BAULKHAM HILLS HIGH SCHOOL MARKING COVER SHEET

YEAR 12 HALF-YEARLY EXTENSION 1 2011

STUDENT NUMBER:

TEACHER NAME:

QUESTION	MARK
1	
2	
3	
4	
5	
6	
7	$\mathbf{8 4}$
TOTAL	$\%$
PERCENTAGE	

BAULKHAM HILLS HIGH SCHOOL

YEAR 12 HALF-YEARLY
 MATHEMATICS EXTENSION 1 2011

General Instructions

Total Marks: 84

- Exam time - 2 hours

Attempt ALL questions

- Reading time - 5 minutes
- Start each question on a new page
- All necessary working should be shown
- Write your student number at the top of each page of your answers
- Board approved calculators may be used
- Write using black or blue pen
a) $\int_{0}^{1.5} \frac{d x}{\sqrt{9-2 x^{2}}}$ leaving your answer in exact form
b) Solve $\sin 2 x=\tan x$ for $0 \leq x \leq \pi$
c) Solve $x^{2}+x+\frac{12}{x^{2}+x}=8$
d) i) Find the derivative of $f(x)=\tan \left(x^{2}\right)$
ii) Hence or otherwise evaluate $\int_{0}^{1} x \sec ^{2}\left(x^{2}\right) d x$ correct to two decimal places.

Question 2 Start on a new page - (12 marks)

a) Show that $\frac{d}{d x} \sin ^{-1}(\sqrt{x})=\frac{1}{\sqrt{4 x-4 x^{2}}}$
b) Find the size of the acute angle, in radians, between the two curves:
$y=x^{2}$ and $y=8+\frac{x^{2}}{2}$ at their point of intersection in the first quadrant. Give your answer correct to two decimal places.
c) For the function $f(x)=2 \cos ^{-1} 3 x$
i) Write down the domain and range
ii) Draw a neat sketch showing all important features
iii) Calculate the area enclosed by $y=2 \cos ^{-1} 3 x$, the line $x=0$ and the line $y=0$

Question 3 (12 marks) - Start a new page

a) If $y=x^{n} e^{a x}$ where a, n are coordinates
i) find $\frac{d y}{d x}$

1
ii) show that $\frac{d y}{d x}-a y=\frac{n y}{x}$
b)

Find k if $\int_{0}^{\frac{\pi}{6}} \frac{\cos x}{1+\sin x} d x=\log _{e} k$
c) Without the aid of a calculator find the exact value of $\tan \left(\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$
d) The arc of the curve $y=\cos 3 x$ between the lines $x=0$ and $x=\frac{\pi}{6}$ is rotated about the x-axis. Find the volume of the solid formed.
a) Joel puts $\$ 500$ into a Baulko Bank for 2 years where it earned interest at 6\%pa paid twice a year. He withdrew all his money and immediately deposited it into Axel Credit Union where his money earned 8\%pa paid quarterly. If he withdrew his savings and had $\$ 633.75$, how long was the money kept in the credit union?
b) The rate at which a body warms in air is proportional to the difference between the temperature, T, and the constant temperature, T_{0}, of the surrounding air. This rate is represented by $\frac{d T}{d t}=k\left(T-T_{0}\right)$ where t is the time in minutes and K is a constant.
i) Show that $T=T_{0}+A e^{k t}$ is a solution of $\frac{d T}{d t}=k\left(T-T_{0}\right)$ where A is a constant.
ii) For a particular body, when $t=0, T=5$ and when $t=20, T=15$.

