BAULKHAM HILLS HIGH SCHOOL
2017
YEAR 12 HALF YEARLY
EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- In Questions 11 - 14, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work

Total marks - 70

Section I
 Pages 2 - 5

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
Section II Pages 6-10
60 marks
- Attempt Questions 11 - 14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10
1 The point P divides the interval from $A(-1,-2)$ to $B(5,1)$ internally in the ratio $2: 1$. What are the coordinates of P ?
(A) $\left(0,-\frac{3}{2}\right)$
(B) $(1,-1)$
(C) $\left(2,-\frac{1}{2}\right)$
(D) $(3,0)$

2 When $2 x^{3}-3 x^{2}+2 a-4$ is divided by $x-1$ the remainder is -5 . What is the value of a ?
(A) 2
(B) 0
(C) -2
(D) -3

3 If $\cos x=\frac{3}{4}$ and $\sin x<0$, which of the following is the exact value of $\sin 2 x$?
(A) $-\frac{3 \sqrt{7}}{8}$
(B) $\frac{\sqrt{7}}{4}$
(C) $-\frac{\sqrt{7}}{4}$
(D) $\frac{3 \sqrt{7}}{4}$

4 Which of the following is a point on the parabola $x^{2}=4 a y$?
(A) $(0, a)$
(B) $(0,-a)$
(C) $\left(\frac{2 a}{r}, \frac{a}{r^{2}}\right)$
(D) $\left(a q^{2}, 2 a q\right)$

5 How many ways can 8 people be arranged around a circular table if Dineth must sit between Zhan and Xianyi?
(A) 120
(B) 240
(C) 720
(D) 1440

6

In the diagram above, the tangent at C meets the secant $A B$ at T. Given that $A B=x$, $B T=10$ and $C T=12$, the value of x is:
(A) 2
(B) $4 \frac{2}{5}$
(C) 8
(D) $14 \frac{2}{5}$
$7 \lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x}$ is equal to:
(A) 0
(B) $\frac{2}{3}$
(C) 1
(D) $\frac{3}{2}$

8 Which diagram best represents $y=(x-a)^{2}\left(b^{2}-x^{2}\right)$, where $a>b$?
(A)
(B)

(C)

(D)

9 What is the value of $\cos ^{-1}[\cos (3 \pi+\alpha)]$ where α is an acute angle?
(A) α
(B) $\pi-\alpha$
(C) $\pi+\alpha$
(D) $3 \pi+\alpha$

10 Given that the roots of $x^{2}-2 x-1=0$ are $\tan \alpha$ and $\tan \beta$, what is the value of $\alpha+\beta$?
(A) $\frac{\pi}{4}$
(B) $-\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) $-\frac{\pi}{2}$

Section II

60 marks
Attempt Questions 11 - 14
Allow about 1 hour 45 minutes for this section
Answer each question on the appropriate answer sheet. Each answer sheet must show your NESA\#. Extra paper is available.

In Questions 11 to 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a separate answer sheet
(a) Prove that $\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2$
(c) Find
(i) $\int \cos ^{2} x d x$
(ii) $\int \frac{d x}{\sqrt{1-2 x^{2}}}$
(d) Express $8 \cos x+15 \sin x$ in the form $R \cos (x-\alpha)$, giving α correct to the nearest degree.
(e) Find the general solution to $2 \sin x=\sqrt{3}$
(f) (i) How many nine letter arrangements can be made using the letters of the word;

SCHOOLIES

(ii) In how many of the arrangements in part (i) do the vowels appear together?
(iii) In how many of the arrangements in part (i) does the word COOL appear?1

Marks

Question 12 (15 marks) Use a separate answer sheet
(a) Find the greatest value of $\frac{\cos ^{2}\left(\frac{\pi}{2}-\theta\right)-2 \cos ^{2} \theta}{24}$ for $0 \leq \theta \leq \frac{\pi}{2}$
(b) (i) Solve the inequality $\frac{x-5}{x-1} \leq-1$
(ii) Hence, or otherwise, solve $\frac{\cos \alpha-4}{\cos \alpha} \leq-1$, for $0 \leq x \leq \pi$
(c) In January 1995 the purebred dingo population on Fraser Island was 300. The population, P, since then can be modelled by;

$$
P=80+A e^{k t}
$$

where A and k are constants, and t is the time since January 1995, in years.
(i) Show that this model is a solution to the differential equation

$$
\frac{d P}{d t}=k(P-80)
$$

(ii) In January 2015 it was found that the purebred population had dropped to 162.

