

Girraween High School

Year 12 HSC Half Yearly Examination

MATHEMATICS EXTENSION 1

March 2015
Time Allowed: Two hours
(plus 5 minutes reading time)

Instructions To Students

- Attempt all questions.
- All necessary working must be shown for Questions 6-10.
- Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used.
- For Questions 1-5, write the letter corresponding to the correct answer on your answer sheet.
- For Questions 6-10, start each question on a new sheet of paper. Each question should be clearly labelled.

Section I

5 marks

Attempt Questions 1-5

Question 1 (1 mark)
The angle 70° in radians is:
A. $\frac{7 \pi}{18}$
B. $\frac{18 \pi}{7}$
C. $\frac{7 \pi}{36}$
D. $\frac{36 \pi}{7}$

Question 2 (1 mark)

The diagram above is of a unit circle. The shaded area is given by:
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $\frac{\pi-3}{12}$
D. $\frac{2 \pi-3 \sqrt{3}}{12}$

Question 3 (1 mark)
A polynomial of degree four is divided by a polynomial of degree two. What is the maximum possible degree of the remainder?
A. 0
B. 1
C. 2
D. 3

Question 4 (1 mark)
Which is the domain of $f(x)=\ln \left(x^{2}-1\right)$?
A. $x>0$
B. $x>1$
C. $x<-1$ and $x>1$
D. $-1<x<1$

Question 5 (1 mark)
The number of different arrangements of the letters of the word REGISTER which begin and end with the letter R is:
A. $\frac{6!}{(2!)^{2}}$
B. $\frac{8!}{2!}$
C. $\frac{6!}{2!}$
D. $\frac{8!}{2!2!}$

Section II

86 marks

Attempt Questions 6-10

Write your answers on the paper provided.
In Questions 6-10, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (23 marks)
(a) Solve $\frac{x^{2}+5}{x}>6$.
(b) Let A be the point $(-2,7)$ and let B be the point $(1,5)$. Find the coordinates of the point P which divides the interval $A B$ externally in the ratio $1: 2$.
(c) The graphs of the line $x-2 y+3=0$ and the curve $y=x^{3}+1$ intersect at $(1,2)$. Find the acute angle between the line and the tangent to the curve at the point of intersection.
(d) The variable point $\left(3 t, 2 t^{2}\right)$ lies on a parabola. Find the Cartesian equation for this parabola.
(e) i. Express $\sin x+\sqrt{3} \cos x$ in the form $A \sin (x+\alpha)$.
ii. Hence, or otherwise, solve the equation $\sin x+\sqrt{3} \cos x=\sqrt{3}$ for $0 \leq x \leq 360^{\circ}$.

Question 7 (20 marks)
(a) Differentiate:
i. $y=\frac{1}{e^{x^{2}}+1}$
ii. $y=\ln \frac{2}{x}$
iii. $y=\ln \sqrt{x(1-x)}$
(b) Consider the function $f(x)=-e^{x}+1$.
i. State the domain and range of $f(x)$.
ii. Prove that $f(x)$ is concave down for all x in the domain of $f(x)$, you must show working.
(c) Find:
i. $\int_{1}^{2} \frac{1}{5-2 x} d x$
ii. $\int \frac{4 e^{-x}}{1-2 e^{-x}} d x$
(d) i. Solve $\log _{2} x=\log _{2} \frac{1}{x}+\log _{2}(2 x-1)$.
ii. Solve $3^{x}=18$. Give your answer to two decimal places.

Question 8 (14 marks)

(a) i. Find the remainder obtained by dividing $P(x)=x^{3}-b x^{2}-b x+4$ by $Q(x)=x-2$.
ii. Hence, or otherwise, find a value of the constant b such that $P(x)$ is divisible by $Q(x)$.
iii. Find all the roots of $P(x)$ for this value of b.
(b) Find the constant term in the expansion of $\left(3 x^{2}+\frac{5}{x^{3}}\right)^{10}$
(c) A particular exam contains 10 multiple choice questions, each with four choices. A student sitting this exam guesses all the answers randomly.
i. What is the probability that the students scores 50% in this exam? Give your answer to 3 decimal places.
ii. What is the student's most likely score?
ii. What is the student's most likely score?