Given $T_{0}=25$, find the temperature after a further 30 minutes have elapsed. Give your answer to the nearest degree.
iii) Briefly describe the behaviour of T as t becomes large.
c) Use mathematical induction to prove that for all integers $\mathrm{n} \geq 1$

$$
\cos (x+n \pi)=(-1)^{n} \cos x
$$

Question 5 (12 marks) - Start a new page

a) The following eight tiles are taken from a scrabble set:

A, A, B, B, C, D, E, F.
How many different 4 letter permutations can be formed from these eight tiles?
b) Find $\lim _{x \rightarrow 0} \frac{\sin \pi x^{\circ}}{x} \quad 3$
c) Find the following indefinite integral $\int \frac{x^{2}+1}{x-1} d x$
d) Sketch the polynomial function $y=P(x)$ in the domain $-3 \leq x \leq 3$ given that:

$$
\begin{aligned}
& y=0 \text { only when } x=0 \text { and } 2 \\
& y^{\prime}=0 \text { only when } x= \pm 1 \\
& y^{\prime \prime}=0 \text { only when } x=-1 \text { and } 0 \\
& y^{\prime \prime}<0 \text { only when }-1<x<0
\end{aligned}
$$

a)

A, B, C, D, E are points on the circumference of a circle such that $C D / / B E$

Prove that $\angle C A B=\angle D A E$.
b) $\quad P\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$
i) Show that the equation of the normal to the curve of the parabola at the point P is $x+p y=2 a p+a p^{3}$
ii) Find the coordinates of the point Q where the normal at P meets the y-axis
iii) Find the coordinates of the point R which divides $P Q$ externally in the ratio 2:1
iv) Find the Cartesian equation of the locus of R and describe the locus in geometrical terms
a) Given that $\sin ^{-1} x, \cos ^{-1} x$ and $\sin ^{-1}(1-x)$ have values between 0 and $\frac{\pi}{2}$
i) Show that $\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1$
ii) hence or otherwise solve the equation

$$
\begin{equation*}
\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(1-x) \tag{2}
\end{equation*}
$$

b) The diagram shows two touching circles with centres P and Q. The circle with centre P has a radius of 4 units and touches the y-axis at R. The circle with centre Q has a radius of 3 units and touches the x-axis at S.
$P Q$ produced meets the x-axis at T and $\angle Q T S=\theta$

i) Show that $O R=3+7 \sin \theta$ and $O S=4+7 \cos \theta$
ii) Show that $R S^{2}=42 \sin \theta+56 \cos \theta+74$
iii) Hence express $R S^{2}$ in the form $74+r \cos (\theta-\alpha)$

Clearly stating the values of r and α
iv) Find the maximum lengths of $R S$ and the value of θ for which this occurs.

End of Paper

2011 ExT 1 HY Solutions Tomanavice $Q 7$

$$
\begin{aligned}
a) & =\int_{0}^{1.5} \frac{1}{\sqrt{2}} \frac{d x}{\sqrt{9} 2-x^{2}} \\
& =\frac{1}{\sqrt{2}}\left[\sin ^{-1}\left(\frac{\sqrt{2} x}{3}\right)\right]_{0}^{1.5} \\
& =\frac{1}{\sqrt{2}}\left(\sin ^{-1} \frac{1}{\sqrt{2}}-\sin ^{-1} 0\right) \\
& =\frac{\pi}{4 \sqrt{2}} \text { or } \frac{\pi \sqrt{2}}{8}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { b) } \quad 2 \sin x \cos x=\frac{\sin x}{\cos x} \\
& 2 \sin x \cos ^{2} x=\sin x \\
& \sin x\left(2 \cos ^{2} x-1\right)=0 \\
& \therefore \sin x=0 \quad 2 \cos ^{2} x=1 \\
& \sin x=0 \quad \cos ^{2} x=\frac{1}{2} \\
& \quad \cos x= \pm \frac{1}{\sqrt{2}} .
\end{aligned}
$$

$\therefore x=0, \pi^{\sqrt{~} O R \quad x=\frac{\pi}{4}, \frac{3 \pi}{4}, ~}$

$$
\therefore L=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi
$$

$$
\begin{array}{ll}
\text { c) } \begin{array}{ll}
\text { let } m=x^{2}+x \quad & \sim B \quad \lambda^{2}+x \neq 0 \\
\therefore m+\frac{12}{m}<8 \quad & x(x+1) \neq 0 \\
& \therefore x \neq 0 \text { or }-1
\end{array} \\
m^{2}-8 m+12=0 & \\
(m-6)(m-2)=0 & \\
m=2 \quad \text { or } \quad m=6 \\
x^{2}+x-2=0 \quad & x^{2}+x-6=0 \\
(x+2)(x-1)=0 \quad & (x+3)(x-2)=0 \\
x=1,-2, & x=-3,2 \\
\therefore \quad \lambda=-3,-2,2 &
\end{array}
$$

