GIRRAWEEN HIGH SCHOOL

HALF YEARLY EXAMINATION

YEAR 12

2011

MATHEMATICS EXTENSION 1

Time allowed - Two hours
(Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board-approved calculators may be used.
- Each question attempted is to be returned on a separate piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.
- You may ask for extra pieces of paper if you need them.

Total Marks - 100
Attempt all questions 1-5
All questions are NOT of equal value.
Answer each question clearly ON A SEPARATE PAGE!

Question 1 (20 Marks) Use a separate piece of paper.
Marks
(a) Find the ratio in which the point $(2,5)$ divides the interval AB where $\mathrm{A}=(4,9), \mathrm{B}=(-3,-5)$.
(b) Expand and simplify $\cos (x-y)-\cos (x+y)$.
(c) Find an expression for $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$, in terms of $t, t=\tan \frac{\theta}{2}$.
(d) Solve $\frac{2 x-6}{x}<1$.
(e) If α, β and γ are the roots of the equation $x^{3}+2 x^{2}+3 x+4=0$, find the value of:
(i) $(\alpha-1)(\beta-1)(\gamma-1)$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(iii) $\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}$
(f) Find the coefficient of x^{3} in the expansion $(x-5)^{4}$.

Question 2 (27 Marks) Use a separate piece of paper.

(a) Find the number of six-letter arrangements that can be made from the letters in the word

SYDNEY.
(b) Differentiate:
(i) $\frac{e^{x}+1}{2 x}$

3
(ii) $\ln \left(\frac{x}{x^{2}+1}\right)$
(c) Evaluate:
(i) $\int_{0}^{1} x^{2} e^{-x^{3}} d x$

3
(ii) $\int_{0}^{1} 2^{x} d x$

3
(d) The gradient of a curve is given by $y^{\prime}=e^{2-x}$ and the curve passes through the point $(0,1)$. Find the equation of the curve and its horizontal asymptote.
(e) (i) Find $\frac{d}{d x}\left(e^{x}+e^{-x}\right)$.

1
(ii) Hence, find $\int_{0}^{2}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right) d x$
(f) Find the equation of the normal to $y=e^{-x}$ at the point $P(-1, e)$.

Question 3 (17 Marks) Use a separate piece of paper.

(a) When Amy crossed a tall strain of pea with a dwarf strain of pea, she found that $\frac{3}{4}$ of the offspring were tall and $\frac{1}{4}$ were dwarf.
Suppose five such offspring were selected at random.
Find the probability that:
(i) All of these offspring were tall.
(ii) At least three of these offspring were tall.
(b) Solve the equation $2 x^{3}-7 x^{2}-12 x+45=0$ given that two of its roots are equal.
(c) Given that $(x-3)$ and $(x+2)$ are factors of $x^{3}-6 x^{2}+p x+q$, find the values of p and q.
(d) Prove by mathematical induction that for $n \geq 1$

$$
\begin{equation*}
1^{2}+3^{2}+\ldots \ldots \ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1) . \tag{4}
\end{equation*}
$$

Question 4 (11 Marks) Use a separate piece of paper.

(a) Find the acute angle between the lines $x-2 y=6$ and $4 x-y=1$.
(b) Prove that $\frac{1-\cos 2 \theta}{\sin 2 \theta}=\tan \theta$.
(c)

BD and CE are two parallel chords of a circle with centre O .
CB and ED produced meet at A. Prove that:
(i) $\mathrm{AC}=\mathrm{AE}$
(ii) ACOD is a cyclic quadrilateral.

Question 5 ($\mathbf{2 5}$ Marks) Use a separate piece of paper.

(a) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$.
(i) If $P Q$ passes through the point $R(2 a, 3 a)$ show that
$p q=p+q-3$.

