

BAULKHAM HILLS HIGH SCHOOL

2017 year 12 half yearly examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- In Questions 11 14, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work

Total marks – 70

Section I Pages 2 – 5

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II Pages 6 – 10

60 marks

- Attempt Questions 11 14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1 The point *P* divides the interval from A(-1,-2) to B(5,1) internally in the ratio 2:1. What are the coordinates of *P*?

(A) $\left(0, -\frac{3}{2}\right)$ (B) (1, -1)(C) $\left(2, -\frac{1}{2}\right)$

- (D) (3,0)
- 2 When $2x^3 3x^2 + 2a 4$ is divided by x 1 the remainder is -5. What is the value of *a*?
 - (A) 2
 - (B) 0
 - (C) –2
 - (D) –3

3 If $\cos x = \frac{3}{4}$ and $\sin x < 0$, which of the following is the exact value of $\sin 2x$?

(A)
$$-\frac{3\sqrt{7}}{8}$$

(B) $\frac{\sqrt{7}}{4}$
(C) $-\frac{\sqrt{7}}{4}$
(D) $\frac{3\sqrt{7}}{4}$

- 4 Which of the following is a point on the parabola $x^2 = 4ay$?
 - (A) (0,*a*)
 - (B) (0, -a)

(C)
$$\left(\frac{2a}{r},\frac{a}{r^2}\right)$$

- (D) $(aq^2, 2aq)$
- 5 How many ways can 8 people be arranged around a circular table if Dineth must sit between Zhan and Xianyi?
 - (A) 120
 - (B) 240
 - (C) 720
 - (D) 1440

6

In the diagram above, the tangent at *C* meets the secant *AB* at *T*. Given that AB = x, BT = 10 and CT = 12, the value of *x* is:

- (A) 2
- (B) $4\frac{2}{5}$
- (C) 8
- (D) $14\frac{2}{5}$

7
$$\lim_{x \to 0} \frac{\tan 3x}{2x}$$
 is equal to:
(A) 0
(B) $\frac{2}{3}$
(C) 1
(D) $\frac{3}{2}$

8 Which diagram best represents $y = (x - a)^2 (b^2 - x^2)$, where a > b?

9 What is the value of $\cos^{-1}[\cos(3\pi + \alpha)]$ where α is an acute angle?

- (A) α
- (B) $\pi \alpha$
- (C) $\pi + \alpha$
- (D) $3\pi + \alpha$

10 Given that the roots of $x^2 - 2x - 1 = 0$ are $\tan \alpha$ and $\tan \beta$, what is the value of $\alpha + \beta$?

(A)
$$\frac{\pi}{4}$$

(B) $-\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) $-\frac{\pi}{2}$

END OF SECTION I

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hour 45 minutes for this section

Answer each question on the appropriate answer sheet. Each answer sheet must show your NESA#. Extra paper is available.

In Questions 11 to 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a separate answer sheet

(a) Prove that
$$\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2$$

Marks

2

(b) Differentiate
$$\tan^{-1} \frac{5x}{4}$$
 2

(c) Find

(i)
$$\int \cos^2 x \, dx$$
 2

(ii)
$$\int \frac{dx}{\sqrt{1-2x^2}}$$
 2

- (d) Express $8\cos x + 15\sin x$ in the form $R\cos(x \alpha)$, giving α correct to the 2 nearest degree.
- (e) Find the general solution to $2\sin x = \sqrt{3}$ 2

(f) (i) How many nine letter arrangements can be made using the letters of the *1* word;

SCHOOLIES

(ii)	In how many of	the arrangements in	part (i) do the vow	els appear together?	1
------	----------------	---------------------	---------------------	----------------------	---

(iii) In how many of the arrangements in part (i) does the word **COOL** appear? *1*

Marks

Question 12 (15 marks) Use a separate answer sheet

(a) Find the greatest value of
$$\frac{\cos^2\left(\frac{\pi}{2} - \theta\right) - 2\cos^2\theta}{24} \quad \text{for } 0 \le \theta \le \frac{\pi}{2} \qquad 3$$

(b) (i) Solve the inequality
$$\frac{x-5}{x-1} \le -1$$
 3.