Question 9 (19 marks)

(a) The diagram shows the graph of the parabola $x^{2}=4 a y$. The tangent to the parabola at $P\left(2 a p, a p^{2}\right)$ cuts the x-axis at T. The normal to the parabola at P cuts the y-axis at N.
i. Show that the equation of the tangent at P is $y=p x-a p^{2}$ and find the coordinates of T.
ii. Show that the coordinates of N are $\left(0, a\left(p^{2}+2\right)\right)$.
iii. Let M be the midpoint of $N T$. Show that the locus of M is a parabola and find its focal length.

Question 9 (continued)
(b) In the diagram below $A B$ is a diameter of the circle. The tangent $A X$ and chord $B P$ are produced to meet at Q. The tangent $C P$ meets $A Q$ at X.

i. If $\angle A B P=\theta$, show that $\angle X P Q=90-\theta$.
ii. Show that X is the midpoint of $A Q$.
(c) It can be shown that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$ for all values of θ. (Do NOT prove this.)

Use this result to solve $\sin 3 \theta+\sin 2 \theta=\sin \theta$ for $0 \leq \theta \leq 2 \pi$.

The exam continues on the next page

Question 10 (12 marks)
(a) Use mathematical induction to prove that, for integers $n \geq 1$,

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=\frac{(n+1)!-1}{(n+1)!}
$$

(b) The diagram below shows a vertical tower $O T$ of height h. The angle of elevation of T from A is 45° and $\angle A O P=60^{\circ}$. Let the angle of elevation of T from P be α and let $\angle A T P=\theta$.

i. Show that $O A=h$ and $O P=h \cot \alpha$
ii. Show that

$$
A P^{2}=h^{2}+h^{2} \cot ^{2} \alpha-h^{2} \cot \alpha
$$

iii. Using $\triangle A T P$, show that

$$
A P^{2}=3 h^{2}+h^{2} \cot ^{2} \alpha-2 \sqrt{2} h^{2} \operatorname{cosec} \alpha \cos \theta
$$

iv. Show that

$$
\cos \theta=\frac{1}{\sqrt{2}} \sin \alpha+\frac{1}{2 \sqrt{2}} \cos \alpha
$$

End of exam

Yrl2 3U HSC TASK 2 SOLU
$M C: A, D, B, C, C$
d

$$
\begin{equation*}
=70 \times \frac{\pi}{180}=\frac{7 \pi}{18} \tag{A}
\end{equation*}
$$

a_{2}

$$
A=\frac{1}{2} r^{2}(\theta-\sin \theta)
$$

but $\theta=\frac{\pi}{3}(L$ at contre $1 s$ doable Lat creumferance).

$$
\begin{align*}
\therefore A & =\frac{1}{2}\left(\frac{\pi}{3}-5 n \frac{\pi}{3}\right) \\
& =\frac{1}{2}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \\
& =\frac{1}{2}\left(\frac{2 \pi-3 \sqrt{3}}{6}\right) \\
& =\frac{2 \pi-3 \sqrt{3}}{12} \quad \therefore
\end{align*}
$$

Q3

Q, 4

$$
\begin{gathered}
x^{2}-1>0 \\
(x-1)(x+1)>0
\end{gathered}
$$

$\therefore D!x<-1 \& x>1 \therefore$ (C)

25
REGISTER.

$$
\begin{equation*}
=\frac{6!}{2!} \tag{c}
\end{equation*}
$$

ab
(a) $\frac{x^{2}+5}{x}>6$

$$
x\left(x^{2}+5\right)>6 x^{2}
$$

$$
x\left(x^{2}+5\right)-6 x^{2}>0
$$

$$
x\left[\left(x^{2}+5\right)-6 x\right]>0
$$

$$
x\left(x^{2}-6 x+5\right)>0
$$

$$
x(x-5)(x-1)>0
$$

$$
\therefore \quad 0<x<1 \& x>5
$$

(b)

$$
(-2,7)(1,5)
$$

$$
\begin{aligned}
& x=\frac{-1-4}{1} \quad y \\
&=-5 \\
& \therefore P=(-5,9)
\end{aligned}
$$

$a b$
(c)

$$
\begin{aligned}
& y=x^{3}+1 \\
& y^{\prime}=3 x^{2} \\
& y^{\prime}(1)=3 \\
& 2 y=x+3 \\
& y=\frac{1}{2} x+\frac{3}{2} \\
& m_{1}=3 \quad m_{2}=\frac{1}{2} \\
& \tan \theta=\left|\frac{3-\frac{1}{2}}{1+\frac{3}{2}}\right| \\
& =\left|\frac{6-1}{2+3}\right|=/ 1 /=1 \\
& \therefore \theta=45^{0}
\end{aligned}
$$