5
(ii) If M is the midpoint of $P Q$, show that the coordinates of M are:

$$
\left[a(p q+3), \quad \frac{a}{2}(p q+3)^{2}-2 p q\right]
$$

(iii) Hence, find the locus of M.
(b) A hot air balloon flying at $950 \mathrm{~m} / \mathrm{h}$ at a constant altitude of 3000 m is observed to have an angle of elevation of 78°. After 20 minutes, the angle of elevation is 73°. Calculate the angle through which the observer has turned during those 20 minutes.
(c) Write $\sqrt{3} \sin x-\cos x$ in the form, $r \sin (x-\alpha)$.
(d) Solve using the t -formula $4 \sin \theta-3 \cos \theta=2$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

END OF PAPER.

YR 12 HY EXT 12011.
Question 1.
a) $\frac{A}{(4,9)}$ ($\left.-3,-5\right)$.

$$
\begin{aligned}
& 2=\frac{1(4)+k(-3)}{1+k} \\
& 2+2 k=4-3 k \\
& 5 k=2 \\
& k=\frac{2}{5}
\end{aligned}
$$

b) $\cos (x-y)-\cos (x+y)$.

$$
=[\cos x \cos y+\sin x \sin y]-
$$

$$
[\cos x \cos y-\sin x \sin y]
$$

$$
=\cos x \cdot \cos y+\sin x \cdot \sin y-
$$

$$
=2 \sin x \sin y
$$

$$
\cos x \cos y+\sin x \cdot \sin y
$$

$$
\text { c) } \begin{aligned}
& \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} \\
&= \sqrt{\frac{1+\left(\frac{1-t^{2}}{1+t^{2}}\right)}{1-\left(\frac{1-t^{2}}{1+t^{2}}\right)}} \\
&= \sqrt{\frac{1+t^{2}+1-t^{2}}{1+t^{2}}} \\
&=\sqrt[1+t^{2}-1+t^{2}]{1+t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{2}{2 t^{2}}} \\
& =\sqrt{\frac{1}{t^{2}}}=\frac{1}{t}
\end{aligned}
$$

d) By critical points.

$$
\frac{2 x-6}{x}<1
$$

Equality
Discontinuity

$$
\begin{gathered}
\frac{2 x-6}{x}=1 \\
2 x-6=x . \\
x=6 .
\end{gathered}
$$

Testing.

$$
\begin{array}{ccc}
x \times \times(1) & x-1 & \times \times x \\
x=-10 & x=1 & 6 \cdot x=7 \\
\frac{-2-6}{-1} & \frac{2-6}{1} & \frac{14-6}{7} \\
4 \nless 1 & -4<1 & \frac{8}{7} \nless 1 \\
\text { False True False }
\end{array}
$$

$$
x=0
$$

$$
\therefore 0<x<6
$$

or $\frac{2 x-6}{x}<1$

$$
\frac{x^{2}(2 x-6)}{x}<x^{2}
$$

$$
2 x^{2}-6 x<x^{2}
$$

$$
x^{2}-6 x<0
$$

$$
x(x-6)<0
$$

$$
\therefore 0<x<6
$$

Question 2
a) No, of 6 letter arrangements

1 cont.

$$
\begin{aligned}
& \text { 3 } x^{3}+2 x^{2}+3 x+4=0 . \\
& \alpha+\beta+\gamma=-2 . \\
& \alpha \beta+\beta \gamma+\gamma \alpha=3 \\
& \alpha \beta \gamma=-4 . \\
& \sum(\alpha-1)(\beta-1)(\gamma-1) \\
& =\alpha \beta \gamma-\alpha \beta-\alpha \gamma+\alpha-\beta \gamma+\beta+\gamma-1 \\
& =\alpha \beta \gamma-(\alpha \beta+\alpha \gamma+\beta \gamma)+\alpha+\beta+\gamma-1 \\
& =-4-3-2-1 . \\
& =-10 .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \\
= & \frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
= & -\frac{3}{4}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma} \\
= & \frac{\gamma+\beta+\alpha}{\alpha \beta \gamma} \\
= & \frac{1}{2} .
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
& (x-5)^{4} \\
= & x^{4}+4 x^{3}(-5)+6 x^{2}(-5)^{2}+4 x(-5)^{3} \\
& +(-5)^{4} \\
= & x^{4}-20 x^{3}+150 x^{2}-600 x+625
\end{aligned}
$$

\therefore The coefficient of x^{3} is -20 .