(ii) Hence, or otherwise, solve
$$\frac{\cos \alpha - 4}{\cos \alpha} \le -1$$
, for $0 \le x \le \pi$ 2

(c) In January 1995 the purebred dingo population on Fraser Island was 300. The population, *P*, since then can be modelled by;

$$P = 80 + Ae^{kt}$$

where A and k are constants, and t is the time since January 1995, in years.

(i) Show that this model is a solution to the differential equation

$$\frac{dP}{dt} = k(P - 80)$$

- (ii) In January 2015 it was found that the purebred population had dropped to 162.
 Show that purebred dingo population is decreasing at annual rate of approximately 5% per year.
- (iii) Assuming this pattern continues, what will the purebred dingo population *1* be in January 2050?

(d)

In the diagram, *AB* and *CD* are intersecting chords. The tangent at *B* is parallel to *CD*.

Copy this diagram into your answer booklet and prove that AB bisects $\angle CAD$

2

1

3

Question 13 (15 marks) Use a separate answer sheet

(a) The radius of a circle is increasing such that the rate of increase of the area is $\pi^2 r \text{ cm}^2/\text{s}$.

Calculate the rate of increase of the radius.

In the diagram above; *TX* represents a vertical tower of height *h* metres standing on the horizontal plane *AXB*.

Rachel and Marina are standing 800 metres apart on the same plane. Rachel is at point *A* on a bearing of $260^{\circ}T$ from the tower and the angle of elevation to the top of the tower is 12°. Marina is at point *B* on a bearing of $152^{\circ}T$ from the tower and the angle of elevation to the top of the tower is 10° .

(i)	Explain why $\angle AXB = 108^{\circ}$	1
(ii)	Express AX in terms of h	1
(iii)	Find the height of the tower to the nearest metre	2

(c) Use mathematical induction to prove that;

$$\sum_{r=1}^{n} \frac{5-4r}{5^{r}} = \frac{n}{5^{n}}$$

Marks

2

3

Question 13 continues on page 9

<u>Question 13</u> (continued)

(d) The diagram shows the parabola $x^2 = 4ay$. The distinct points $P(2ap,ap^2)$, $Q(2aq,aq^2)$ and $R(2ar,ar^2)$ lie on the parabola such that the normal to the parabola at Q and R both pass through the point P.

- (i) Given that the equation of the normal at Q is $x + qy = aq^3 + 2aq$, show 2 that $q^2 + pq + 2 = 0$
- (ii) Show that the equation of the chord QR is given by (q + r)x 2y = 2aqr 2
- (iii) Show that QR always passes through the point (0,-2a) 2

End of Question 13

Question 14 (15 marks) Use a separate answer sheet

(a) (i) State the domain and range of $y = 2\cos^{-1}(1-x)$ 2

(ii) Sketch
$$y = 2\cos^{-1}(1-x)$$
 1

(iii) On the same set of axes as part (ii), sketch $y = -\pi x + 2\pi$ 1

(iv) Explain why
$$\int_0^2 2\cos^{-1}(1-x) dx = \int_0^2 (-\pi x + 2\pi) dx$$
 1

(v) Without integrating, evaluate
$$\int_{0}^{2} 2\cos^{-1}(1-x) dx$$
 1

(b) *ABC* is a triangle inscribed in a circle with centre *O*. A second circle through the points *A*, *C*, *O* cuts *AB* at *D*. *DO* is produced to meet *BC* at *E*.

Copy the diagram into your answer booklet

(i) Prove that $\angle BOE = \angle BAC$ 3

(ii) Prove that
$$BE = CE$$

(c) (i) Use the factor theorem to show that (a + b - c) is a factor of 2 $(a + b + c)^3 - 6(a + b + c)(a^2 + b^2 + c^2) + 8(a^3 + b^3 + c^3)$

(ii) Hence factorise
$$(a + b + c)^3 - 6(a + b + c)(a^2 + b^2 + c^2) + 8(a^3 + b^3 + c^3)$$
 2