Show that purebred dingo population is decreasing at annual rate of approximately 5% per year.
(iii) Assuming this pattern continues, what will the purebred dingo population be in January 2050?
(d)

In the diagram, $A B$ and $C D$ are intersecting chords. The tangent at B is parallel to $C D$.

Copy this diagram into your answer booklet and prove that $A B$ bisects $\angle C A D$

Question 13 (15 marks) Use a separate answer sheet
(a) The radius of a circle is increasing such that the rate of increase of the area is $\pi^{2} r \mathrm{~cm}^{2} / \mathrm{s}$.

Calculate the rate of increase of the radius.
(b)

In the diagram above; $T X$ represents a vertical tower of height h metres standing on the horizontal plane $A X B$.

Rachel and Marina are standing 800 metres apart on the same plane. Rachel is at point A on a bearing of $260^{\circ} \mathrm{T}$ from the tower and the angle of elevation to the top of the tower is 12°. Marina is at point B on a bearing of $152^{\circ} \mathrm{T}$ from the tower and the angle of elevation to the top of the tower is 10°.
(i) Explain why $\angle A X B=108^{\circ} 1$
(ii) Express $A X$ in terms of $h \quad 1$
(iii) Find the height of the tower to the nearest metre 2
(c) Use mathematical induction to prove that;

$$
\sum_{r=1}^{n} \frac{5-4 r}{5^{r}}=\frac{n}{5^{n}}
$$

Question 13 continues on page 9

Question 13 (continued)

(d) The diagram shows the parabola $x^{2}=4 a y$. The distinct points $P\left(2 a p, a p^{2}\right)$, $Q\left(2 a q, a q^{2}\right)$ and $R\left(2 a r, a r^{2}\right)$ lie on the parabola such that the normal to the parabola at Q and R both pass through the point P.

(i) Given that the equation of the normal at Q is $x+q y=a q^{3}+2 a q$, show that $q^{2}+p q+2=0$
(ii) Show that the equation of the chord $Q R$ is given by $(q+r) x-2 y=2 a q r$
(iii) Show that $Q R$ always passes through the point $(0,-2 a)$

End of Question 13

Marks

Question 14 (15 marks) Use a separate answer sheet
(a) (i) State the domain and range of $y=2 \cos ^{-1}(1-x)$
(ii) Sketch $y=2 \cos ^{-1}(1-x)$
(iii) On the same set of axes as part (ii), sketch $y=-\pi x+2 \pi$
(iv) Explain why $\int_{0}^{2} 2 \cos ^{-1}(1-x) d x=\int_{0}^{2}(-\pi x+2 \pi) d x$
(v) Without integrating, evaluate $\int_{0}^{2} 2 \cos ^{-1}(1-x) d x$
(b) $A B C$ is a triangle inscribed in a circle with centre O. A second circle through the points A, C, O cuts $A B$ at D. $D O$ is produced to meet $B C$ at E.

Copy the diagram into your answer booklet

(i) Prove that $\angle B O E=\angle B A C$
(ii) Prove that $B E=C E$
(c) (i) Use the factor theorem to show that $(a+b-c)$ is a factor of

$$
(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{3}+b^{3}+c^{3}\right)
$$

(ii) Hence factorise $(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{3}+b^{3}+c^{3}\right)$