Q2 cont.

$$
\begin{aligned}
& \text { i) } \int_{0}^{1} x^{2} e^{-x^{3}} d x \\
& =-\frac{1}{3} \int_{0}^{1}-3 x^{2} e^{-x^{3}} d x \\
& =-\frac{1}{3}\left[e^{-x^{3}}\right]_{0}^{1} \\
& =-\frac{1}{3}\left(e^{-1}-e^{0}\right) \\
& =\frac{1}{3}-\frac{1}{3 e} \\
& =\frac{e-1}{3 e}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \int_{0}^{1} 2^{x} \cdot d x=\int_{0}^{1} e^{x \log 2} d x . \\
= & {\left[\frac{1}{\log 2} e^{x \log 2}\right]_{0}^{1} } \\
= & {\left[\frac{2^{x}}{\log 2}\right]_{0}^{1} } \\
= & {\left[\frac{2}{\log 2}-\frac{1}{\log 2}\right]=\frac{1}{\log 2} }
\end{aligned}
$$

d) $y^{\prime}=e^{2-x}$

$$
\begin{aligned}
& \int e^{2-x} d x \\
& =-\int-e^{2-x} d x
\end{aligned}
$$

$$
y=-e^{2-x}+c
$$

passes through $(0,1)$

$$
\begin{aligned}
\therefore 1 & =-e^{2}+c \\
c & =1+e^{2} \\
\therefore y & =-e^{2-x}+1+e^{2}
\end{aligned}
$$

Horizontal Asymptote

$$
y=1+e^{2}
$$

$$
\begin{aligned}
& \text { e) i) } \frac{d}{d x} e^{x}+e^{-x} \\
& =e^{x}-e^{-x}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \int_{0}^{2} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x \\
= & {\left[\ln \left(e^{x}+e^{-x}\right)\right]_{0}^{2} } \\
= & \ln \left(e^{2}+e^{-2}\right)-\ln \left(e^{0}+e^{0}\right) \\
= & \ln \left(\frac{e^{2}+e^{-2}}{2}\right)
\end{aligned}
$$

Q2 cont.
f) $y=e^{-x}$.
$y^{\prime}=-e^{-x}$ at $P(-1, e)$
$m_{\text {tangent }}=-e$.
$m_{\text {normal }}=\frac{1}{e}$
\therefore Eqnormal: $y-e=\frac{1}{e}(x+1)$

$$
\begin{aligned}
& y-e=\frac{x}{e}+\frac{1}{e} \\
& e y-e^{2}=x+1 . \\
& \therefore x-e y+e^{2}+1=0 .
\end{aligned}
$$

Question 3
a) $t=\frac{3}{4} \quad d=\frac{1}{4}$.
i)

$$
\begin{aligned}
p(a u+a u) & ={ }_{c}^{5}\left(\frac{3}{4}\right)^{5} \\
& =\frac{243}{1024}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& P(\text { at leas }+3+\text { all }) \\
= & 5_{C}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2}+{ }_{C_{4}}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right) \\
& +5 c_{5}\left(\frac{3}{4}\right)^{5} \\
= & 10\left(\frac{27}{4^{5}}\right)^{+}+\left(\frac{3^{4}}{4^{5}}\right)+\left(\frac{3^{5}}{4^{5}}\right) \\
= & \frac{34\left(3^{3}\right)}{4^{5}}
\end{aligned}
$$

b) $2 x^{3}-7 x^{2}-12 x+45=0$

Roots α, α, β.