End of paper

Marks

2

Solution	Marks	Comments
Solution	Marks	Comments
1. D - $A(-1,-2)$ 2:1 B(5,1) $P = \left(\frac{1 \times -1 + 2 \times 5}{2+1}, \frac{1 \times -2 + 2 \times 1}{2+1}\right)$ $= \left(\frac{9}{3}, \frac{0}{3}\right)$ = (3, 0)	1	
2. $\mathbf{B} - P(x) = 2x^3 - 3x^2 + 2a - 4$ P(1) = -5 2 - 3 + 2a - 4 = -5 2a = 0 a = 0	1	
3. A - $\sin 2x = 2\sin x \cos x$ $= 2 \times -\frac{\sqrt{7}}{4} \times \frac{3}{4}$ $= -\frac{3\sqrt{7}}{8}$	1	
4. C - $x^2 = \left(\frac{2a}{r}\right)^2$ $= \frac{4a^2}{r^2}$ $= \frac{4a^2}{r^2}$ $= x^2$ 4ay = 4a × $\frac{a}{r^2}$ $= \frac{4a^2}{r^2}$	1	
5. \mathbf{B} - Zhan and Xianyi must sit either side of Dineth = 2! Ways = 2! × 5! Arrange group of three plus five other people = 240 Arrange 6 objects in a circle = 5!	1	
6. B - $AT \times BT = CT^2$ (square of tangent equals product of intercepts) $10(x + 10) = 12^2$ 10x + 100 = 144 10x = 44 $x = \frac{22}{5} = 4\frac{2}{5}$	1	
7. $\mathbf{D} - \lim_{x \to 0} \frac{\tan 3x}{2x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \times \frac{3}{2\cos 3x} = \frac{3}{2}$	1	
8. C - $(x - a)^2 \Rightarrow$ double root at $x = a$ $(b^2 - x^2) = (b - x)(b + x) \Rightarrow$ single roots at $x = \pm b$ as $x \to = -\infty$ y behaves like leading term, $-x^3$	1	
9. B-	1	
10. A - $\tan \alpha + \tan \beta = 2$ & $\tan \alpha \tan \beta = -1$ $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $= \frac{2}{1 + 1}$ = 1 $\alpha + \beta = \frac{\pi}{4}$	1	