(d) $x=3 t$ \& $f=2 t^{2}$

$$
t=\frac{x}{3}
$$

s. $y=2\left(\frac{x}{3}\right)^{2}=\frac{2}{5} x^{2}$

$$
\therefore y=\frac{2}{9} x^{2}
$$

(e)
(i)
$\sin x+\sqrt{3} \cos x=A \sin (x+4)$
$=A[\sin x \cos \alpha+\cos x \sin \alpha]$
$=A \cos \alpha \sin x+A \sin \alpha \cos x$.
$\therefore A \cos \alpha=1$ \& $A \sin \alpha=\sqrt{3}$

$$
\begin{aligned}
& A^{2} \cos ^{2} \alpha+A^{2} \sin ^{2} a=1+3=4 \\
& \therefore A^{2}=4 \quad \therefore A=2 \\
& \therefore \cos \alpha=\frac{1}{2} \quad \therefore \alpha=60^{\circ} \\
& \therefore \sin x+\sqrt{3} \cos x=2 \sin (x+60)
\end{aligned}
$$

(ii)

$$
2 \sin (x+60)=\sqrt{3}
$$

$\sin (x+60)=\frac{\sqrt{3}}{2}$.

$$
\therefore x+60=60 \text { or } 120
$$

But $0 \leqslant x \leqslant 360$

$$
\therefore 60 \leqslant x+60 \leq 420
$$

$$
\begin{array}{ll}
\therefore & x+60=60,120,420 \\
\therefore & x=0^{\circ}, 60^{\circ}, 360^{\circ}
\end{array}
$$

27
(a)

$$
\begin{aligned}
& \text { (i) } y=\frac{1}{e^{x^{2}}+1} \\
& y=\left(e^{x^{2}}+1\right)^{-1} \\
& y^{\prime}=-\left(e^{x^{2}}+1\right)^{-2} \times\left(2 x e^{x^{2}}\right) \\
& y^{\prime}=\frac{-2 x e^{x^{2}}}{\left(e^{x^{2}}+1\right)^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=\ln \left(\frac{2}{x}\right) \\
& y=\ln 2-\ln x \\
& y^{\prime}=-\frac{1}{x}
\end{aligned}
$$

(iii)

$$
y=\ln (x(1-x))^{\frac{1}{2}}
$$

$$
y=\frac{1}{2} \ln x(1-x)
$$

$$
y=\frac{1}{2}[\ln x+\ln (1-x)]
$$

$$
y^{\prime}=\frac{1}{2}\left[\frac{1}{x}-\frac{1}{1-x}\right]
$$

$$
y^{\prime}=\frac{1}{2}\left[\frac{1-x-x}{x(1-x)}\right]
$$

$$
y^{\prime}=\frac{1-2 x}{2 x(1-x)}
$$

(b)
(i) D: all rol x

$$
\therefore R: y<1
$$

(ii)

$$
\begin{aligned}
& y=-e^{x}+1 \\
& y^{\prime}=-e^{x} \\
& y^{\prime \prime}=-e^{x}
\end{aligned}
$$

since $e^{x}>0$ for in x $\therefore-e^{n}<0$ for an x
$\therefore f(x)$ is concare domen for ak x.

07

$$
\text { (c) } \begin{aligned}
& \int_{1}^{2} \frac{1}{5-2 x} d x \\
= & -\frac{1}{2} \int_{1}^{2} \frac{-2}{5-2 x} d x \\
= & -\frac{1}{2}[\ln (5-2 x)]_{1}^{2} \\
= & -\frac{1}{2}[\ln 1-\ln 3] \\
= & \frac{1}{2} \ln 3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int \frac{4 e^{-x}}{1-2 e^{-x}} d x \\
= & 2 \int \frac{2 e^{-x}}{1-2 e^{-x}} d x \\
= & 2 \ln \left(1-2 e^{-x}\right)+c .
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \text { (i) } \log _{2} x=\log _{2} \frac{1}{x}+\log _{2}(2 x-1) \\
& \log _{2} x=-\log _{2} x+\log _{2}(2 x-1) \\
& 2 \log _{2} x=\log _{2}(2 x-1) \\
& \log _{2} x^{2}=\log _{2}(2 x-1) \\
& \therefore x^{2}=2 x-1 \\
& x^{2}-2 x+1=0 \\
& \therefore(x-1)^{2}=0 \quad \therefore x=1 .
\end{aligned}
$$

