle B A D+\angle B C D=100^{\circ} \equiv \Delta^{\prime} s \text {) } \\ & \text { (opposite } \angle b \text { in }\end{aligned}$ (opposite Lb in
oyclic quadrilatal)

$$
\begin{aligned}
& \therefore \angle B A D=\angle B C D=90^{\circ} \\
& x+y+90^{\circ}=100^{\circ} \quad(\text { straight } \angle Q A P)
\end{aligned}
$$

$$
\begin{equation*}
x+y=90^{\circ} \tag{3}
\end{equation*}
$$

(ii) $\angle B A D=90^{\circ}$
$\therefore B D$ is diameter
(\angle in semicircte $=90^{\circ}$)

Question 3 (12
a)

$$
\begin{align*}
& \int \cos ^{2} 2 x d x \\
= & \frac{1}{2} \int(1+\cos 4 x) d x \\
= & \frac{1}{2}\left(x+\frac{1}{4} \sin 4 x\right)+c \\
= & \frac{1}{2} x+\frac{1}{8} \sin 4 x+c \tag{2}
\end{align*}
$$

$$
\text { b) } \begin{aligned}
\tan (x+y) & =\frac{\tan x+\tan y}{1-\tan x \tan y} \\
& =\frac{2-\frac{1}{3}}{1-(2)\left(-\frac{1}{3}\right)} \\
& =\frac{6-1}{3+2} \\
& =1 \\
x+y & =45^{\circ}
\end{aligned}
$$

however,
$0<x<90$ and $90<y<180$

$$
\therefore 90<x+y<270
$$

so $x+y$ is in 3 nd quadrat as $\tan (x+y)>0$

$$
\begin{equation*}
\therefore x+y=225^{\circ} \tag{3}
\end{equation*}
$$

C)

$$
\begin{aligned}
f(x) & =x-\cos x \\
f^{\prime}(x) & =1+\sin x \\
x_{n+1} & =x_{n}-\frac{x_{n}-\cos x_{n}}{1+\sin x_{n}} \\
x_{1} & =0.5-\frac{0.5-\cos 0.5}{1+\sin 0.5} \\
& =0.7552224171 \\
& =0.76 \text { (to 2dp) }
\end{aligned}
$$

d) (i) $\sin x+\sqrt{3} \cos x$

$$
=2 \sin \left(x+\frac{\pi}{3}\right)
$$

$$
\alpha=\frac{\pi}{3}
$$

(ii) $\sin x+\sqrt{3} \cos x=1$

$$
\begin{gather*}
2 \sin \left(x+\frac{\pi}{3}\right)=1 \\
\sin \left(x+\frac{\pi}{3}\right)=\frac{1}{2} \\
x+\frac{\pi}{3}=\frac{\pi}{6}, \frac{5 \pi}{6} \\
x=-\frac{\pi}{6}, \frac{\pi}{2} \\
\therefore x=\frac{11 \pi}{6}, \frac{\pi}{2} \tag{2}
\end{gather*}
$$

Question 4 (12
a)

$$
\begin{align*}
\frac{1+\cos 2 \theta}{\sin 2 \theta} & =\frac{1+2 \cos ^{2} \theta-1}{2 \sin \theta \cos \theta} \\
& =\frac{2 \cos \operatorname{s}^{2} \theta}{2 \sin \theta \cos \theta} \\
& =\frac{\cos \theta}{\sin \theta} \\
& =\cot \theta \tag{2}
\end{align*}
$$

b)

$$
\begin{aligned}
y & =\frac{1}{x} \\
\frac{d y}{d t} & =-\frac{1}{x^{2}} \cdot \frac{d x}{d t} \\
& =-\frac{2}{x^{2}}
\end{aligned}
$$

whe $x=5, \frac{d y}{d t}=-\frac{2}{25}$
\therefore y coordinate is decreosing at a rate of $\frac{2}{25}$ unuts/s

$$
\text { c) } \begin{align*}
\frac{O X}{h} & =\tan 80^{\circ} & & \frac{O Y}{h}=\tan 75^{\circ} \tag{3}\\
O X & =h \tan 80^{\circ} & & O y=h \tan 75^{\circ} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { (ii) } o x^{2}+o y^{2}=x y^{2} \\
& h^{2} \tan ^{2} 80^{\circ}+h^{2} \tan ^{2} 75^{\circ}=400^{2} \\
& h^{2}=\frac{400^{2}}{\tan ^{2} 80^{\circ}+\tan ^{2} 75^{\circ}} \\
& h=\frac{400}{\sqrt{200}+\tan ^{2} 75^{\circ}} \\
& h=50 \cdot 910,2363 \tag{3}
\end{align*}
$$