di) $f(x)=2 x \sec ^{2}\left(x^{2}\right)$
ii)

$$
\text { i) } \begin{aligned}
& \frac{1}{2} \int_{0}^{1} 2 x \sec ^{2}\left(x^{2}\right) d x \\
= & \frac{1}{2}\left[\tan \left(x^{2}\right)\right]_{0}^{1} \\
= & \frac{1}{2}(\tan 1-\tan 0) \\
= & 0.78(2 \mathrm{dp})
\end{aligned}
$$

Q2a)

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1}\left(x^{2}\right)\right) \\
= & \frac{1 /}{\sqrt{1-\left(x^{2}\right)^{2}}} \times \frac{1}{2} x^{-1 / 2} \\
= & \frac{1}{2 \sqrt{x} \sqrt{1-x}} \\
= & \frac{1}{\sqrt{4 x(1-x)}} \\
= & \frac{1}{\sqrt{4 x-4 x^{2}}}
\end{aligned}
$$

b)

$$
\begin{aligned}
x^{2} & =8+\frac{x^{2}}{2} \\
2 x^{2} & =16+x^{2} \\
x^{2} & =16 \\
x & = \pm 4 .
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d}{d x}\left(x^{2}\right)=2 n & \frac{d}{d x}\left(8+\frac{x^{2}}{2}\right)= \\
m_{1}=8 & m_{2}=4
\end{array}
$$

\therefore angle $\tan \theta=\left|\frac{8-4}{1+8 \times 4}\right|$
$\tan \theta=\frac{4}{33}$
$\theta=\tan ^{-1} \frac{4}{33}$

$$
=0.12 \text { radians }
$$

2c)i) $\frac{y}{L}=\cos ^{-1} 3 x$
Dumain: $-1 \leq 3 x \leq 1$
Damain: $-\frac{1}{3} \leq x \leq \frac{1}{3}$
Rarge: $0 \leqslant \frac{y}{2} \leqslant \pi$
ie $0 \leqslant y \leqslant 2 \pi$
(ii)

iii)

$$
\text { iii) } \begin{aligned}
y & =2 \cos ^{-1} 3 x \\
\frac{y}{2} & =\cos ^{-1} 3 x \\
3 x & =\cos \frac{y}{2} \\
\text { Area } & =\int_{0}^{\pi} \frac{1}{3} \cos \frac{y}{2} d y \\
& =\frac{1}{3}\left[2 \sin \frac{y}{2}\right]_{0}^{\pi} \\
& =\frac{2}{3}\left(\sin \frac{\pi}{2}-\sin 0\right) \\
& =\frac{2}{3}(1-0) \\
\therefore \text { Area } & =\frac{2}{3} \text { unit }
\end{aligned}
$$

3a)

$$
\text { i) } \begin{aligned}
\frac{d y}{d x} & =e^{a x} \cdot n x^{n-1}+x^{n} \cdot a e^{a x} \\
& =x^{n-1} e^{a x}(n+a x)
\end{aligned}
$$

ii)

$$
\begin{aligned}
& d y \\
& d x-a y \\
= & x^{n-1} e^{a x}(n+a x)-a x e^{n a x} \\
= & x^{n-1} e^{a x}(n+a x-a x) \\
= & n x^{n-1} e^{a x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n y}{x} \\
\therefore \frac{d y}{d x}-a y & =\frac{n y}{x}
\end{aligned}
$$

3b)

$$
\begin{aligned}
& \int_{0}^{\pi / 6} \frac{\cos x}{1+\sin x} d x \\
= & {[\log (1+\sin x)]_{0}^{\pi / 6} } \\
= & \log \left(1+\sin \frac{\pi}{6}\right)-\log (1+\sin 0) \\
= & \log \left(1+\frac{1}{2}\right)-\log 1 \\
= & \log (1.5) \\
\therefore & k=1.5
\end{aligned}
$$

