2010

Semester 1 HIGHER SCHOOL CERTIFICATE EXAMINATION

Student Number	

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 84

- Attempt questions 1-7
- All questions are of equal value

Questi	on 1 (12 marks)	Start a new sheet of writing paper.	Marks
(a)		that distance from the point $(1, 4)$ to the line $4y = 3x - 2$	2
(b)	Differentiate with r	espect to x $y = \sin 2x$	1
(c)	Differentiate with r	espect to x $y = \ln \sqrt{\frac{2x - 1}{3x + 2}}$	2
(d)	Prove	$\frac{\tan 2\theta + \cot 2\theta}{\tan 2\theta - \tan \theta} = \cot^2 \theta$	3
(e)	Using the following	$y = \frac{\ln x}{x}$	
(i)	Show that	$\frac{dy}{dx} = \frac{1 - \ln x}{x^2}$	1
(ii)	Evaluate	$\int_{e}^{e^{2}} \frac{1 - \ln x}{x \ln x} dx = \ln(2 - 1)$	3

Qu	esti	on 2 (12 marks) Start a new sheet of writing paper.	Marks
(a)		Find $\lim_{x \to 0} \frac{4x}{\sin 5x}$	1
(b)		Solve for x $\left \frac{2x+5}{3}\right < 2$	2
(c)		Consider the polynomial $P(x) = x^3 + Ax^2 - 2008$	2
		If $(x-2)$ is a factor of $P(x)$ find A .	
(d)		The point P divides the line AB externally in the ratio $3:2$. Find P if A is $(2, -5)$ and B is $(6, 1)$.	2
(e)		P is the point, other than the origin, where $y = ax^2$ meets the line $y = x$	
	(i)	Find the coordinates of P .	1
	(ii)	Find, to the nearest minute, the size of the acute angle formed by the line $y = x$ and the tangent to $y = ax^2$ at P .	2
(f)		Two dice are rolled, find the probability that the sum of the two dice is $= 5$	1
(g)		Calculate the value of x to 3 dp in the following equation $5^x = 40$	1

Question 3 (12 marks)

Start a new sheet of writing paper.

Marks

(a)

In the diagram above DBE, ADF, DCE and BCF are straight lines. $\angle AED = \angle BFA$.

(i) Copy the diagram into your answer booklets and add in the relevant information.
 Prove ∠ABC = ∠ADC

3

(ii) Hence of otherwise prove AC is a diameter.

2

2

(b) (i) Find

2

 $\frac{d}{dx}(\cos^3 x)$

3

(ii) Hence or otherwise evaluate π

 $\int_0^{\frac{\pi}{3}} 3\sin x \cos^2 x \cdot dx$

2

(c) If $t = \tan \frac{x}{2}$,

express $\frac{1-\cos x}{1+\cos x}$ in terms of t, in simplest form.

Question 4 (12 marks)

Start a new sheet of writing paper.

Marks

Use Mathematical Induction to show that if x is a positive integer then $(1+x)^n-1$ is divisible by x for all integers n such that $n \ge 1$. (Hint in step 2 let $(1+x)^n-1=x\times P(x)$)

4

(b) (i) Prove that

2

$$\int_0^{\frac{\pi}{4}} \sin^2 x \cdot dx = \frac{\pi}{8} - \frac{1}{4}$$

(ii) Prove that

2

$$\frac{d}{dx}(x\sin^2 x) - \sin^2 x = x\sin 2x$$

(iii) Hence, or otherwise, prove

2

2

$$\int_0^{\frac{\pi}{4}} x \sin 2x \cdot dx = \frac{1}{4}$$

(c) The probability of a cure with drug A is 0.6 and the probability of a cure with drug B is 0.8. If drug A is administered to one patient and drug B to another patient, what is the probability that neither patient will be cured?

Q	uest	ion 5 (12 marks) Start a new sheet of writing paper.	Marks
(a)		Four cards marked with the numbers 1, 2, 3 and 4 are placed in a box. Two cards are selected at random, one after the other without replacement, to form a two-digit number.	
	(i)	Draw a tree diagram to show the possible outcomes.	. 1
	(ii)	How many different two-digit numbers can be formed?	
	(iii)	What is the probability that the number formed is less than 34?	1
	(iv)	What is the probability that the number formed is divisible by 3?	1
(b)		Graph $y = \sin 3\theta$ showing all relevant points for $-\pi \ge \theta \ge \pi$.	3
(c)		Find $\frac{d \sin 2x}{dx \cos 4x}$. 2
(d)		Solve $\sqrt{3}\cos 2\theta - \sin 2\theta = 1$ where $0 \le \theta \le 2\pi$	3
		End of Question 5	

Qu	estic	on 6 (12 marks) Start a new sheet of writing paper.	Marks
(a)	(i)	State the domain of the function $ln(2x + 3) + ln(x - 2) = 2ln(x + 4)$	1
	(ii)	Find all of the real numbers such that $ln(2x + 3) + ln(x - 2) = 2ln(x + 4)$	2
(b)		For the function $f(x) = \ln\left(\frac{x^2}{x-1}\right)$	
	(i)	State the domain of $f(x)$	1
	(ii)	Find the coordinates and nature of the stationary point on the curve $y = f(x)$	3
	(iii)	Find the coordinates of the point of inflexion.	3
	(iv)	Sketch the graph of showing the coordinates of the stationary point and the equations of any asymptotes.	2

Question 7 (12 marks)

Start a new sheet of writing paper.

1

2

2

(a) Show that

$$\frac{\tan 2\theta - \tan \theta}{\tan 2\theta + \cot \theta} = \tan^2 \theta$$

(b) Use log laws to find

$$\frac{d}{dx}(\ln \sqrt{e^x})$$
(hint $\sqrt{e^x} = e^{\frac{1}{2}x}$)

(c)

$$\int \frac{e^{3x} + e^x - 5}{e^{2x}} \cdot dx$$

(d) If α, β, γ are the roots of the equation $2x^3 - 14x - 1 = 0$ Find the value of

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

(e) The figure below ABCD is a regular tetrahedron, with

$$AB = AC = BC = BD = DC = AD = 20cm.$$
(2M)

- (i) Draw the triangle BCD in your writing booklet and mark 'M' the midpoint of BC. Prove that $DM = 10\sqrt{3}$
- (ii) Determine the size of $\angle AMD$

2

2

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_a x$, x > 0