STUDENT NUMBER:

TEACHER:

BAULKHAM HILLS HIGH SCHOOL

YEAR 12

HALF YEARLY EXAMINATION

2010

MATHEMATICS EXTENSION 1

GENERAL INSTRUCTIONS:

- Attempt **ALL** questions.
- Start each of the 7 questions on a new page.
- All necessary working should be shown.
- Write your teacher's name and your name on the cover sheet provided.
- At the end of the exam, staple your answers in order behind the cover sheet.
- Marks indicated for each question are only a guide and could change.

QUESTION 1

QUESTION		1viai i	
(a)	Evaluate $\lim_{x \to 0} \frac{\sin 2x}{3x}$	1	
(b)	(i) Sketch the graph of $y = -x(x+2)(x-3)$ without using calculus.	2	
	(ii) Solve $\frac{6}{x} > x - 1$	3	
(c)	If A and B are the points $(2, -1)$ and $(-3, 5)$ respectively, find the co- ordinates of the point P(x, y) that divides the interval AB externally in the ratio 3:4.	2	
(d)	(i) Show that the curves $y = sin2x$ and $y = cos2x$ intersect at $x = \frac{\pi}{8}$.	1	
	(ii) Find the acute angle between the two curves at $x = \frac{\pi}{8}$.	3	
QUESTION 2(Start a new page)(a) Find the exact value of cos15°2			
(b)	If α, β and δ are the roots of the cubic $2x^3 + 6x^2 - 4x + 5 = 0$, find :		
	(i) $\alpha + \beta + \delta$.	1	
	(ii) $\alpha\beta + \alpha\delta + \beta\delta$.	1	
	(iii) $\alpha^2 + \beta^2 + \delta^2$.	2	
(c)	Differentiate $log_e \sqrt{\frac{x+1}{x-1}}$.	2	
(d)	(i) Express $sinx + \sqrt{3}cosx$ in the form $Asin(x + \alpha)$.	2	
	(ii) Hence solve $sinx + \sqrt{3}cosx = 1$ for $0 \le x \le 2\pi$.	2	

Marks

QUESTION 3 (Start a new page)

- (a) Solve $2\log_e(x+2) = \log_e(5x+6)$
- (**b**) Evaluate $\int_0^{\frac{\pi}{3}} 2\cos^2 x \, dx$.
- (c) Taking x = 2.5 as the first estimate for the root of f(x) = sinx lnx, use one application of Newton's method to find a better estimate for the root to 3 decimal places.
- (d) In the diagram below ATB is a tangent and PT and QT bisect the angles $\angle ATD$ and $\angle DTB$ respectively.

- (i) Redraw this diagram on your page then prove that PQ is the diameter of the circle. 2
- (ii) Prove $PQ \perp DT$.

QUESTION 4

- (a) The rate at which a body cools is proportional to the difference between the temperature (T) of the body and the surrounding temperature (C). ie. $\frac{dT}{dt} = k(T - C)$
 - (i) Prove that $T = C + Ae^{kt}$ is a solution to the differential equation above. 1
 - (ii) A heated body cools from $100^{\circ}C$ to $60^{\circ}C$ in an hour, after being placed in a room with a temperature of $20^{\circ}C$. Find the temperature of the body after a further 2 hours.
- (b) Find the area of the shaded region below:

(ii) Hence evaluate $2^2 + 2^3 + \dots + 2^{18}$.

Marks

3

2

3

2

4

3

1

3

QUESTION 5 (Start a new page)

(a)	(i)	Sketch on the same set of axes the graphs of $y = 2x + 1$ and
		y = x - 2

- (ii) Hence or otherwise solve |x-2| < 2x + 1
- (b) The points P $(2ap, ap^2)$ and Q $(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.

(i) Find the gradient of *OP*. 1 **(ii)** The chord PQ subtends a right angle at the origin. Show that pq = -4. 2 Show that the equation of the tangent at P is $y = px - ap^2$. 2 (iii) (iv) The tangent at P meets the line through Q perpendicular to the x axis at L. Show that L has co-ordinates $(2aq, 2apq - ap^2)$. 1 Find the locus of L. 2 **(v) QUESTION 6** (Start a new page) Evaluate $\int_0^{\frac{2\pi}{3}} \sec^2 x \tan^2 x \, dx$ **(a)** 3 $\log_a 3 = x$ and $\log_a 4 = y$ express $\log_3 6$ in terms of x and y. If 2 **(b) (c)** Hayden invests \$2000 each year in a superannuation fund which earns 5% compound interest per annum for *n* years. (i) How much does his first investment amount to after *n* years? 1 **(ii)** Show that the total of his investments after n years is $42000(1.05^n - 1)$ 2 (iii) Find the value of n if the total of his investments after n years is \$93 454.20. 1 $y = ax^3 - 7x^2 + bx + 20$ has a double root at x = 2. (iv)

(iv) $y = ax^2 - 7x^2 + bx + 20$ has a double root at x = 2. Find the values of a and b.