$3 c) \tan \left(\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$

$$
\begin{aligned}
& =\tan \left(\pi-\frac{\pi}{6}\right) \\
& =-\tan \left(\frac{\pi}{6}\right) \\
& =\frac{-1}{\sqrt{3}} \text { or } \frac{-\sqrt{3}}{3}
\end{aligned}
$$

3d)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi / 6} y^{2} d x \\
& =\pi \int_{0}^{\pi / 6} \cos ^{2} 3 x d x \\
& =\pi \int_{0}^{\pi / 6} \frac{\cos 6 x+1}{2} d x \\
& =\frac{\pi}{2}\left[\frac{\sin 6 x}{6}+x\right]_{0}^{\pi / 6} \\
& =\frac{\pi}{12}[\sin 6 x+6 x]_{0}^{\pi / 6} \\
& =\frac{\pi}{2}[(\sin \pi+\pi)-(\sin 0+0)] \\
& =\frac{\pi^{2}}{12}
\end{aligned}
$$

4 a) Let A_{n} be amount after ~ 6 mouth
$r=3 \%$ per period

$$
\begin{aligned}
A_{4} & =500(1.03)^{4} \\
A_{4} & =\{562.75 \\
633.75 & =562.75(1.02)^{n} \\
\frac{633.75}{562.75} & =(1.02)^{n} \\
\ln \left(\frac{633.75}{562.75}\right) & =\ln (1.02)^{n} \\
n & =\frac{\ln \left(\frac{633.75}{562.75}\right)}{\ln (1.02)} \\
n & =6
\end{aligned}
$$

\therefore money is in credit union for 1.5 yrs.

$$
\begin{aligned}
4(b) i) \frac{d T}{d t} & =k A e^{k t} \\
& =k\left(T_{0}+A e^{k t}-T_{0}\right) \\
& =k\left(T-T_{0}\right)
\end{aligned}
$$

ii) when $t=0, T_{0}=5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& T=25+A e^{k t} \\
& 5=25+A e^{0} \\
& A=-20 \\
& \therefore T=25-20 e^{k t}
\end{aligned}
$$

When $t=20, T=15$

$$
\begin{aligned}
15 & =25-20 e^{20 k} \\
20 e^{2 k} & =10 \\
e^{20 k} & =\frac{1}{2} \\
\ln e^{2 k k} & =\ln \left(\frac{1}{2}\right) \\
20 k & =\ln h \\
1 & =\ln (0.5)
\end{aligned}
$$

When $t=50$

$$
\begin{aligned}
T & =25-20 e^{50 k} \\
& =21.46 \ldots \\
T & =21^{\circ} \mathrm{C}
\end{aligned}
$$

$(i i) \quad A s t \rightarrow \infty \quad T=25-20 e^{k t}$ approaches $T=25-0$ since $e^{U!} \rightarrow 0$
$\because T=25^{\circ} \mathrm{C}$
\therefore temperature approaches $25^{\circ} \mathrm{C}$ which is the temperature of the surrounding air.
\angle 在d $n=1$

$$
\begin{aligned}
\angle N S & =\cos (x+\pi) \\
& =\cos x \cos \pi-\sin x \sin \pi \\
& =-\cos x \\
R H S & =(-1)^{\prime} \cos x \\
& =-\cos x \\
& =\angle H S
\end{aligned}
$$

\therefore True for $n=1$
Assume time for $n=k$
ie $\cos (x+k \pi)=(-1)^{k} \cos x$
we wish to prove cos $(k+(k+1) \pi)=(-1)^{k+1} \cos x$
for $n=k+1$
$\cos (x+(k+1) \pi)$
$=\cos ((x+k \pi)+\pi)$
${ }^{5} \cos (x+k \pi) \cos \pi-\sin (x+k \pi) \sin \pi$
$=-\cos (k+k \pi)-0$
$=-(-1)^{k} \cos x$
$=(-1)^{k+1} \cos n$ as req'd.
\therefore If the for $n=k$ its true for $n=k+1$. But true for $n=1$, therefore true for $n=H /=2$ and