$$
\alpha+\alpha+\beta=\frac{7}{2}
$$

$$
\begin{equation*}
2 \alpha+\beta=\frac{7}{2} \tag{1}
\end{equation*}
$$

$$
\alpha \alpha \beta=-\frac{45}{2}
$$

$$
\alpha^{2} \beta=-\frac{45}{2} \text { (2) }
$$

$$
\begin{equation*}
\alpha^{2}+2 \alpha \beta=-6 \tag{3}
\end{equation*}
$$

from (1) $\beta=\frac{7}{2}-2 \alpha$
Sub into (3)

$$
\begin{aligned}
& \alpha^{2}+2 \alpha\left(\frac{7}{2}-2 \alpha\right)=-6 \\
& \alpha^{2}+7 \alpha-4 \alpha^{2}=-6 \\
& -3 \alpha^{2}+7 \alpha=-6 \\
& 3 \alpha^{2}-7 \alpha-6=0 \\
& (3 \alpha+2)(\alpha-3)=0 \\
& \therefore \alpha=3 \text { on }-\frac{2}{3}
\end{aligned}
$$

When $\alpha=3 \quad \beta=-\frac{5}{2}$

$$
\alpha=-\frac{2}{3} \quad \beta=\frac{29}{6}
$$

Sub into (2) $\alpha=-\frac{2}{3}$ and $\beta=\frac{29}{6}$ not a. solution.

$$
\therefore \alpha=3 \quad \beta=-\frac{5}{2}
$$

Q3 cont.

$$
\begin{align*}
& \text { द } x^{3}-6 x^{2}+p x+q \\
& (x-3)(x+2) \\
& p(3)=0 \\
& p(-2)=0 . \\
& p(3)=3^{3}-6(3)^{2}+p(3)+q \\
& =-27+3 p+q \\
& \therefore 3 p+q-27=0 . \tag{1}\\
& p(-2)=(-2)^{3}-6(-2)^{2}+p(-2)+q \\
& =-32-2 p+q \\
& \therefore=-2 p+q-32=0 \tag{2}
\end{align*}
$$

Subtract (2) from (1)

$$
\begin{aligned}
& 5 p+5=0 \\
& 5 p=-5 \\
& p=-1 . \\
& \therefore \quad 3(-1)+q-27=0 . \\
& -30+q=0 . \\
& q=30 . \\
& \therefore \quad(x)=x^{3}-6 x^{2}-x+30 .
\end{aligned}
$$

1) Prove

$$
1^{2}+3^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)
$$

Prove true for $n=1$.

$$
\begin{aligned}
\text { LHS } & =1^{2} *=1 . \\
\text { RUS } & =\frac{1}{3}(1)(2-1)(2+1) \\
& =1 .
\end{aligned}
$$

\therefore True for $n=1$.
Assume true for $n=k$

$$
\therefore 1^{2}+3^{2}+\cdots+(2 k-1)^{2}=\frac{1}{3} k(2 k-1)(2 k+1)
$$

Prove true for $n=k+1$

$$
\begin{aligned}
& L H S=1^{2}+3^{2}+\cdots+(2 k-1)^{2}+(2 k+1)^{2} \\
& =\frac{1}{3} k(2 k-1)(2 k+1)+(2 k+1)^{2} \\
& =(2 k+1)\left[\frac{1}{3} k(2 k-1)+(2 k+1)\right] \\
& =(2 k+1)\left[\frac{k(2 k-1)+3(2 k+1)]}{3} \cdot\right. \\
& =\frac{1}{3}(2 k+1)\left(2 k^{2}-k+6 k+3\right) \\
& =\frac{1}{3}(2 k+1)\left(2 k^{2}+5 k+3\right) \\
& =\frac{1}{3}(2 k+1)(2 k+3)(k+1) \\
& =\frac{1}{3}(k+1)(2 k+1)(2 k+3) \\
& =R 4 S
\end{aligned}
$$

\therefore If statement true for $n=k$, it is also true for $n=k+1$. \therefore By the principal of mathematica induction true for all $n \geqslant 1$.

