\qquad

TEACHER:

\qquad

BAULKHAM HILLS HIGH SCHOOL

YEAR 12

HALF YEARLY EXAMINATION

2010

MATHEMATICS EXTENSION 1

GENERAL INSTRUCTIONS:

- Attempt ALL questions.
- Start each of the 7 questions on a new page.
- All necessary working should be shown.
- Write your teacher's name and your name on the cover sheet provided.
- At the end of the exam, staple your answers in order behind the cover sheet.
- Marks indicated for each question are only a guide and could change.

QUESTION 1

(a) Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}
$$

(b) (i) Sketch the graph of $y=-x(x+2)(x-3)$ without using calculus.
(ii) Solve $\frac{6}{x}>x-1$

3
(c) If A and B are the points $(2,-1)$ and $(-3,5)$ respectively, find the co- ordinates of the point $\mathrm{P}(x, y)$ that divides the interval AB externally in the ratio 3:4.
(d) (i) Show that the curves $y=\sin 2 x$ and $y=\cos 2 x$ intersect at $x=\frac{\pi}{8} . \quad 1$
(ii) Find the acute angle between the two curves at $x=\frac{\pi}{8}$.

QUESTION 2 (Start a new page)

(a) Find the exact value of $\cos 15^{\circ}$
(b) If α, β and δ are the roots of the cubic $2 x^{3}+6 x^{2}-4 x+5=0$, find :
(i) $\alpha+\beta+\delta$. 1
(ii) $\alpha \beta+\alpha \delta+\beta \delta$. 1
(iii) $\alpha^{2}+\beta^{2}+\delta^{2}$. $\quad 2$
(c) Differentiate $\log _{e} \sqrt{\frac{x+1}{x-1}}$.
(d) (i) Express $\sin x+\sqrt{3} \cos x$ in the form $A \sin (x+\alpha)$. 2
(ii) Hence solve $\sin x+\sqrt{3} \cos x=1$ for $0 \leq x \leq 2 \pi$.

QUESTION 3 (Start a new page)

(a) Solve $2 \log _{e}(x+2)=\log _{e}(5 x+6)$

2
(b) Evaluate $\int_{0}^{\frac{\pi}{3}} 2 \cos ^{2} x d x$.
(c) Taking $x=2.5$ as the first estimate for the root of $f(x)=\sin x-\ln x$, use one application of Newton's method to find a better estimate for the root to 3 decimal places.
(d) In the diagram below ATB is a tangent and PT and QT bisect the angles $\angle A T D$ and $\angle D T B$ respectively.

(i) Redraw this diagram on your page then prove that PQ is the diameter of the circle.
(ii) Prove $\mathrm{PQ} \perp \mathrm{DT}$.

QUESTION 4

(a) The rate at which a body cools is proportional to the difference between the temperature (T) of the body and the surrounding temperature (C).
ie. $\quad \frac{d T}{d t}=k(T-C)$
(i) Prove that $T=C+A e^{k t}$ is a solution to the differential equation above.
(ii) A heated body cools from $100^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in an hour, after being placed in a room with a temperature of $20^{\circ} \mathrm{C}$. Find the temperature of the body after a further 2 hours.
(b) Find the area of the shaded region below:

(c) (i) Prove $2^{2}+2^{3}+2^{4}+\ldots \ldots \ldots \ldots \ldots . . .2^{n+1}=2^{2}\left(2^{n}-1\right)$ by mathematical induction.
(ii) Hence evaluate $2^{2}+2^{3}+\ldots \ldots+2^{18}$.
(a) (i) Sketch on the same set of axes the graphs of $y=2 x+1$ and $y=|x-2|$
(ii) Hence or otherwise solve $|x-2|<2 x+1$
(b) The points $\mathrm{P}\left(2 a p, a p^{2}\right)$ and $\mathrm{Q}\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.

(i) Find the gradient of $O P$.
(ii) The chord $P Q$ subtends a right angle at the origin.

Show that $p q=-4$.
2
(iii) Show that the equation of the tangent at P is $y=p x-a p^{2}$.
(iv) The tangent at P meets the line through Q perpendicular to the x axis at L . Show that L has co-ordinates ($2 a q, 2 a p q-a p^{2}$).
(v) Find the locus of L.