End of paper

BAULKHAM HILLS HIGH SCHOOL

YEAR 12 HALF YEARLY EXAMINATION 2017 SOLUTIONS

Solution	Marks	Comments
SECTION I		
$\text { 1. D - } A(-1,-2) \quad \begin{aligned} P & =\left(\frac{1 \times-1+2 \times 5}{2+1}, \frac{1 \times-2+2 \times 1}{2+1}\right) \\ & =\left(\frac{9}{3}, \frac{0}{3}\right) \\ & =(3,0) \end{aligned}$	1	
2. $\mathbf{B}-P(x)=2 x^{3}-3 x^{2}+2 a-4$ $\begin{aligned} 2-3+2 a-4 & =-5 \\ 2 a & =0 \\ a & =0 \end{aligned}$	1	
3. $\mathrm{A}-$ $\begin{aligned} \sin 2 x & =2 \sin x \cos x \\ & =2 \times-\frac{\sqrt{7}}{4} \times \frac{3}{4} \\ & =-\frac{3 \sqrt{7}}{8} \end{aligned}$	1	
$\text { 4. } \mathrm{C}-\quad x^{2}=\left(\frac{2 a}{r}\right)^{2} \quad 4 a y=4 a \times \frac{a}{r^{2}}, ~\left(\begin{array}{ll} r^{2} \\ r^{2} & \end{array}\right.$	1	
$\begin{array}{\|ll} \hline \text { 5. } \quad \text { B }- & \begin{array}{c} \text { Ways }=2!\times 5! \\ =240 \end{array} \end{array} \begin{aligned} & \text { Zhan and Xianyi must sit either side of Dineth }=2! \\ & \text { Arrange group of three plus five other people } \\ & \text { Arrange } 6 \text { objects in a circle }=5! \end{aligned}$	1	
$\text { 6. } \begin{aligned} \text { B }-A T \times B T & =C T^{2} \quad \text { (square of tangent equals product of intercepts) } \\ 10(x+10) & =12^{2} \\ 10 x+100 & =144 \\ 10 x & =44 \\ x & =\frac{22}{5}=4 \frac{2}{5} \end{aligned}$	1	
7. D $\begin{aligned} \lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x} & =\lim _{\substack{x \rightarrow 0 \\ \\ \\ \\ \\=\frac{3}{2}}}^{\frac{\sin 3 x}{3 x} \times \frac{3}{2 \cos 3 x}}\end{aligned}$	1	
8. C- $(x-a)^{2} \Rightarrow$ double root at $x=a$ $\left(b^{2}-x^{2}\right)=(b-x)(b+x) \Rightarrow$ single roots at $x= \pm b$ as $x \rightarrow=-\infty \quad y$ behaves like leading term, $-x^{3}$	1	
9. \mathbf{B} - $\begin{aligned} \cos (3 \pi+\alpha) & =\cos (\pi+\alpha) \\ & =-\cos ^{-1} \\ \cos ^{-1}[\cos (3 \pi+\alpha)] & =\cos ^{(-\cos \alpha)} \\ & =\pi-\cos ^{-1} \cos \alpha \\ & =\pi-\alpha \end{aligned}$	1	
$\text { 10. A- } \begin{aligned} \tan \alpha+\tan \beta=2 \& & \tan \alpha \tan \beta=-1 \\ \tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\ & =\frac{2}{1+1} \\ & =1 \\ \alpha+\beta & =\frac{\pi}{4} \end{aligned}$	1	