BAULKHAM HILLS HIGH SCHOOL YEAR 12 HALF YEARLY EXAMINATION 2017 SOLUTIONS

SECTION II				
Solution	Marks	Comments		
OUESTION 11				
$\sin 3\theta \cos 3\theta \sin 3\theta \cos \theta - \cos 3\theta \sin \theta$		2 marks		
11(a) $\frac{1}{1} \frac{1}{1} \frac{1}{1$		• Correct solution		
$\sin \theta \cos \theta = \sin \theta \cos \theta$ $\sin (3\theta - \theta)$		1 mork		
$=\frac{\sin(3\theta-\theta)}{1}$		1 mark		
$\frac{1}{2} \times 2\sin\theta\cos\theta$	2	• Correctly uses $\sin 2\theta$		
$\frac{2}{2 \sin 2\theta}$		result		
$=\frac{28 \ln 2\theta}{1}$				
$\sin 2\theta$				
= 2				
5		2 marks		
d(-15x) = 4 $d(-15x) = d(-1x)$		 Correct solution 		
11 (b) $\frac{d}{d}$ $\tan \frac{d}{d} = \frac{1}{25r^2}$ OR $\frac{d}{d}$ $\tan \frac{d}{d} = \frac{d}{dr}$ $\tan \frac{d}{d}$		1 mark		
$ax(4) + \frac{25x}{1+\frac{25x}{16}} = ax(4) + \frac{3}{5}$		• Obtains a denominator of		
$\frac{16}{20}$ 4 5		$16 \pm 25r^2$ or equivalent		
$=\frac{20}{5}$	2	10 · 25x , or equivalent		
$16 + 25x^2 = \frac{16}{16}$				
$\frac{10}{25} + x^2$				
25 20				
$=\frac{20}{10000000000000000000000000000000000$				
$16 + 25x^2$				
$\int 2 1 \int$		2 marks		
11(c) (i) $\cos^2 x dx = \frac{1}{2} (1 + \cos 2x) dx$		• Correct solution		
$J \qquad D \qquad 1 \qquad 1 \qquad D$	2	1 mark		
$=\frac{1}{2}\left x+\frac{1}{2}\sin 2x\right +c$	-	• Correctly uses cos 2A		
2(2 2)		result		
$\left \frac{dx}{dx} - \frac{1}{dx} \right = \frac{dx}{dx}$		2 marks		
$\int \frac{1}{1-2v^2} \sqrt{2} \int \frac{1}{1-2v^2} \sqrt{2} \sqrt{2} \sqrt{1-2v^2}$		• Correct solution		
$\sqrt{1-2x}$ $\sqrt{2}^{-x}$		1 mark		
$1 \qquad (x)$		 Uses correct standard 		
$=\frac{1}{c}\sin^{-1}\left(\frac{1}{1}\right) + c$	2	integral		
$\sqrt{2}$ $\left \frac{1}{5}\right $				
(√2)				
$=\frac{1}{2}\sin^{-1}\sqrt{2}r + c$				
$\sqrt{2}^{311}$				
11(d)		2 marks		
N -1 15		• Correct solution		
$\alpha = \tan \frac{1}{8}$ $8\cos x + 15\sin x = 17\cos(x - 62^{\circ})$		1 mark		
- 61 0275 °	2	• Correctly finds P or a		
a - 01.9275		• Confectly finds K of a		
8				
11 (e) $2\sin x = \sqrt{3}$		2 marks		
$\sqrt{3}$		• Correct solution		
$\sin x = \frac{1}{2}$		1 mark		
2	2	• astablishes $\frac{\pi}{2}$ as the		
$x = \pi k + (-1)^k \sin^{-1} \frac{\sqrt{3}}{2}$	2	$\frac{1}{3}$ as the		
$(-)^{2}$		principal angle		
$x = \pi k + (-1)^k \left[\frac{\pi}{2}\right]$ where k is an integer		• uses the correct general		
		angle formula		
9!		1 mark		
11(f) (i) $Ways = \frac{1}{2121}$	1	• Answer may be loft in		
2121	I	• Answer may be left in factorial potation		
= 90/20				
11(f) (ii) $W_{ays} = \frac{\pi}{2} \times \frac{\pi}{2}$	-	1 mark		
2! 2!	1	• Answer may be left in		
= 4320		factorial notation.		
11(f) (iii) $W_{avs} = 1 \times \frac{6!}{2}$		1 mark		
11(1)(11) $11(2)(11)$ $11(2)(11)$ $11(2)(11)$ $11(2)(11)$ $2!$	1	• Answer may be left in		
= 360		factorial notation.		

QUESTION 12				
Solution	Marks	Comments		
12 (a) $\frac{\cos^{2}\left(\frac{\pi}{2}-\theta\right)-2\cos^{2}\theta}{24} = \frac{\sin^{2}\theta-2\cos^{2}\theta}{24}$ $= \frac{1-3\cos^{2}\theta}{24}$ Now $0 \le \cos^{2}\theta \le 1$ Thus the greatest value of $\frac{\cos^{2}\left(\frac{\pi}{2}-\theta\right)-2\cos^{2}\theta}{24}$ is $\frac{1}{24}$	3	 S marks Correct solution 2 marks Simplifies the fraction to a point where only one term is dependent upon θ Finds the value of θ that gives a maximum 1 mark Attempts to simplify the expression by using a valid trig identity Makes a valid attempt to find the value of θ that will give a maximum 		
12(b) (i) $x - 1 \neq 0$ $x \neq 1$ $x - 5 = 1 - x$ $2x = 6$ $x = 3$ $1 < x \le 3$	3	 3 marks Correct graphical solution on number line or algebraic solution, with correct working 2 marks Bald answer Identifies the two correct critical points via a correct method Correct conclusion to their critical points obtained using a correct method 1 mark Uses a correct method Acknowledges a problem with the denominator. 0 marks Solves like a normal equation , with no consideration of the denominator. 		
12(b) (ii) $\frac{\cos \alpha - 4}{\cos \alpha} \leq -1$ let $\cos \alpha = u - 1$ $\frac{u - 5}{u - 1} \leq -1$ $1 < u \leq 3$ $1 < \cos \alpha + 1 \leq 3$ $0 < \cos \alpha \leq 2$ $0 \leq \alpha < \frac{\pi}{2}$ 12 (c) (i) $P = 80 + Ae^{kt}$	2	 2 marks Correct solution 1 mark Uses a valid substitution to transform the inequation into part (i) Establishes the boundary values for the inequation. 1 mark Correct solution 		
$\frac{dt}{dt} = Ake^{kt}$ $= k(80 + Ae^{kt} - 80)$ $= k(P - 80)$	1	• Correct solution		
12 (c) (ii) when $t = 0, 300 = 80 + Ae^{0}$ = 80 + A A = 220 t = 20, P = 162 $162 = 80 + 220e^{20k}$ $e^{20k} = \frac{82}{220}$ $20k = \ln\left(\frac{41}{110}\right)$ $k = \frac{1}{20}\ln\left(\frac{41}{110}\right) = -0.0493$ ∴ the population is decreasing at a rate of approximately 5% per year	2	 2 marks Correct solution 1 mark Establishes the value of A 		