QUESTION 6 (Start a new page)

(a) Evaluate $\int_{0}^{\frac{2 \pi}{3}} \sec ^{2} x \tan ^{2} x d x \quad 3$
(b) If $\quad \log _{a} 3=x$ and $\log _{a} 4=y$ express $\log _{3} 6$ in terms of x and $y . \quad 2$
(c) Hayden invests $\$ 2000$ each year in a superannuation fund which earns 5\% compound interest per annum for n years.
(i) How much does his first investment amount to after n years?
(ii) Show that the total of his investments after n years is

$$
42000\left(1.05^{n}-1\right)
$$

(iii) Find the value of n if the total of his investments after n years is \$93 454.20.
(iv) $y=a x^{3}-7 x^{2}+b x+20$ has a double root at $x=2$.

Find the values of a and b.
(a) Prove

$$
\frac{\sin ^{3} a+\cos ^{3} a}{\sin ^{2} a-\cos ^{2} a}=\frac{\operatorname{cosec} a+\cot a}{1+\cot a}
$$

(b) If $\frac{9^{x}+6^{x}}{15^{x}+10^{x}}=a^{x}$ find a.
(c)

(i) An open pencil case in the shape of a rectangular prism has dimensions 5 cm by 6 cm by 12 cm . A pencil AX is placed in the case such that it rests at points A and X where X is 6 cm along the diagonal FH .
What angle does the pencil AX make with the base (plane EFGH)?
(ii) A lid is placed on the pencil case. An ant stands at point D .It walks on the outside of the pencil case to F . What is the shortest distance from D to F ?
(d) (i) A function $y=f(x)$ has the following properties:

$$
\begin{aligned}
y^{\prime} & =\frac{1}{2} y \\
y^{\prime \prime} & =\frac{1}{2} y^{\prime} \\
y^{\prime \prime \prime} & =\frac{1}{2} y^{\prime \prime} \quad \text { etc. }
\end{aligned}
$$

Give a possible equation for $y=f(x)$.
(ii) Find

$$
\lim _{n \rightarrow \infty}\left(y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}+\cdots \quad+y^{n}\right)
$$

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Solutions.
1a) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}=\frac{2}{3}$
b(i)

(ii)

$$
\text { ii) } \left.\begin{array}{l}
\frac{6}{x}>x-1 \\
6 x-x^{2}(x-1)>0 \\
x(6-x(x-1))>0 \\
x\left(6-x^{2}+x\right)>0 \\
-x\left(x^{2}-x-6\right)>0 \tag{1}\\
-x(x+2)(x-3)>0
\end{array}\right\}
$$

c) $(2,-1)(-3,5)$
(1) mark for

$$
=(17,-19)
$$

d(i)

$$
\begin{align*}
& \sin 2 x=\cos 2 x \\
& \tan 2 x=1 \\
& 2 x=\frac{\pi}{4}, \frac{5 \pi}{4}, \ldots \\
& x=\frac{\pi}{8}, \ldots \tag{1}
\end{align*}
$$

$$
m_{1}=2 \cos 2\left(\frac{\pi}{8}\right) \quad m_{2}=-2 \sin ^{2}\left(\frac{\pi}{8}\right)
$$

$$
m_{1}=\frac{2}{\sqrt{2}} \quad m_{2}=-\frac{2}{\sqrt{2}} \text { (1) }
$$

$\tan \theta=\left|\frac{\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}}{1+\frac{2}{\sqrt{2}} \cdot \frac{-2}{\sqrt{2}}}\right|=\left|\frac{4}{\sqrt{2}}\right|$

$$
\theta=70^{\circ} 32^{\prime} \stackrel{\sqrt{2}}{3}
$$

Question 2
i) $c^{\circ} 0 \sin =\cos \left(45-30^{\circ}\right)$
(1)

$$
\begin{align*}
& =\cos 45 \cos 30+\sin 45 \sin 30 \\
& =\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \text { or } \frac{\sqrt{6}+\sqrt{2}}{4} \text { (1) } \tag{1}
\end{align*}
$$