SECTION II		
Solution	Marks	Comments
QUESTION 11		
$\text { 11(a) } \begin{aligned} \frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta} & =\frac{\sin 3 \theta \cos \theta-\cos 3 \theta \sin \theta}{\sin \theta \cos \theta} \\ & =\frac{\sin (3 \theta-\theta)}{\frac{1}{2} \times 2 \sin \theta \cos \theta} \\ & =\frac{2 \sin 2 \theta}{\sin 2 \theta} \\ & =2 \end{aligned}$	2	2 marks - Correct solution 1 mark - Correctly uses $\sin 2 \theta$ result
11 (b) $\begin{array}{rlrl}\frac{d}{d x}\left(\tan ^{-1} \frac{5 x}{4}\right) & =\frac{\frac{5}{4}}{1+\frac{25 x^{2}}{16}} & \text { OR } \quad \frac{d}{d x}\left(\tan ^{-1} \frac{5 x}{4}\right) & =\frac{d}{d x}\left(\tan ^{-1} \frac{x}{\frac{4}{5}}\right) \\ & =\frac{20}{16+25 x^{2}} & & \frac{\frac{4}{5}}{\frac{16}{25}+x^{2}} \\ & =\frac{20}{16+25 x^{2}}\end{array}$	2	2 marks - Correct solution 1 mark - Obtains a denominator of $16+25 x^{2}$, or equivalent
$\text { 11(c) (i) } \quad \begin{aligned} \int \cos ^{2} x d x & =\frac{1}{2} \int(1+\cos 2 x) d x \\ & =\frac{1}{2}\left(x+\frac{1}{2} \sin 2 x\right)+c \end{aligned}$	2	2 marks - Correct solution 1 mark - Correctly uses $\cos 2 \theta$ result
11(c) (ii) $\begin{aligned} \int \frac{d x}{\sqrt{1-2 x^{2}}} & =\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{\frac{1}{2}-x^{2}}} \\ & =\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x}{\frac{1}{\sqrt{2}}}\right)+c \\ & =\frac{1}{\sqrt{2}} \sin ^{-1} \sqrt{2} x+c \end{aligned}$	2	2 marks - Correct solution 1 mark - Uses correct standard integral
11(d) $\alpha=\tan ^{-1} \frac{15}{8}$ $8 \cos x+15 \sin x=17 \cos \left(x-62^{\circ}\right)$ $=61.9275 \ldots{ }^{\circ}$	2	2 marks - Correct solution 1 mark - Correctly finds R or α
11 (e) $\begin{aligned} 2 \sin x & =\sqrt{3} \\ \sin x & =\frac{\sqrt{3}}{2} \\ x & =\pi k+(-1)^{k} \sin ^{-1} \frac{\sqrt{3}}{2} \\ x & =\pi k+(-1)^{k}\left(\frac{\pi}{3}\right) \text { where } k \text { is an integer } \end{aligned}$	2	2 marks - Correct solution 1 mark - establishes $\frac{\pi}{3}$ as the principal angle - uses the correct general angle formula
$\begin{aligned} \mathbf{1 1 (f)}(\mathbf{i}) \quad \text { Ways } & =\frac{9!}{2!2!} \\ & =90720 \end{aligned}$	1	1 mark - Answer may be left in factorial notation.
$\begin{aligned} \text { 11(f) (ii) } \quad \begin{aligned} \text { Ways } & =\frac{4!}{2!} \times \frac{6!}{2!} \\ & =4320 \end{aligned} \end{aligned}$	1	1 mark - Answer may be left in factorial notation.
$\text { 11(f) (iii) } \quad \begin{aligned} \text { Ways } & =1 \times \frac{6!}{2!} \\ & =360 \end{aligned}$	1	1 mark - Answer may be left in factorial notation.

QUESTION 12		
Solution	Marks	Comments
12 (a) $\begin{aligned} \frac{\cos ^{2}\left(\frac{\pi}{2}-\theta\right)-2 \cos ^{2} \theta}{24} & =\frac{\sin ^{2} \theta-2 \cos ^{2} \theta}{24} \\ & =\frac{1-3 \cos ^{2} \theta}{24} \end{aligned}$ Now $0 \leq \cos ^{2} \theta \leq 1$ Thus the greatest value of $\frac{\cos ^{2}\left(\frac{\pi}{2}-\theta\right)-2 \cos ^{2} \theta}{24}$ is $\frac{1}{24}$	3	3 marks - Correct solution 2 marks - Simplifies the fraction to a point where only one term is dependent upon θ - Finds the value of θ that gives a maximum 1 mark - Attempts to simplify the expression by using a valid trig identity - Makes a valid attempt to find the value of θ that will give a maximum
12(b) (i) $\frac{x-5}{x-1} \leq-1$ $\begin{aligned} & x-1 \neq 0 \\ & x \neq 1 \end{aligned}$	3	3 marks - Correct graphical solution on number line or algebraic solution, with correct working 2 marks - Bald answer - Identifies the two correct critical points via a correct method - Correct conclusion to their critical points obtained using a correct method 1 mark - Uses a correct method - Acknowledges a problem with the denominator. 0 marks - Solves like a normal equation, with no consideration of the denominator.
$\text { 12(b) (ii) } \frac{\cos \alpha-4}{\cos \alpha} \leq-1 \quad \text { let } \cos \alpha=u-1$	2	2 marks - Correct solution 1 mark - Uses a valid substitution to transform the inequation into part (i) - Establishes the boundary values for the inequation.
$\text { 12 (c) (i) } \quad \begin{aligned} P & =80+A e^{k t} \\ \frac{d P}{d t} & =A k e^{k t} \\ & =k\left(80+A e^{k t}-80\right) \\ & =k(P-80) \end{aligned}$	1	1 mark - Correct solution
$12 \text { (c) (ii) when } t=0,300=80+A e^{0} \quad \begin{aligned} t & =20, P=162 \\ & =80+A \\ A & =220 \end{aligned} \begin{aligned} 162 & =80+220 e^{20 k} \\ e^{20 k} & =\frac{82}{220} \\ 20 k & =\ln \left(\frac{41}{110}\right) \\ k & =\frac{1}{20} \ln \left(\frac{41}{110}\right)=-0.0493 \ldots . . \end{aligned}$ \therefore the population is decreasing at a rate of approximately 5% per year	2	2 marks - Correct solution 1 mark - Establishes the value of A