(ii) $3^{x}=18$

$$
\begin{aligned}
& x=\log _{3} 18 \\
& x=\frac{\ln 18}{\ln 3}=2.63 \text { (2up) }
\end{aligned}
$$

28
(a)

$$
\begin{aligned}
& \text { (i) } r=p(2) \\
& r=8-4 b-2 b+4 \\
& r=12-6 b
\end{aligned}
$$

(ii) $\quad 6=2$
(iii)

$$
\begin{aligned}
& P(x)=x^{3}-2 x^{2}-2 x+4 \\
& \frac{x^{2}-2}{x-2\left(x^{3}-2 x^{2}-2 x+4\right.} \\
& \frac{-(-2 x+4)}{0}
\end{aligned}
$$

$$
\begin{aligned}
\therefore P(x) & =(x-2)\left(x^{2}-2\right) \\
& =(x-2)(x-\sqrt{2})(x+\sqrt{2})
\end{aligned}
$$

\therefore roots are: $2, \pm \sqrt{2}$
as
(b) $\left(3 x^{2}+\frac{5}{x^{3}}\right)^{10}$

$$
\begin{aligned}
& T_{k+1}=\binom{10}{k}\left(3 x^{2}\right)^{10-k}\left(\frac{5}{x^{3}}\right)^{k} \\
& =\binom{10}{k} 3^{10-k} x^{20-2 k} 5^{k} x^{-3 k} \\
& =\binom{10}{k} 3^{10-4} 5^{4} x^{20-5 k}
\end{aligned}
$$

For constant term: $20-5 k=0$

$$
\therefore k=4 .
$$

\therefore constant term is:

$$
T_{5}=\binom{10}{4} 3^{6} 5^{4}
$$

(c)
(i) Let x denote number of correct answers.

$$
\begin{aligned}
P(x=5) & =\binom{10}{5}\left(\frac{3}{4}\right)^{5}\left(\frac{1}{4}\right)^{5} \\
& =0.058(3 \mathrm{dp})
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \left.\frac{P_{k+1}}{P_{k}}=\frac{\binom{10}{k}\left(\frac{3}{4}\right)^{10-k}\left(\frac{1}{4}\right)^{k}}{(k-1} \begin{array}{l}
10 \\
k-1
\end{array}\right) \\
& \left.=\frac{10}{4}\right)^{11-k}\left(\frac{1}{4}\right)^{k-1} \\
& (10-1)!k!
\end{aligned} \frac{(11-1)!(k-1)!}{10!} \times \frac{4}{3} \times \frac{1}{4} .
$$

$\frac{11-k}{3 k} \geqslant 1$ for greatest probably

$$
\begin{aligned}
& 11-k \geqslant 3 k \\
& 4 k \leqslant 11 \\
& k \leqslant \frac{11}{4}=2.75 \\
& \therefore k=2 .
\end{aligned}
$$

\therefore Most lively score A $2 / 10=20 \%$.
29
(a)
(i) $x^{2}=4 a y$
S. $y=\frac{1}{4 a} x^{2}$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2 a} x \\
& y^{\prime}(2 a p)=p \\
& y-a p^{2}=p(x-2 a p) \\
& y-a p^{2}=p x-2 a p^{2} \\
& y=p x-a p^{2}
\end{aligned}
$$

$y=0$ when $p x-a p^{2}=0$

$$
\begin{aligned}
& p(x-a p)=0 \\
& \therefore x=a p \\
& \therefore \quad(a p, 0)
\end{aligned}
$$

aq
(a)

$$
\text { (ii) } m=-\frac{1}{p} \quad p t=\left(2 a p, a p^{2}\right)
$$

$$
y-a p^{2}=-\frac{1}{p}(x-2 a p)
$$

$x=0$ when

$$
\begin{aligned}
& y-a p^{2}=-\frac{1}{p}(-2 a p) \\
& g-a p^{2}=2 a \\
& g=2 a+a p^{2}=a\left(2+p^{2}\right) \\
& \therefore N=\left(0, a\left(p^{2}+2\right)\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& M=\left(\frac{a p+0}{2}, \frac{a\left(p^{2}+2\right)+0}{2}\right) \\
& M=\left(\frac{1}{2} a p, \frac{1}{2} a\left(p^{2}+2\right)\right. \\
& \therefore \quad x=\frac{1}{2} a p, y=\frac{1}{2} a\left(p^{2}+2\right)
\end{aligned}
$$