Sa) Case l all letters different

$$
A, B, \angle O, E, F
$$

$$
{ }^{6} P_{4}=360
$$

axe Only 2 the same, 2 different

$$
2 \times{ }^{5} C_{2} \times \frac{4!}{2}=240
$$

case 3 Both As and Bs

$$
\frac{4!}{2!2!}=6
$$

\therefore number of ways $=360+24016$

$$
=606
$$

56) $\lim _{x \rightarrow 0} \sin \frac{\pi x^{0}}{x}$

$$
=\lim _{x \rightarrow 0} \sin \frac{\pi\left(\frac{\pi x}{180}\right)}{x}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin \left(\frac{\pi^{2} x}{180}\right)}{\frac{\pi^{2} x}{180}} x^{\frac{\pi^{2}}{180}}
$$

$$
=\frac{\pi^{2}}{180} \lim _{x \rightarrow 0} \frac{\sin \frac{\pi^{2} x}{180}}{\frac{\pi^{2} x}{180}}
$$

$$
=\frac{\pi^{2}}{180} \times 1
$$

$$
=\frac{\pi^{2}}{180}
$$

$$
\text { sc) } \begin{aligned}
& \int \frac{x^{2}+1}{x-1} d x \\
= & \int \frac{x^{2}-1+2}{x-1} d x \\
= & \int \frac{x^{2}-1}{x-1}+\frac{2}{x-1} d x \\
= & \int(x+1)+\frac{2}{x-1} d x
\end{aligned}
$$

$$
=\frac{x^{2}}{2}+x+2 \log _{0}(x-1)+c \quad \text { (ignore }
$$

(1) x intercepts
(1) concave devon between -1 and 0
(1) stationary points
(1) concave up $-3 \leq x<-1$ and $\lambda \geqslant 0$

Ga) Join $A C, 10$
let $\angle D \angle B=x^{\circ}$
$\angle C B E=180^{\circ}-x^{\circ}$ (coniterior angles, $\angle D \| f$.
$\angle C D E=x^{\circ}$ (opposite angles in cyclic quad cos are supplementary
$\angle D A B=180^{\circ}-\lambda^{\circ}$ (op \angle 's in cyclic quad)
$\angle E A C=180^{\circ}-x^{\circ}\binom{$ 'satc.icumperence stardom, }{ on arc $C E}$
Since $\angle D A B=\angle E A C=180^{\circ}-\lambda^{\circ}$ then
$\angle C A B=\angle D A C$ (as $\angle D A C$ is common)
bb) $y=\frac{x^{2}}{4 a}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 x}{4 a} \\
& \frac{d y}{d x}=\frac{x}{2 a}
\end{aligned}
$$

Grad of tangent at $\left(2 a p, a p^{2}\right)$ is

$$
\frac{d y}{d x}=P
$$

\therefore arad of ronal is -1

Equation of nomal:

$$
\begin{aligned}
y-a p^{2} & =-\frac{1}{p}(x-2 a p) \\
p y-a p^{3} & =-x+2 a p \\
x+p y & =2 a p+a p^{3}
\end{aligned}
$$

(ii) When $l=0$

$$
\begin{aligned}
y & =\frac{\text { Lapłap }}{}{ }^{3} \\
y & =\text { Latap } \\
\therefore Q & =\left(0,2 a+a p^{2}\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
&\left(2 a p, a p^{2}\right)\left(0, a\left(2+p^{2}\right)\right) \\
&-2: 1
\end{aligned}
$$

$$
x=\frac{2 a p+0}{-1} \quad y=\frac{a p^{2}-2 a\left(2+p^{2}\right)}{-1}
$$

$$
\begin{equation*}
x=-2 a p \quad y=\frac{-4 a-a p^{2}}{-1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x=-2 a p, y=4 a+a p^{2} \tag{1}
\end{equation*}
$$