Question 4

$$
\begin{array}{rl}
\text { a) } x-2 y=6 & 4 x-y=1 . \\
y=\frac{x}{2}-3 & y=4 x-1 . \\
& \tan \theta=\left|\frac{\frac{1}{2}-4}{1+\left(\frac{1}{2}\right)(4)}\right| \\
& =\left|\frac{-\frac{7}{2}}{3}\right| \\
& =\left|\frac{7}{6}\right|
\end{array}
$$

$$
\therefore \tan \theta=\frac{7}{6} \text {. }
$$

$$
\therefore \theta=49^{\circ} 24^{\prime}
$$

b) $\frac{1-\cos 2 \theta}{\sin 2 \theta}=\tan \theta$

$$
\begin{aligned}
\text { LHS } & =\frac{1-\cos 2 \theta}{\sin 2 \theta} \\
& =\frac{1-\left(1-2 \sin ^{2} \theta\right)}{\sin 2 \theta} \\
& =\frac{2 \sin ^{2} \theta}{\sin 2 \theta} \\
& =\frac{2 \sin ^{2} \theta}{2 \sin ^{\prime} \theta \cos \theta} \\
& =\frac{\sin \theta}{\cos \theta} \\
& =\tan \theta \\
& =124 S .
\end{aligned}
$$

c)

i) Prove $A C=A E$.
$\angle A B D=\angle B C E$ (corresponding $\angle, B D \| C E)$
$\angle A B D=\angle C E D$ (exterior \angle of
a cyclic quadrilateral).
$\therefore \angle B C E=\angle C E D$
$\therefore \triangle A C E$ is an isosceles \triangle
$\therefore A C=A E$ (sides opposite equal angles in isosceles Δ are equal
iii) Prove ACOD is cyclic. $\angle D O C=2 \times \angle D E C$ (angles on the same are subtended at the circumference)

$$
\therefore \angle D O C=\angle D E C+\angle E C B \text {. }
$$

(angles in isosceles Δ from (i))

$$
\therefore \angle D E C+\angle E C B+\angle C A D=180^{\circ}
$$

(angle sum of a \triangle).

$$
\because \angle D O C+\angle C A D=180^{\circ}
$$

\therefore ACOD is acyclic quadrilateral (opposite angles are supplementary)

Question 5.
a)

$$
P\left(2 a p, a \rho^{2}\right) \quad Q\left(2 a q, a q^{2}\right)
$$

$$
x^{2}=4 a y .
$$

i)

$$
\begin{aligned}
m_{P_{Q}} & =\frac{a p^{2}-a q^{2}}{2 a p-2 a q} \\
& =\frac{a\left(p^{2}-q^{2}\right)}{2 a(p-q)} \\
& =\frac{p+q}{2}
\end{aligned}
$$

$\operatorname{Eqn}_{p_{Q}}: y-a p^{2}=\left(\frac{p+q}{2}\right)(x-2 q p)$

$$
y-a p^{2}=\left(\frac{p+q}{2}\right) x-2 a p\left(\frac{p+q}{2}\right)
$$

$$
y-a p^{2}=\left(\frac{p+q}{2}\right) x-a p^{2}-a p q
$$

$$
y=\left(\frac{p+q}{2}\right) x-a p q
$$

When $R(2 a, 3 a)$.

$$
\begin{aligned}
& 3 a=\left(\frac{p+q}{2}\right) 2 a-a p q \\
& 3 a=a(p+q)-a p q \\
& 3=(p+q)-p q \\
& \therefore p q=p+q-3 . \\
& p+q=p q+3 . \text { (rearrange) }
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
M_{p}=\left[\frac{2 a p+2 a q}{2}, \frac{a p^{2}+a q^{2}}{2}\right] \\
=\left[\frac{2 a(p+q)}{2}, \frac{a\left(p^{2}+q^{2}\right)}{2}\right] \\
=\left[a(p+q), \frac{a\left(p^{2}+q^{2}\right)}{2}\right] \\
=\left[a(p q+3), \frac{a}{2}\left(p^{2}+q^{2}\right)\right]
\end{aligned}
$$

$=\left[a(p q+3), \quad \frac{a}{2}\left((p+q)^{2}-2 p q\right)\right.$

$$
=\left[a(p q+3), \frac{a}{2}\left((p q+3)^{2}-2 p q\right)^{-}\right.
$$

iii) Let $x=a(p q+3) \Rightarrow p q=\frac{x}{a}$.