Solution	Marks	Comments	
$12 \text { (c) (iii) when } t=55, P=80+220 e^{55 k}{ }^{\frac{55}{}} \begin{aligned} & \frac{41}{20} \\ &=80+220\left(\frac{410}{110}\right. \\ &=94.5796 \ldots \end{aligned}$ \therefore in 2050 the population is predicted to be 95	1	1 mark - Correct solution Note: no penalty for rounding error	
$\begin{array}{ll} \hline 12 \text { (d) Let } \angle X B C=\alpha & \\ \angle B A C=\angle X B C=\alpha & \text { (alternate segment theorem) } \\ \angle B C D=\angle X B C=\alpha & \text { (alternate } \angle \text { 's }=, X Y \\| C D) \\ \angle B C D=\angle B A D=\alpha & (\angle \text { 's in the same segment) } \\ \therefore \angle B A D=\angle B A C & \\ \text { Thus } A B \text { bisects } \angle C A D & \end{array}$	3	3 marks - Correct proof 2 marks - Establishes two or more angles that are equal to $\angle X B C$, or equivalent - Correct solution with poor reasoning 1 mark - Uses a valid circle geometry theorem with correct reasoning	
QUESTION 13			
$13 \text { (a) } \quad \begin{aligned} & \frac{d A}{d t}=\pi^{2} r \quad \begin{array}{rlr} A & =\pi r^{2} & \frac{d r}{d t} \end{array}=\frac{d A}{d t} \times \frac{d r}{d A} \\ &=\pi^{2} r \times \frac{1}{2 \pi r} \\ &=2 \pi r \\ &=\frac{\pi}{2} \mathrm{~cm} / \mathrm{s} \end{aligned}$	2	2 marks - Correct solution 1 mark - Uses the chain rule to combine two or more rates into a single expression	
$\begin{array}{ll} 13 \text { (b) (i) } \angle N X B=152^{\circ} \& \angle N X A_{\text {reflex }}=260^{\circ} \\ \angle B X S+\angle N X B=180 & (\text { straight } \angle N X S) \\ \angle B X S+152^{\circ}=180^{\circ} & \\ \angle B X S=28^{\circ} & \\ \angle A X S+\angle N X S=\angle N X A_{\text {reflex }} & (\text { common } \angle) \\ \angle A X S+180^{\circ}=260^{\circ} & \\ \angle A X S=80^{\circ} & \\ \angle A X B=\angle A X S+\angle B X S & (\text { common } \angle) \\ \angle A X B=80^{\circ}+28^{\circ} & \\ & =108^{\circ} \\ & \\ \hline \end{array}$	1	1 mark - Correct explanation Note: formal geometrical proof not required, a simple explanation will suffice	
$13 \text { (b) (ii) } \frac{h}{A X}=\tan 12^{\circ} .$	1	1 mark - Correct answer	
$13 \text { (b) (iii) } \begin{aligned} & A X=h \tan 78^{\circ}, \text { similarly } B X=h \tan 80^{\circ} \\ & A B^{2}=A X^{2}+B X^{2}-2 A X \cdot B X \cdot \cos \angle A X B \\ & 800^{2}=h^{2} \tan ^{2} 78^{\circ}+h^{2} \tan ^{2} 80^{\circ}-2 h^{2} \tan 78^{\circ} \tan 80^{\circ} \cos 108^{\circ} \\ & h^{2}=\frac{800^{2}}{\tan ^{2} 78^{\circ}+\tan ^{2} 80^{\circ}-2 \tan 78^{\circ} \tan 80^{\circ} \cos 108^{\circ}} \\ & h=\frac{800}{\sqrt{\tan ^{2} 78^{\circ}+\tan ^{2} 80^{\circ}-2 \tan 78^{\circ} \tan 80^{\circ} \cos 108^{\circ}}} \\ & h=95.08532019 \ldots \\ &=95 \text { metres (to the nearest metre) } \end{aligned}$	2	2 marks - Correct solution 1 mark - Uses the cosine rule in an attempt to find the height Note: no penalty for rounding error	