Solution	Marks	Comments
12 (c) (iii) when $t = 55$, $P = 80 + 220e^{55k}$ = $80 + 220\left(\frac{41}{110}\right)^{\frac{55}{20}}$	1	 1 mark Correct solution Note: no penalty for rounding error
= 94.5/96		
$\therefore \text{ in } 2050 \text{ the population is predicted to be 95}$ 12 (d) Let $\angle XBC = \alpha$ $\angle BAC = \angle XBC = \alpha$ (alternate segment theorem) $\angle BCD = \angle XBC = \alpha$ (alternate $\angle \text{'s} = , XY \parallel CD$) $\angle BCD = \angle BAD = \alpha$ ($\angle \text{'s in the same segment}$) $\therefore \angle BAD = \angle BAC$ Thus AB bisects $\angle CAD$	3	 3 marks Correct proof 2 marks Establishes two or more angles that are equal to ∠XBC, or equivalent Correct solution with poor reasoning 1 mark Uses a valid circle geometry theorem with
		correct reasoning
QUESTION 13		<u> </u>
13 (a) $\frac{dA}{dt} = \pi^2 r \qquad A = \pi r^2 \qquad \frac{dr}{dt} = \frac{dA}{dt} \times \frac{dr}{dA} = \frac{dA}{dt} \times \frac{dr}{dA} = \frac{\pi^2 r}{2\pi r} = \frac{\pi^2 r}{2} \text{ cm/s}$	2	 2 marks Correct solution 1 mark Uses the chain rule to combine two or more rates into a single expression
13 (b) (i) $\angle NXB = 152^{\circ} \& \angle NXA_{reflex} = 260^{\circ}$ $\angle BXS + \angle NXB = 180$ (straight $\angle NXS$) $\angle BXS + 152^{\circ} = 180^{\circ}$ $\angle BXS = 28^{\circ}$ $\angle AXS + \angle NXS = \angle NXA_{reflex}$ (common \angle) $\angle AXS + 180^{\circ} = 260^{\circ}$ $\angle AXS = 80^{\circ}$ $\angle AXS = 80^{\circ}$ $\angle AXB = \angle AXS + \angle BXS$ (common \angle) $\angle AXB = 80^{\circ} + 28^{\circ}$ $= 108^{\circ}$	1	1 mark • Correct explanation Note: formal geometrical proof not required, a simple explanation will suffice
13 (b) (ii) $\frac{h}{AX} = \tan 12^{\circ}$ $AX = \frac{h}{\tan 12^{\circ}} = h \cot 12^{\circ} = h \tan 78^{\circ}$	1	1 mark • Correct answer
13 (b) (iii) $AX = h \tan 78^\circ$, similarly $BX = h \tan 80^\circ$ $AB^2 = AX^2 + BX^2 - 2AX \cdot BX \cdot \cos \angle AXB$ $800^2 = h^2 \tan^2 78^\circ + h^2 \tan^2 80^\circ - 2h^2 \tan 78^\circ \tan 80^\circ \cos 108^\circ$ $h^2 = \frac{800^2}{\tan^2 78^\circ + \tan^2 80^\circ - 2\tan 78^\circ \tan 80^\circ \cos 108^\circ}$ $h = \frac{\sqrt{\tan^2 78^\circ + \tan^2 80^\circ - 2\tan 78^\circ \tan 80^\circ \cos 108^\circ}}{\sqrt{\tan^2 78^\circ + \tan^2 80^\circ - 2\tan 78^\circ \tan 80^\circ \cos 108^\circ}}$ h = 95.08532019 = 95 metres (to the nearest metre)	2	 2 marks Correct solution 1 mark Uses the cosine rule in an attempt to find the height <i>Note: no penalty for rounding error</i>