$\therefore R$ is $\left(-2 a p, a\left(4+p^{2}\right)\right)$ or interal. \quad divisen (1)
(iv) $x=-2 a p \rightarrow p=\frac{x}{-2 a} \quad$ athaptst suls in $y=a\left(4 t p^{2}\right) \quad \begin{aligned} & \text { eliminate } \\ & \text { parander }\end{aligned}$

$$
\begin{aligned}
y & =a\left(4+\frac{x^{2}}{4 a^{2}}\right) \\
y & =4 a+\frac{x^{2}}{4 a} \\
4 a y & =16 a^{2}+x^{2} \\
x^{2} & =4 a(y-4 a)
\end{aligned}
$$

Locus is a parabola with vertex
$(0,4 a)$, (foous at 0,5 and directrix at $y=3 a$)

7a) $\operatorname{let} \alpha=\sin ^{-1} x \quad \sin ^{2} \alpha=x \quad \frac{1}{\sqrt{1-2}} x^{2}$ Let $\beta=\cos ^{-1} n \quad \cos \beta=n$
$\sim B \quad a \leq 1 \leq 1$

$$
\begin{aligned}
& \sin ^{(}\left(\sin ^{-1} x-\cos ^{1} x\right) \\
= & \sin (\alpha-\beta) \\
= & \sin \alpha \cos \beta-\cos \alpha \sin \beta \\
= & 1 \cdot x-\sqrt{1-x^{2}} \sqrt{1-x^{2}} \\
= & x^{2}-\left(1-x^{2}\right) \\
= & 2 x^{2}-1
\end{aligned}
$$

ii) $\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1$

$$
\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}\left(2 x^{2}-1\right)
$$

thenif $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(1-x)$

$$
\begin{aligned}
& 2 x^{2}-1=1-x \\
& 2 x^{2}+x-2=0 \\
& x=\frac{-1 \pm \sqrt{1+16}}{4} \\
& n=\frac{-1 \pm \sqrt{7}}{4} \\
& \left.\therefore x=\frac{-1+\sqrt{7}}{4} \quad \text { as } \quad 0 \leq x \leq 1\right)
\end{aligned}
$$

76) next page

Tb)

1)

$$
\begin{aligned}
O R & =3+P V \\
& =3+7 \sin \theta \ldots V \\
O S & =4+V Q \\
& =4+7 \cos \theta
\end{aligned}
$$

ii) $R S^{2}=O R^{2}+O S^{2}$

$$
\begin{aligned}
= & (3+7 \sin \theta)^{2}+(4+7 \cos \theta)^{2} \\
= & 9+42 \sin \theta+49 \sin ^{2} \theta+16+56 \cos \theta \\
& +49 \cos ^{2} \theta \\
= & 25+49\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+42 \sin \theta+56 \cos \theta \\
= & 74+42 \sin \theta+56 \cos \theta
\end{aligned}
$$

iii)

$$
\begin{gathered}
r \cos (\theta-\alpha)=42 \sin \theta+56 \cos \theta \\
r=\sqrt{42^{2}+56^{2}} \\
r=70
\end{gathered}
$$

$\cos \theta \cos \alpha+\sin \theta \sin \alpha=\frac{42}{20} \sin \theta+\frac{56}{70} \cos \theta$

$$
\begin{aligned}
& \therefore \sin \alpha=\frac{42}{70} \cos \theta=\frac{56}{70} \\
& \tan \alpha \\
&=\frac{3}{4} \\
& \alpha=36^{\circ} 52^{\prime}(\text { nearest min }) \\
& \therefore R S^{\prime}=74+70 \cos \left(\theta-30^{\circ} 52^{\prime}\right)
\end{aligned}
$$

N) max value ours when

$$
\begin{gathered}
\cos \left(\theta-765 z^{\prime}\right)=1 \\
\therefore R 5^{2}=74170 \\
=144
\end{gathered}
$$

$\therefore R S=12$ gives max value.

$$
\therefore 12^{2}=74+70 \cos / \theta-36
$$

$$
\theta=36^{\circ} 52^{\prime}
$$