2 2

QUESTION 7 (Start a new page)

(a) Prove

$$\frac{\sin^3 a + \cos^3 a}{\sin^2 a - \cos^2 a} = \frac{\csc a + \cot a}{1 + \cot a}$$

(**b**) If
$$\frac{9^x + 6^x}{15^x + 10^x} = a^x$$
 find a .

(c)

- (i) An open pencil case in the shape of a rectangular prism has dimensions 5 cm by 6 cm by 12 cm. A pencil AX is placed in the case such that it rests at points A and X where X is 6 cm along the diagonal FH. What angle does the pencil AX make with the base (plane EFGH)?
- (ii) A lid is placed on the pencil case. An ant stands at point D .It walks on the outside of the pencil case to F. What is the shortest distance from D to F?
- (d) (i) A function y = f(x) has the following properties :

$$y' = \frac{1}{2}y$$

$$y'' = \frac{1}{2}y'$$

$$y''' = \frac{1}{2}y'' \quad \text{etc.}$$

Give a possible equation for y = f(x).

(ii) Find $\lim_{n \to \infty} (y' + y'' + y''' + \dots + y^n)$ 2

Marks

2

3

1

1

STANDARD INTEGRALS

- $\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$ $\int \frac{1}{x} dx = \ln x, \qquad x > 0$ $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$ $\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$ $\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$ $\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + r^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$
 - NOTE: $\ln x = \log_e x, x > 0$

$$\begin{array}{c|c} \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{Subhon} 2}{\operatorname{In}} \\ \hline \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{In}} \\ \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{In}} & \underbrace{\operatorname{In}} \\ \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{In}} \\ \\ 1 & \underbrace{\operatorname{In}} & \underbrace{\operatorname{$$

Question 3. a) $2 \log_{e}(31+2) = \log_{e}(5x+6)$ loge (26+2)2 = log (52+6) $(x+2)^2 = 5x+6$ (1) $x^2 + 4x + 4 - 5x - 6 = 0$ $x^2 - x - 2 = 0$ (x-2)(x+1)=0 () 1=2,-1 (27-2 /) b) 1 2 cos2 da = $\int_{0}^{\frac{1}{3}} (\cos 2x + 1) dx$ (\mathbb{D}) $= \left[\frac{1}{2} \left(\frac{\sin 2x}{2} + x \right)^{\frac{1}{3}} \right]$ $= \left(\frac{1}{2} \sin\left(\frac{2\pi}{3}\right) + \frac{\pi}{3}\right) - \left(0 + 0\right)$ $= \frac{\sqrt{3}}{4} + \frac{11}{3}$ c) $x_1 = 2.5 - f(2.5)$ f'(2.5) f(2.5) = sin(2.5) - ln(2.5)(1)= -0.3178 - $f(x) = \cos x - \frac{1}{x}$ $f'(a,5) = \cos a \cdot 5 - \frac{1}{a \cdot 5} = -1.20.$ $x_1 = 2.5 - -0.3178$ -1.20 \bigcirc = 2.235

das D B let ZATP=20 - LPTD = 2" (Given PT biseds (AT) lot / DTQ = y" -: LOTB = y Given OT birects Loss ". 2x+2y = 180° (straight angle) (1) hence x+y =90° . LPTQ 290° If LPTA = 90° then pet mist (1) LATP= LPQT=2° (1) (Angle between tangent eachord = angle in the atternate segment - (. L+DQ = 180 - (x+y) (Afle Sn D_{1}^{2} . $2 T D Q = 90^{\circ}$ i. DT 1 PQ 12.

د

$$y = \log_{e} (x - i) : x - i = e y$$

$$x = e^{y} + i$$

$$Area = \int_{0}^{1} (e^{y} + i) dy \quad (i)$$

$$= (e^{y} + y) \int_{0}^{1} \quad (i)$$

$$= (e + i) - (e^{0} + o)$$

$$= e$$

$$\therefore Required area = e + i - e$$

$$= i \quad (i)$$

$$c) Prove 2^{2} + 2^{3} + \dots + 2^{n+1} 2^{2} (2^{n} - i)$$

$$step! \quad Prove true for n = i$$

$$ai \quad 2^{2} = 2^{2} (2^{i} - i)$$

$$4 = 4 \quad \forall$$

$$step 2 \quad Assume true for n = k \cdot i$$

$$ai \quad 2^{2} + \dots + 2^{k+1} = 2^{2} (2^{k} - i) \quad (i)$$

$$step 3 \quad Prove true for n = k + i$$

$$ai \quad 2^{2} + \dots + 2^{k+1} = 2^{2} (2^{k} - i) \quad (i)$$

$$step 3 \quad Prove true for n = k + i$$

$$ai \quad 2^{2} + \dots + 2^{k+1} = 2^{2} (2^{k+1} - i)$$

$$step 3 \quad Prove true for n = k + i$$

$$assumption need to prove
$$\Rightarrow 2^{2} (2^{k} - i) + 2^{k+2} = 2^{2} (2^{k+1} - i)$$