Solution	Marks	Comments
13 (c) When $n = 1$;		There are 4 key parts of the induction;
$LHS = \frac{5 - 4}{5}$ $= \frac{1}{5}$ $RHS = \frac{1}{5^{1}}$ $= \frac{1}{5}$		1. Proving the result true for $n = 1$
5 \therefore LHS=RHS		2. Clearly stating the assumption and what is to be proven
Hence the result is true for $n = 1$ Assume the result is true for $n = k$		3. Using the assumption in the proof
i.e. $\sum_{r=1}^{k} \frac{5-4r}{5^r} = \frac{k}{5^k}$		 Correctly proving the required statement
Prove the result is true for $n = k + 1$ i.e. Prove $\sum_{r=1}^{k+1} \frac{5-4r}{5^r} = \frac{k+1}{5^{k+1}}$	3	 3 marks Successfully does all of the 4 key parts 2 marks Successfully does 3 of the
PROOF: $\sum_{r=1}^{k+1} \frac{5-4r}{5^r} = \sum_{r=1}^{k} \frac{5-4r}{5^r} + \frac{5-4(k+1)}{5^{k+1}}$ $= \frac{k}{5^k} + \frac{1-4k}{5^{k+1}}$ $= \frac{5k}{5^k} + \frac{1-4k}{5^{k+1}}$		 4 key parts 1 mark • Successfully does 2 of the 4 key parts
$= \frac{1}{5^{k+1}}$ $= \frac{k+1}{5^{k+1}}$		
Hence the result is true for $n = k + 1$, if it is true for $n = k$		
Since the result is true for $n = 1$, then it is true for all positive integers by induction.		
13 (d) (i) <i>P</i> lies on the normal at <i>Q</i> $(2ap,ap^2) \Rightarrow x + qy = aq^3 + 2aq$ $2ap + ap^2q = aq^3 + 2aq$ $q_1^3 - p^2q + 2q - 2p = 0$ $q(q^2 - p^2) + 2(q - p) = 0$ q(q - p)(q + p) + 2(q - p) = 0 (q - p)[q(q + p) + 2] = 0 \therefore as $p \neq q$, $q^2 + pq + 2 = 0$	2	 2 marks Correct solution 1 mark Substitutes <i>P</i> into the equation for the normal at <i>Q</i>
13 (d) (ii) $m_{QR} = \frac{aq^2 - ar^2}{2aq - 2ar}$ $y - aq^2 = \frac{(q+r)}{2}(x - 2aq)$ $= \frac{a(q+r)(q-r)}{2a(q-r)}$ $= \frac{q+r}{2}$ $y - aq^2 = (q+r)x - 2aq^2 - 2aqr$ $(q+r)x - 2y = 2aqr$	2	 2 marks Correct proof 1 mark Find the slope of the chord <i>QR</i>
13 (d) (iii) when $x = 0, -2y = 2aqr$ y = -aqr $q^2 + pq + 2 = 0$ similarly $r^2 + pr + 2 = 0$ Thus q and r are the roots of the quadratic $t^2 + pt + 2 = 0$ $\alpha \beta = 2$ qr = 2 \therefore when $x = 0, y = -2a$ i.e. QR always passes through (0,-2a)	2	 2 marks Correct proof 1 mark Shows qr = 2 Identifies (0,aqr) as the <i>y</i>-intercept