b) $2 x^{3}+6 x^{2}-4 x+5=0$
(1) $\alpha+\beta+\gamma=\frac{-6}{2}{ }^{(11)} \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{4}{2}$
(1)
(1) $=-2$

$$
\text { (iii) } \begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =(-3)^{2}-2(-2) \\
& =13
\end{aligned}
$$

$$
\text { c) } \begin{align*}
y & =\log _{e} \sqrt{\frac{x+1}{x-1}} \\
& =\frac{1}{2}[\log (x+1)-\log (x-1)] \tag{1}\\
\frac{d y}{d x} & =\frac{1}{2}\left[\frac{1}{x+1}-\frac{1}{x-1}\right] \\
& \left.=\frac{-1}{(x+1)(x-1)}\right]
\end{align*}
$$

di) $A \sin x \cos \alpha+A \cos x \sin \alpha=$

$$
\sin x+\sqrt{3} \cos x
$$

$\therefore A \cos \alpha=1 \quad A \sin \alpha=\sqrt{3}$

$$
\begin{align*}
A & =\sqrt{(\sqrt{3})^{2}+1^{2}} & \tan \alpha & =\sqrt{3} \\
& =2 \quad \text { (1) } & \alpha & =\frac{\pi}{3} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{ain} 2 \sin \left(x+\frac{\pi}{3}\right)=1 \\
& \sin \left(x+\frac{\pi}{3}\right)=\frac{1}{2} \\
& \therefore x+\frac{\pi}{3}=\frac{\pi}{6}, \frac{5 \pi}{6} \tag{1}\\
& x=\frac{-\pi}{6}, \frac{\pi}{2} \\
& \therefore \therefore=\frac{11 \pi}{6}, \frac{\pi}{2}
\end{align*}
$$

(1) $\sqrt{12}$

Question 3.
a)

$$
\begin{aligned}
& 2 \log _{e}(x+2)=\log _{e}(5 x+6) \\
& \log _{e}(x+2)^{2}=\log _{e}(5 x+6) \\
& \therefore(x+2)^{2}=5 x+6 \\
& x^{2}+4 x+4-5 x-6=0 \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0
\end{aligned}
$$

(1) $x=2,-1 \quad(x>-2 \quad 1)$
b)

$$
\begin{align*}
& \int_{0}^{\frac{\pi}{3}} 2 \cos ^{2} x d x \\
= & \int_{0}^{\frac{\pi}{3}}(\cos 2 x+1) d x \tag{1}\\
= & {\left[\frac{1}{2}(\sin 2 x)+x\right]_{0}^{\frac{\pi}{3}} } \\
= & \left(\frac{1}{2} \sin \left(\frac{2 \pi}{3}\right)+\frac{\pi}{3}\right)-(0+0) \\
= & \frac{\sqrt{3}}{4}+\frac{\pi}{3}
\end{align*}
$$

c)

$$
\begin{align*}
\text { e) }
\end{aligned} \begin{aligned}
x_{1} & =2.5-\frac{f(2.5)}{f^{\prime}(2.5)} \\
f(2.5) & =\sin (2.5)-\ln (2.5) \\
& =-0.3178 \ldots \tag{1}\\
f^{\prime}(x) & =\cos x-\frac{1}{x} \\
f^{\prime}(2.5) & =\cos 2.5-\frac{1}{2.5}=-1.20 . \tag{1}\\
x_{1} & =2.5-\frac{-0.3178}{-1.20} \\
& =2.23 .5 \tag{1}
\end{align*}
$$

d(i)

let $\angle A+P=x^{\circ}$

$$
\therefore \angle P T D=x^{\circ} \text { (Given } P T \text { biseets } \angle T D \text {) }
$$

$\operatorname{lot} \angle D T Q=y^{\circ}$
$\therefore \angle Q T B=y^{\circ}$ (Given QT bisects $\angle O T S$.