$h=59 \mathrm{~m}$ (reorest meve)
(iii)

$$
\begin{aligned}
& 1 \\
& \tan \alpha=\frac{h \tan 80^{\circ}}{h \tan 75^{\circ}} \\
& \alpha=56.65263461
\end{aligned}
$$

$$
\alpha=57^{\circ} \text { (neoret dye) }
$$

$\begin{aligned} \therefore \text { Bearing } & =270-57 \\ & =2130\end{aligned}$

$$
\begin{equation*}
=213^{\circ} \tag{2}
\end{equation*}
$$

Question 5 (12)
a)

$$
\begin{align*}
& 3 x^{3}-17 x^{2}-8 x+12=0 \\
& \alpha \beta \gamma=-4 \\
& 4 \gamma=-4 \\
& \gamma=-1 \\
& (x+1)\left(3 x^{2}-2 x x+12\right)=0 \\
& (x+1)(x-6)(3 x-2)=0 \\
& x=-1,6, \frac{2}{3} \tag{3}
\end{align*}
$$

b) $\frac{d}{d x}\left(\tan ^{3} x\right)$

$$
\begin{align*}
& =3 \tan ^{2} x \sec ^{2} x \\
& =3\left(\sec ^{2} x-1\right) \sec ^{2} x \\
& =3\left(\sec ^{4} x-\sec ^{2} x\right) \tag{2}
\end{align*}
$$

(ii), $\tan ^{3} x=3 \int\left(\sec ^{4} x-\sec ^{2} x\right) d x$

$$
\begin{aligned}
3 \int \sec ^{4} x d x & =\tan ^{3} x+3 \int \sec ^{2} x d \\
& =\tan ^{3} x+3 \tan x+c \\
-\therefore \int \sec ^{4} x d x & =\frac{1}{3} \tan ^{3} x+\tan x+c
\end{aligned}
$$

C)

$$
\begin{align*}
T & =20+A e^{-k t} \\
\frac{d T}{d t} & =-k A e^{-k t} \\
& =-k\left(20+A e^{-k t}-20\right) \tag{3}\\
& =-k(T-20) \tag{2}
\end{align*}
$$

(ii) wh $t=0, T=90$

$$
\begin{align*}
\therefore \quad 90 & =20+A \\
A & =70 \\
T= & 20+70 e^{k+} \tag{1}
\end{align*}
$$

wher $t=10, T=70$

$$
\begin{aligned}
70 & =20+70 e^{-10 k} \\
50 & =70-10 k \\
e^{-10 k} & =\frac{5}{7} \\
-10 k & =\log \frac{5}{7} \\
k & =-\frac{1}{10} \log \frac{5}{7} \\
(& \left.=\frac{1}{10} \log \frac{7}{5}\right)
\end{aligned}
$$

whe $t=15$,

$$
\begin{align*}
t & =15 \\
T & =20+70 e^{-15 k} \\
& =20+70\left(\frac{5}{7}\right)^{\frac{15}{10}} \tag{3}\\
& =62 \cdot 25771274 \\
& =620
\end{align*}
$$

(ii) NS:

$$
\begin{aligned}
& \text { NS: } \\
& m_{N S}=p \\
& y=p+a \\
& x+p^{2} x+a p=a p^{3}+2 a p \\
&\left(p^{2}+1\right) x=a p{ }^{3}+a p \\
&=a p\left(p^{2}+1\right) \\
& x=a p \\
& \therefore y=a p^{2}+a
\end{aligned}
$$

N has coordinotes ($a p, a p^{2}+a$)
(iii)

$$
\begin{array}{ll}
x=a p \\
p=\frac{x}{a} & \\
& \\
& =a p^{2}+a \\
& =a\left(\frac{x}{a}\right)^{2}+a \\
y & =\frac{x^{2}}{a}+a
\end{array}
$$

b) Intial ban borroued for nmaths x

$$
=30000(1.0075)^{n}
$$

1st repaymont inested for $(n-1)$ months

$$
=M(1.0075)^{n-1}
$$

Ind repaymom inested for ($n-2$) mooths

$$
=M(1.0075)^{n-2}
$$

last reparment mested for 0 mouths

$$
=M
$$

$A_{n}=$ (principal +intest)

- (repapmants+inderest)

$$
\begin{gathered}
A_{n}=3000(1.0075)^{n}- \\
M\left(1+1.0075+1.0075^{2}+\ldots+1.0075^{n-1}\right) \\
a=1, r=1.0075, n=m
\end{gathered}
$$

$$
\begin{align*}
A_{n} & =30000(1.0075)^{n} \\
& -M\left[\frac{1.0075^{n}-1}{0.0075}\right] \tag{2}
\end{align*}
$$