$$= 2^{2} (2^{k+2}) - 2^{2}$$

$$= 2^{2} (2^{k+2}) - 2^{2}$$

$$= 2^{2} (2^{k+2} - 1)$$

$$= 2^{2} (2^{k+1} - 1)$$

$$= RHS.$$

$$step 4 \quad Proved true for n = k + prove for n = k + prove for n = k + 1 + prove for n = k + prove for n = k + 1 + prove for n = k + prove for n = k + prove for n = k + 1 + prove for n = k + prove f$$$$

No at
$$L = x = 2aq$$

 $y = p(2aq) - ap^{2}$
 $= 2apq - ap^{2}$
 $\therefore L = (2aq, 2apq - ap^{2})$
 $pq = -4$
 $\therefore q = -4$
 $pq = -4$
 $y = 2a(-4)$
 $y = 2apq - ap^{2}$
 $y = 2a(-4) - a(\frac{-8a}{\pi})^{2}$
 $y = -8a - \frac{64a^{3}}{x^{2}}$
 $y = -8ax^{2} - 64a^{3}$
 $x^{2}y = -8ax^{2} - 64a^{3}$
 $y = -8ax^{2} - 64a^{3}$
 $x^{2}y = -8ax^{2} - 64a^{3}$
 $y = -8ax^{2} - 7x^{2} - 12$
 $y = -8ax^{2} - 12$
 $y = -8ax^{2}$

b) =
$$\frac{\log_{a}^{3} + \frac{1}{2} \log_{a}^{4}}{\log_{a}^{3}}$$

= $\frac{x + \frac{1}{2}y}{x}$ (1)
= $1 + \frac{y}{2x}$
c) (1) 2000 x 1.05^m (1)
in Investments =
2000 x 1.05^h + 2000 x 1.05^{h-1} + ...
 $- + 2000 \times 1.05$ (1)
 $S_{n} = 2000 \times 1.05 (1.05^{h-1})$
 $= 42000 (1.05^{h-1})$ (1)
(i) $93454.20 = 42000 (1.05^{h-1})$
 $1.05^{h} = \frac{93454.2}{42000} + 1$
 $1.05^{h} = \frac{3.2251}{1}$
 $n = \frac{42000}{1} (3.2251)$
 $n = 24$ (1)
 $x = 24$ (1)
 $y = 9x^{3} - 7a^{2} + bx + 20$
 $(2,0) = 8a - 28 + 2b + 20$
 $8a + 2b = 8$
 $4a + b = 4 - -6$ (1)

$$y' = 3ax^{2} - 14x + b$$
when $x = 2$ $y' = 0$

$$\therefore 0 = 3a(2)^{2} - 14(2) + b$$

$$0 = 12a - 28 + b$$

$$12a + b = 28 - -12$$

$$4a + b = 4 - -12$$

$$2 + b = 24$$

$$a = 3$$

$$b = -8$$

$$coseca \neq cota$$

$$cota$$

$$(sina + cosa) (sina - cosa) (1)$$

$$\frac{1 - sina \cos a}{sina - cosa}$$

$$(sina + cosa) (sina - cosa) (1)$$

$$\frac{1 - sina \cos a}{sina - cosa}$$

$$= \frac{1}{sina} - \frac{sina \cos a}{sina - cosa}$$

$$= \frac{1}{sina} - \frac{cosa}{sina - sina - cosa}$$

$$= \frac{1}{sina - cosa}$$

$$= \frac{1}{sina - cosa}$$

$$= \frac{1}{sina - cosa}$$

$$= \frac{1}{sina - cosa}$$

$$= \frac{cosa}{sina - cosa}$$

$$= \frac{1}{sina - cosa}$$

$$= \frac{cosa}{sina - cosa}$$

$$= \frac{1}{sina - cosa}$$

$$= \frac{cosa}{sina - cosa}$$

$$= \frac{cosa}{sina - cosa}$$

$$= \frac{cosa}{sina - cosa}$$

$$= \frac{cosa}{sina - cosa}$$

b(i)
$$\frac{q^{x} + 6^{x}}{15^{x} + 10^{x}} = a^{x}$$

LHS. $\frac{3^{x}(3^{x} + 2^{x})}{5^{x}(3^{x} + 2^{x})}$ (i)
 $\frac{q^{x} + 6^{x}}{5^{x}(3^{x} + 2^{x})}$ (i)
 $\frac{q^{x} + 6^{x}}{6^{x} + 1^{x}}$ (i)
 $\frac{q^{x} + 1^{x}}{6^{x} + 1^{x}}$ (j)
 $\frac{q^{x} + 1^{x}}{6^{x}$