$$
\therefore 2 x+2 y=180^{\circ} \text { (straight angle) (1) }
$$

hence $x+y=90^{\circ}$

$$
\therefore \angle P T Q=90^{\circ}
$$

If $\angle P T Q=90^{\circ}$ then $P Q T$ must
(1) be in a semi circle
$\therefore P Q$ is the diamoter.
(ii)
$\angle A T P=\angle P Q T=x^{\circ}$
(Angle betreen tangenteachord) $=$ angle in the alternite segrent
$\left(\begin{array}{l}\angle T D Q=180-\left(x+y^{\circ}\right)\left(\begin{array}{l}\text { Anfle } S_{n} \\ \text { of } \triangle)^{2}\end{array}\right. \\ \therefore \angle T D Q=90^{\circ} \\ \therefore D T \perp P Q\end{array}\right.$

Question 4
(a) (i)

$$
T=C+A e^{k t} \rightarrow T-C=A e^{k t}
$$

$$
\begin{align*}
\frac{d T}{d t} & =k(T-c) \\
\frac{d T}{d t} & =k A e^{k t} \tag{1}\\
& =k(T-c)
\end{align*}
$$

$$
\therefore T=c+A c^{k t} \text { satisfies } \frac{d T}{d t}=k(T-c)
$$

(ii)
$C=20$
$T=20+A e^{k t}$ when $t=0 T=100$

$$
\begin{align*}
\therefore 100 & =20+A e^{0} \\
A & =80 \tag{1}\\
\therefore \quad T & =20+80 e^{k t}
\end{align*}
$$

when $t=1 \quad T=60$

$$
\begin{aligned}
& \therefore t=1 \quad T=60 \\
& \therefore 60=20+80 e^{k(1)} \\
& \frac{1}{2}=e^{k .}
\end{aligned}
$$

(1) $\left\{\begin{array}{l}\ln \left(\frac{1}{2}\right)=k \text { loge }\end{array}\right.$
when $t=3$

$T=\frac{30 \quad \text { (1) }}{\text { a }}$
b)

$$
\begin{aligned}
a & =\ln (e+1-1) \\
& =1 \\
\therefore \operatorname{Rectang} 6 & =(e+1) \times 1 \\
& =e+1 .
\end{aligned}
$$

$$
\begin{aligned}
& y=\log _{e}(x-1) \quad \therefore x-1=e y \\
& x=e^{y}+1 .
\end{aligned}
$$

$$
\begin{align*}
\text { Area } & =\int_{0}^{1}\left(e^{y}+1\right) d y \tag{i}\\
& =\left[e^{y}+y\right]_{0}^{1} \tag{1}\\
& =(e+1)-\left(e^{0}+0\right) \\
& =e
\end{align*}
$$

$$
\text { equied area }=e+1-e
$$

$$
=1 \quad \text { (1) }
$$

c) Prove $2^{2}+2^{3}+\cdots+2^{n+1}=2^{2}\left(2^{n}-1\right)$
step. Prove true for $n=1$

$$
i 2^{2}=2^{2}\left(2^{1}-1\right)
$$

$$
4=4 \quad 2
$$

Step 2 Assume true for $n=k$.

$$
\text { ie } 2^{2}+\cdots+2^{k+1}=2^{2}\left(2^{k}-1\right) \text { (1) }
$$

Step 3. Prove true for $n=k+1$

$$
\dot{\mu} \quad 2^{2}+\cdots+2^{k+1}+2^{k+2}=2^{2}\left(2^{k+1}-1\right)
$$

by assumption need to prove

$$
\begin{align*}
& \Rightarrow 2^{2}\left(2^{k}-1\right)+2^{k+2}=2^{2}\left(2^{k+1}-1\right) \\
& \left.\begin{array}{l}
1+5 \\
=2^{k+2}-2^{2}+2^{k+2} \\
=2\left(2^{k+2}\right)-2^{2} \\
=2^{k+3}-2^{2} \\
=2^{2}\left(2^{k+1}-1\right) \\
=\text { RUS. }
\end{array}\right\} .11 \tag{1}
\end{align*}
$$

stat Proved tire for $n=1 p$ assumed true for $n=k$ prove true for $n=k+1 \therefore$ true for $n=1, n=2, \ldots$. for all n by mathematical induction.