$$
\therefore L H S=R H S
$$

Hence the result is true for $n=1$
Assume the result is true for $n=k$

$$
\text { i.e. } \sum_{r=1}^{k} \frac{5-4 r}{5^{r}}=\frac{k}{5^{k}}
$$

Prove the result is true for $n=k+1$

$$
\text { i.e. Prove } \sum_{r=1}^{k+1} \frac{5-4 r}{5^{r}}=\frac{k+1}{5^{k+1}}
$$

PROOF:

$$
\begin{aligned}
\sum_{r=1}^{k+1} \frac{5-4 r}{5^{r}} & =\sum_{r=1}^{k} \frac{5-4 r}{5^{r}}+\frac{5-4(k+1)}{5^{k+1}} \\
& =\frac{k}{5^{k}}+\frac{1-4 k}{5^{k+1}} \\
& =\frac{5 k+1-4 k}{5^{k+1}} \\
& =\frac{k+1}{5^{k+1}}
\end{aligned}
$$

Hence the result is true for $n=k+1$, if it is true for $n=k$
Since the result is true for $n=1$, then it is true for all positive integers by induction.
13 (d) (i) P lies on the normal at Q

There are 4 key parts of the induction;

1. Proving the result true for $n=1$
2. Clearly stating the assumption and what is to be proven
3. Using the assumption in the proof
4. Correctly proving the required statement

3 marks

- Successfully does all of the 4 key parts

2 marks

- Successfully does 3 of the 4 key parts

1 mark

- Successfully does 2 of the 4 key parts

$$
\begin{aligned}
&\left(2 a p, a p^{2}\right) \Rightarrow x+q y=a q^{3}+2 a q \\
& 2 a p+a p^{2} q=a q^{3}+2 a q \\
& q^{3}-p^{2} q+2 q-2 p=0 \\
& q\left(q^{2}-p^{2}\right)+2(q-p)=0 \\
& q(q-p)(q+p)+2(q-p)=0 \\
&(q-p)[q(q+p)+2]=0 \\
& \therefore \text { as } p \neq q, q^{2}+p q+2=0
\end{aligned}
$$

13 (d) (ii)

$\begin{aligned} m_{Q R} & =\frac{a q^{2}-a r^{2}}{2 a q-2 a r} \\ & =\frac{a(q+r)(q-r)}{2 a(q-r)} \\ & =\frac{q+r}{2} \end{aligned}$	$\begin{aligned} y-a q^{2} & =\frac{(q+r)}{2}(x-2 a q) \\ 2 y-2 a q^{2} & =(q+r) x-2 a q^{2}-2 a q r \\ (q+r) x-2 y & =2 a q r \end{aligned}$
13 (d) (iii) when $x=0,-2 y=2 a q r$ $\begin{aligned} y= & -a q r \\ q^{2}+p q+2 & =0 \\ \text { similarly } r^{2}+p r+2 & =0 \end{aligned}$ Thus q and r are the roots $\therefore \text { when } x=0, y=-2 a$	dratic $t^{2}+p t+2=0$ ys passes through $(0,-2 a)$

$\left(2 a p, a p^{2}\right) \Rightarrow x+q y=a q^{3}+2 a q$
$2 a p+a p^{2} q=a q^{3}+2 a q$
$q^{3}-p^{2} q+2 q-2 p=0$
$q\left(q^{2}-p^{2}\right)+2(q-p)=0$
$q(q-p)(q+p)+2(q-p)=0$
$(q-p)[q(q+p)+2]=0$
\therefore as $p \neq q, q^{2}+p q+2=0$