(ii) $A_{60}=0$

$$
\begin{aligned}
& 0=30000(1.0075)^{60} \\
&-M\left[\frac{1.0075^{60}-1}{0.0075}\right] \\
& M=\frac{30000(1.0075)^{60}(0.0075)}{1.0075^{60}-1} \\
&=622.7506568 \\
&=\$ 622.75
\end{aligned}
$$

(iii)

$$
\begin{aligned}
A_{12}= & 30000(1.0075)^{12} \\
& -622.75\left[\frac{1.0075^{12}-1}{0.0075}\right] \\
& +6000 \\
= & 19025.10753 \\
= & \$ 19025 . i 1
\end{aligned}
$$

so.

$$
\begin{aligned}
& A_{n}=19025 \cdot 11(1.0075)^{n} \\
&-622.75\left[\frac{1.0075^{n}-1}{0.0075}\right]
\end{aligned}
$$

But $A_{n}=0$

$$
\begin{aligned}
& 0=19025.11(1.0075)^{n} \\
& \quad-83033.3\left(1.0075^{n}-1\right) \\
& 64008.223(1.0075)^{n} \\
& =83033.3 \\
& (1.0075)^{n}=1.297229153 \ldots \\
& n=
\end{aligned} \frac{\log 1.297229153 \ldots}{\log 1.0075}=3 . .
$$

$\therefore 35$ more repayments
are needed

Question 7 (12
a)

As 2.9 is on the apposite side of the station point to the root, the tagger will ar the x-axis forme from the root tho the original approximation.
b) Prove true for $n=1$

HS $=\frac{1}{1 \times 3}$

$$
=\frac{1}{3}
$$

$$
\text { RUS }=\frac{1(3+5)}{4(2 \times 3)}
$$

\therefore LHSERHS

$$
=\frac{1}{3}
$$

Ho xe the result is the for $n=1$
Assume the result is the for nook, whee k is a positrie integer

$$
1 e \frac{1}{1 \times 3}+\frac{1}{2 \times 4}+\ldots+\frac{1}{k(k+2)}=\frac{k(3 k+5)}{4(k+1)(k+2)}
$$

Prove the result is the for $n=k$ li He Prove

$$
\frac{1}{1 \times 3}+\frac{1}{2 \times 4}+\ldots+\frac{1}{(k+1)(k+3)}=\frac{(k+1)(3 k+e)}{4(k+2)(k+3)}
$$

Proof:

$$
\begin{aligned}
& \frac{1}{1 \times 3}+\frac{1}{2 \times 4}+\ldots+\frac{1}{k(k+2)}+\frac{1}{(k+1)(k+3)} \\
= & \frac{k(3 k+5)}{4(k+1)(k+2)}+\frac{1}{(k+1) k+3)} \\
= & \frac{k(3 k+5)(k+3)+4(k+2)}{4(k+1)(k+2)(k+3)} \\
= & \frac{3 k^{3}+14 k^{2}+19 k+8}{4(k+1)(k+2)(k+3)} \\
= & \frac{(k+1)^{2}(3 k+e)}{4(k+1)(k+2)(k+3)} \\
= & \frac{(k+1)(3 k+e)}{4(k+2)(k+3)}
\end{aligned}
$$

Hence ire result is true for $n=k+1$ if it is the for $n=k$

Since the result is true for $n=1$, then the result is true for all positive integral values or m by induction.

$$
\text { (ii) } \begin{align*}
& \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k(k+2)} \\
= & \lim _{n \rightarrow \infty} \frac{n(3 n+5)}{k(n+1)(n+2)} \\
= & \frac{3}{4} \tag{1}
\end{align*}
$$

C) (i) $\frac{x+5}{n}=\frac{S}{D}$
(ratio of sides in III $\Delta^{\prime} s$)

$$
x+s=\frac{5 h}{D}
$$

$$
\begin{align*}
& x=\frac{5 h}{D}-s \\
& x=s\left(\frac{h}{D}-1\right) \tag{2}
\end{align*}
$$

(ii) $\frac{d x}{d t}=\frac{d s}{d t}\left(\frac{h}{D}-1\right)$

$$
\begin{align*}
V & =\frac{d s}{d t}\left(\frac{h}{D}-1\right) \\
& =\frac{d s}{d t}\left(\frac{h-D}{D}\right) \\
\frac{d s}{d t} & =\frac{D V}{h-D} \tag{2}
\end{align*}
$$

$$
\text { (iii) } \begin{align*}
\frac{d s}{d t} & =\frac{1.2 \mathrm{~V}}{5-1.2} \\
& =\frac{1.2 \mathrm{~V}}{3 . \theta} \\
& =\frac{6}{19 \mathrm{~V}} \\
\therefore \frac{d s}{d t} & <\mathrm{V} \tag{1}
\end{align*}
$$

(iv) The mistake is that
$\frac{d s}{d t}$ measures me
change in the length of
the Shadow Nor the velocity of the
shadow.