5a) (i)

(ii) Need A. Solve simult.

$$
\begin{gather*}
y=2 x+1 \quad \& \quad y=2-x \\
2 x+1=2-x \\
3 x=1 \\
x=\frac{1}{3} \tag{1}
\end{gather*}
$$

\therefore Solution to $|x-2|<2 x+1$

(1)

$$
\begin{align*}
m_{o p} & =\frac{a_{p}-0}{2 a_{p}-0} \\
& =\frac{p}{2} \tag{1}
\end{align*}
$$

(ii) $m_{2 a}=\frac{q}{2}$ liñes $\perp \therefore$ (1)

$$
\begin{aligned}
& \quad \frac{p}{2} \times \frac{q}{2}=-1 \\
& -p q=-4
\end{aligned}
$$

(iii) $x^{2}=4 a y \rightarrow y=\frac{x^{2}}{4 a}$

$$
y^{\prime}=\frac{2 x}{4 a}
$$

at $x=2 a p \quad y^{\prime}=\frac{4 a p}{4 a}$

$$
=P
$$

\therefore targent $y-a p^{2}=p(x-2 a p)$

$$
\begin{equation*}
y=p x-a p^{2} \tag{1}
\end{equation*}
$$

(iv) at $L \quad x=2 a q \cdots$

$$
\left.\begin{array}{rl}
y & =p(2 a q)-a p^{2} \\
=2 a p q-a p^{2} \\
\therefore L\left(2 a q, 2 a p q-a p^{2}\right) \\
p q=-4 \\
\therefore q=-\frac{4}{p} \\
\therefore x & =2 a\left(-\frac{4}{p}\right) \\
x & =-\frac{8 a}{p} \Rightarrow p=\frac{-8 a}{x} \\
y=2 a p q-a p^{2} \\
y=2 a(-4)-a\left(\frac{-8 a}{x}\right)^{2} \\
y & =-8 a-\frac{64 a^{3}}{x^{2}} \\
x^{2} y= & -8 a x^{2}-64 a^{3} \tag{1}\\
8 a x^{2}+x^{2} y+64 a^{3}=0
\end{array}\right\} \text { (1) }
$$

Question 6
a)

$$
\begin{align*}
& \int_{0}^{\frac{2 \pi}{3}} \sec ^{2} x \tan ^{2} x d x \\
& \frac{d}{d x}\left(\tan ^{3} x\right)=3 \sec ^{2} x \tan 2 x \\
& \therefore \int_{0}^{\frac{2 \pi}{3}} \sec ^{2} x \tan ^{2} x=\frac{1}{3}\left(\tan ^{3} x\right)_{0}^{\frac{2 \pi}{3}(1)} \\
&= \frac{1}{3}\left[\tan ^{3} \frac{2 \pi}{3}-\tan ^{3} 0\right] \\
&= \frac{1}{3}=-(3 \sqrt{3}) \tag{1}\\
&=-\sqrt{3} .
\end{align*}
$$

b) $\log _{a} 3=x \quad \log _{a} 4=y$

$$
\begin{align*}
\log _{3} 6 & =\frac{\log _{a} 6}{\log _{a} 3} \tag{1}\\
& =\frac{\log _{3} 3 \times \sqrt{4}}{\log _{a} 3}
\end{align*}
$$

b)

$$
\left.\begin{array}{l}
=\frac{\log _{a} 3+\frac{1}{2} \log _{4} 4}{\log _{a} 3} \\
=\frac{x+\frac{1}{2} y}{x} \tag{1}\\
=1+\frac{y}{2 x}
\end{array}\right\}
$$

c) (i) 2000×1.05^{n}
(ii) Investments $=$

$$
\begin{align*}
& 2000 \times 1.05^{n}+2000 \times 1.05^{n-1}+\cdots \\
& \cdots+2000 \times 1.05 \tag{1}\\
& S_{n}= 2000 \times 1.05\left(\frac{1.05^{n}-1}{1.05-1}\right) \\
&= 42000\left(1.05^{n}-1\right)
\end{align*}
$$