2 marks

- Correct proof

1 mark
2

- Find the slope of the chord QR

2 marks

- Correct proof

1 mark

- Shows $q r=2$
- Identifies ($0, a q r$) as the y-intercept

QUESTION 14		
Solution	Marks	Comments
$14 \text { (a) (i) domain: } \begin{array}{rlrl} -1 & \leq 1-x \leq 1 & \text { range: } 0 & \leq \frac{y}{2} \leq \pi \\ -2 & \leq-x \leq 0 & 0 & \leq y \leq 2 \pi \\ 0 & \leq x \leq 2 & 0 \end{array}$	2	2 marks - Correct answer 1 mark - Finds either domain or range
14 (a) (ii)	1	1 mark - Correct sketch
14 (a) (iii)	1	1 mark - Correct sketch
14 (a) (iv) $y=2 \cos ^{-1}(1-x)$ has rotational symmetry about the point $(1, \pi)$. Thus the area between $y=2 \cos ^{-1}(1-x)$ and $y=-\pi x+2 \pi$ is the same from $x=0$ to $x=1$ as from $x=1$ to $x=2$	1	1 mark - Correct explanation involving symmetry
$14 \text { (a) (v) } \begin{aligned} \int_{0}^{2} 2 \cos ^{-1}(1-x) d x & =\frac{1}{2} \times 2 \times 2 \pi \\ & =2 \pi \end{aligned}$	1	1 mark - Correct solution
14 (b) (i) $\angle B O C=2 \angle B A C$ (\angle at centre, twice \angle at circumfernce on same arc) $\angle E O C=\angle B A C \quad(\text { exterior } \angle, \text { cyclic quad })$ $\angle B O C=\angle B O E+\angle E O C$ $\angle B O E=\angle B O C-\angle E O C$ (common \angle) $=2 \angle B A C-\angle B A C$ $=\angle B A C$	3	3 marks - Correct proof 2 marks - Correct proof with poor reasoning - Uses two different valid circle geometry theorems with correct reasonong 1 mark - Uses a valid circle geometry theorem with correct reasoning
14 (b) (ii) $O B=O C$ (= radii) $\angle B O E=\angle E O C$ (proven in (i)) $O E$ is common $\therefore \Delta B O E \equiv \triangle C O E$ (SAS) Thus $B E=C E$ (corresponding sides in $\equiv \Delta^{\prime} s$)	2	2 marks - Correct proof 1 mark - Significant progress - Correct proof with poor reasoning

Solution	Marks	Comments
14 (c) (i) $P(a+b)=(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{3}+b^{3}+c^{3}\right)$ If $(a+b-c)$ is a factor then $P(c)=0$ $\begin{aligned} & \begin{aligned} P(a+b) & =[(a+b)+c]^{3}-6[(a+b)+c]\left[(a+b)^{2}-2 a b+c^{2}\right]+8\left[(a+b)\left(a^{2}-a b+b^{2}\right)+c^{3}\right] \\ & =[(a+b)+c]^{3}-6[(a+b)+c]\left[(a+b)^{2}-2 a b+c^{2}\right]+8\left[(a+b)\left[(a+b)^{2}-3 a b\right]+c^{3}\right] \end{aligned} \\ & \begin{aligned} P(c) & =[c+c]^{3}-6[c+c]\left[\left(c^{2}-2 a b+c^{2}\right]+8\left[\left(c\left[c^{2}-3 a b\right]+c^{3}\right]\right.\right. \\ & =(2 c)^{3}-12 c\left(2 c^{2}-2 a b\right)+8 c\left(2 c^{3}-3 a b c\right) \\ & =8 c^{3}-24 c^{3}+24 a b c+16 c^{3}-24 a b c \\ & =0 \end{aligned} \quad \therefore(a+b-c) \text { is a factor } \end{aligned}$	2	2 marks - Correct solution 1 mark - Demonstrates knowledge of the factor theorem
14 (c) (ii) If $(a+b-c)$ is a factor then so is $(a+c-b)$ and $(b+c-a)$ $\left.\therefore(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{3}+b^{3}+c^{3}\right)=k(a+b-c)(a+c-b)(b+c-a)\right)$ Equating coefficients of a^{3} $\begin{aligned} a^{3}-6 a^{3}+8 a^{3} & =-k a^{3} \\ k & =-3 \\ \therefore(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) & +8\left(a^{3}+b^{3}+c^{3}\right)=-3(a+b-c)(a+c-b)(b+c-b) \end{aligned}$	2	2 marks - Correct proof 1 mark - Finds another factor of the expression