$$
\begin{aligned}
& y=\frac{a}{2}(p q+3)^{2}-2 p q \\
& x^{2}=a^{2}(p q+3)^{2} \\
& x^{2}=a^{2}\left(2 p q=(p q+3)^{2}\right. \\
& x^{2}=a^{2}\left[\left(\frac{2 y}{a}\right)+2\left(\frac{x}{a}-3\right)\right] \\
& x^{2}=2 a y+2 a x-6 a^{2} \\
& x^{2}-2 a x=2 a y-6 a^{2} \\
& \therefore x^{2}-2 a x=2 a(y-3 a)
\end{aligned}
$$

b) Balloon travels $\frac{950}{3} \mathrm{~m}$

$$
\begin{aligned}
& \frac{1}{\tan 78^{\circ}}=\frac{x}{3000} \\
& \therefore x= \frac{3000}{\tan 78^{\circ}}
\end{aligned}
$$

$$
\frac{1}{\tan 73^{\circ}}=\frac{y}{3000}
$$

$$
\therefore y=\frac{3000}{\tan 73^{\circ}}
$$

$$
\cos \theta=\frac{\left(\frac{3000}{\tan 78^{\circ}}\right)^{2}+\left(\frac{3000}{\tan 73^{\circ}}\right)^{2}-\left(\frac{950}{3}\right)^{2}}{2\left(\frac{3000}{\tan 78^{\circ}}\right)\left(\frac{3000}{\tan 73^{\circ}}\right)}
$$

$\cos \theta=0.80 .981068 \ldots$

$$
\theta=11.16 .
$$

$$
\therefore \theta=11^{\circ} 10^{1}
$$

c) $\sqrt{3} \sin x-\cos x=r \sin (x-\alpha)$
$\begin{aligned} \sqrt{3} \sin x-\cos x & =r(\sin x \cos \alpha-\cos x \sin \alpha) \\ & =r \cos \alpha \sin x-r \sin \alpha \cos x\end{aligned}$

$$
\begin{aligned}
& \therefore r \cos \alpha=\sqrt{3}-1 \\
& r \sin \alpha=+1 \\
& r^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=4 \\
& r^{2}=4 \\
& r=2 \\
& \therefore \cos \alpha=\frac{\sqrt{3}}{2} \text { and } \sin \alpha=+\frac{1}{2}
\end{aligned}
$$

α is in lIst quad.

$$
\begin{aligned}
& \therefore \tan \alpha=\frac{1}{\sqrt{3}} \\
& \therefore \alpha=30^{\circ}
\end{aligned}
$$

$$
\sqrt{3} \sin x-\cos x=2 \sin \left(x-30^{\circ}\right)
$$

$$
\begin{aligned}
& \text { d) } 4 \sin \theta-3 \cos \theta=2 \\
& 4\left(\frac{2 t}{1+t^{2}}\right)-3\left(\frac{1-t^{2}}{1+t^{2}}\right)=2
\end{aligned}
$$

$$
8 t-3+3 t^{2}=2\left(1+t^{2}\right)
$$

$$
3 t^{2}+8 t-3=2+2 t^{2}
$$

$$
t^{2}+8 t-5=0
$$

$$
t=\frac{-8 \pm \sqrt{8^{2}-4(1)(-5}}{2}
$$

$$
\therefore t=0.58 \text { or }-8.58
$$

$$
\begin{aligned}
& \text { kan } \frac{\theta}{2}=0.58 \text { or } \tan \frac{\theta}{2}=-8.5 \\
& \frac{\theta}{2}=30^{\circ} 7^{\prime}, 210^{\circ} 7^{\prime}, 96^{\circ} 39^{\prime}, 276^{\circ} \\
& \therefore \theta=60^{\circ} 14^{\prime}, 193^{\circ} 18^{\prime} .
\end{aligned}
$$

Check $\theta=180^{\circ}$.

$$
\begin{gathered}
4 \sin 180^{\circ}-3 \cos 180^{\circ}=2 \\
0+3=2 \\
3 \neq 2
\end{gathered}
$$

$\therefore \theta=180^{\circ}$ is not a solution