(iii)

$$
\begin{aligned}
& 93454.20=42000\left(1.05^{n-1}\right) \\
& 1.05^{n}=\frac{93454.2}{42000}+1 . \\
& 1.05^{n}=3.2251 \\
& \left.n=\frac{\ln (3.2251)}{\ln (1.05)}\right\} \\
& n=24
\end{aligned}
$$

d) $y=a x^{3}-7 x^{2}+b x+20$
(2,0) satisfies.

$$
\begin{align*}
& 0=a(2)^{3}-7(2)^{2}+2 b+20 \\
& 0=8 a-28+2 b+20 \\
& 8 a+2 b=8 \\
& 4 a+b=4 \tag{1}
\end{align*}
$$

$$
\begin{align*}
& y^{\prime}=3 a x^{2}-14 x+b \\
& \text { whem } \quad x=2 \quad y^{\prime}=0 \\
& \therefore 0=3 a(2)^{2}-14(2)+b \tag{1}\\
& 0=12 a-28+b \tag{1}\\
& 12 a+b=28 \tag{B}\\
& 4 a+b=4 \tag{A}
\end{align*}
$$

$$
\text { (B) (1) } \left.\begin{array}{rl}
8 a & =24 \\
a & =3 \\
b=-8
\end{array}\right\} \text { (1) } \quad \sqrt{12}
$$

Question 7.
a) $\frac{\sin ^{3} a+\cos ^{3} a}{\sin ^{2} a-\cos ^{2} a}=\frac{\operatorname{cosec} a \cot a}{1+\cot a}$
$\frac{(\sin a+\cos a)\left(\sin ^{2} a-\sin a \cos a+\cos a\right)}{(\sin a+\cos a)(\sin a-\cos a)(1)}$
$\frac{1-\sin a \cos a}{\sin a-\cos a} \sin ^{2} t \cos ^{2} a^{2}=1$
$=\frac{\frac{1}{\sin a}-\frac{\sin a \cos a}{\sin a}}{\frac{\sin a}{\sin a}-\frac{\cos a}{\sin a}}$

$$
=\text { RHS } \text {. }
$$

bi) $\frac{9^{x}+6^{x}}{15^{x}+10^{x}}=a^{x}$ LH.

$$
\begin{equation*}
\frac{3^{x}\left(3^{x}+2^{x}\right)}{5^{x}\left(3^{x}+2^{x}\right)} \tag{1}
\end{equation*}
$$

c) 0

$$
\begin{equation*}
\theta=22^{\circ} 37^{\prime} \tag{1}
\end{equation*}
$$

$$
E x^{2}=6^{2}+12^{2}-2 \cdot 6 \cdot 12 \cdot \cos 22^{\circ} 3^{\circ}
$$

$$
\begin{equation*}
E x=6.861 \tag{1}
\end{equation*}
$$

$$
\tan \angle A X E=\frac{6}{6.861}
$$

(ii) Partial net of prism

short distance using Pythagoras

$$
\begin{aligned}
D F & =\sqrt{12^{2}+11^{2}} \\
& =\sqrt{265}
\end{aligned}
$$

di) $y=e^{\frac{1}{2} x}$
(ii)

$$
\text { (ii) } \left.\begin{array}{rl}
y^{\prime} & =\frac{1}{2} e^{\frac{x}{2}} \tag{1}\\
y^{\prime \prime} & =\frac{1}{4} e^{\frac{x}{2}} \\
y^{\prime \prime \prime} & =\frac{1}{8} e^{\frac{x}{2}} e t e \\
\therefore h_{n \rightarrow \infty}\left(\frac{1}{2} e^{\frac{x}{2}}+\frac{1}{4} e^{\frac{x}{2}}+\cdots\right. \\
& =e^{\frac{x}{2}}\left[\frac{\frac{1}{2}}{1-\frac{1}{2}}\right] \\
& =e^{\frac{x}{2}} \cdot 1 \\
& =e^{\frac{x}{2}} \cdot\{ \\
& =y .
\end{array}\right\}
$$

trinal case $\frac{1}{2} y$ $y=0 \ldots$ must