QUESTION 14					
Solution	Marks	Comments			
14 (a) (i) domain: $-1 \le 1 - x \le 1$ range: $0 \le \frac{y}{2} \le \pi$ $-2 \le -x \le 0$ $0 \le x \le 2$ $0 \le y \le 2\pi$	2	 2 marks Correct answer 1 mark Finds either domain or range 			
14 (a) (ii) y 2π 3π 4π 3 π 2π 3 π 3 3 3 3 3 3 3 3 3 3	1	1 mark • Correct sketch			
14 (a) (iii) y y y y y y y y y y y y y	1	1 mark • Correct sketch			
14 (a) (iv) $y = 2\cos^{-1}(1-x)$ has rotational symmetry about the point $(1,\pi)$. Thus the area between $y = 2\cos^{-1}(1-x)$ and $y = -\pi x + 2\pi$ is the same from $x = 0$ to $x = 1$ as from $x = 1$ to $x = 2$	1	 1 mark Correct explanation involving symmetry 			
14 (a) (v) $\int_{0}^{2} 2\cos^{-1}(1-x) dx = \frac{1}{2} \times 2 \times 2\pi$ = 2π	1	1 mark• Correct solution			
14 (b) (i) $\angle BOC = 2\angle BAC$ (\angle at centre, twice \angle at circumfernce on same arc) $\angle EOC = \angle BAC$ (exterior \angle , cyclic quad) $\angle BOC = \angle BOE + \angle EOC$ (common \angle) $\angle BOE = \angle BOC - \angle EOC$ $= 2\angle BAC - \angle BAC$ $= \angle BAC$	3	 3 marks Correct proof 2 marks Correct proof with poor reasoning Uses two different valid circle geometry theorems with correct reasonong 1 mark Uses a valid circle geometry theorem with correct reasoning 			
14 (b) (ii) $OB = OC$ $\angle BOE = \angle EOC$ OE is common $\therefore \Delta BOE \equiv \Delta COE$ Thus $BE = CE$ (= radii) (proven in (i)) OE is common $\therefore \Delta BOE \equiv \Delta COE$ (corresponding sides in $\equiv \Delta$'s)	2	2 marks • Correct proof 1 mark • Significant progress • Correct proof with poor reasoning			

Solution	Marks	Comments
14 (c) (i) $P(a + b) = (a + b + c)^3 - 6(a + b + c)(a^2 + b^2 + c^2) + 8(a^3 + b^3 + c^3)$ If $(a + b - c)$ is a factor then $P(c) = 0$ $P(a + b) = [(a + b) + c]^3 - 6[(a + b) + c][(a + b)^2 - 2ab + c^2] + 8[(a + b)(a^2 - ab + b^2) + c^3]$ $= [(a + b) + c]^3 - 6[(a + b) + c][(a + b)^2 - 2ab + c^2] + 8[(a + b)[(a + b)^2 - 3ab] + c^3]$ $P(c) = [c + c]^3 - 6[c + c][(c^2 - 2ab + c^2] + 8[(c[c^2 - 3ab] + c^3]$ $= (2c)^3 - 12c(2c^2 - 2ab) + 8c(2c^3 - 3abc)$ $= 8c^3 - 24c^3 + 24abc + 16c^3 - 24abc$ = 0 $\therefore (a + b - c)$ is a factor	2	 2 marks Correct solution 1 mark Demonstrates knowledge of the factor theorem
14 (c) (ii) If $(a + b - c)$ is a factor then so is $(a + c - b)$ and $(b + c - a)$ ∴ $(a + b + c)^3 - 6(a + b + c)(a^2 + b^2 + c^2) + 8(a^3 + b^3 + c^3) = k(a + b - c)(a + c - b)(b + c - a))$ Equating coefficients of a^3 $a^3 - 6a^3 + 8a^3 = -k a^3$ k = -3 ∴ $(a + b + c)^3 - 6(a + b + c)(a^2 + b^2 + c^2) + 8(a^3 + b^3 + c^3) = -3(a + b - c)(a + c - b)(b + c - b)$	2	 2 marks Correct proof 1 mark Finds another factor of the expression