so $p=\frac{2 \pi}{9}$
So $y=\frac{1}{2} a\left(\frac{4 x^{2}}{a^{2}}+2\right)$

$$
\begin{aligned}
& y=\frac{2 x^{2}}{a}+a \\
& y-n=\frac{2 x^{2}}{a} \\
& \frac{a}{2}(y-a)=x^{2} \quad \therefore \text { foul } \\
& 4 \times(\text { focal lough })=\frac{a}{2} \quad \begin{array}{l}
\text { isth } \\
\text { is } \frac{a}{8}
\end{array}
\end{aligned}
$$

(i) $\angle A P B=90^{\circ}$ (\angle in semi-cince with diameter $A B$)
$\angle X P A=Q!\angle$ between tangent $X P$ and chord AP equals \angle in the alternate symment).
$\angle X P Q=90-\theta(\angle$ sum of straight (lime apB)
(i.)
$\angle Q A B=90^{\circ}$ Ctugent 1 to radius at point of contact)
$\therefore \angle A Q P=90-\theta C \angle$ sum of $\triangle A B C)$
$\therefore Q X=X P$ (equal sides opposite equate C 's of $\triangle \times Q P$)
aq
(b)
(ii) $X P=X A$ (tangents from an external point)
$\therefore Q X=X A \quad \therefore X$ is modpont of $Q A$.
(c)

$$
\sin 3 \theta+\sin 2 \theta=\sin \theta
$$

$3 \sin \theta-4 \sin ^{3} \theta+2 \sin \theta \cos \theta=\sin \theta$ $4 \sin ^{3} \theta-2 \sin \theta-2 \sin \theta \cos \theta=0$ $\sin \theta\left[4 \sin ^{2} \theta-2 \cos \theta-2\right]=0$
$\sin \theta\left[4\left(1-\cos ^{2} \theta\right)-2 \cos \theta-2\right]=0$
$\sin \theta\left[4-4 \cos ^{2} \theta-2 \cos \theta-2\right]=0$ $\sin \theta\left[-4 \cos ^{2} \theta-2 \cos \theta+2\right]=0$ $-\sin \theta\left[4 \cos ^{2} \theta+2 \cos \theta-2\right]=0$ $-\sin \theta(2 \cos \theta-1)(2 \cos \theta+2)=0$

$$
\therefore \sin \theta=0, \cos \theta=\frac{1}{2}, \cos \theta=-1
$$

$$
\therefore \theta=0, \pi, 2 \pi, \frac{\pi}{3}, \frac{5 \pi}{3}
$$

$$
\theta=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}, 2 \pi
$$

$\alpha 10$
(a)

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=\frac{(n+1)!-1}{(n+1)!}
$$

Prove true for $n=1$:

$$
\begin{aligned}
& \text { CHS }=\frac{1}{2!}=\frac{1}{2} \\
& \text { RHS }=\frac{2!-1}{2!}=\frac{1}{2!}=\frac{1}{2}
\end{aligned}
$$

$$
\therefore \angle H D=\pi H \angle \therefore \text { true for } n=1 \text {. }
$$

Assume trace for $n=k$, ie.

$$
\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k}{(k+1)!}=\frac{(k+1)!-1}{(k+1)!}
$$

Prove trine for $n=k+1$:

$$
\begin{aligned}
& \frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k}{(k+1)!}+\frac{k+1}{(k+2)!} \\
&=\frac{(k+2)!-1}{(k+2)!} \\
& L H S=\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k}{(k+1)!}+\frac{k+1}{(k+2)!} \\
&=\frac{(k+1)!-1}{(k+1)!}+\frac{k+1}{(k+2)!} \\
&=\frac{(k+2)!-(k+2)+k+1}{(k+2)!} \\
&=\frac{(k+2)!-k-2+k+1}{(k+2)!} \\
&=\frac{(k+2)!-1}{(k+2)!}=R(k S .
\end{aligned}
$$

\therefore true for $n=k+1$
\therefore By induction, it is true c
for all $n \geqslant 1$.

010
(b)
(i) In $\triangle A T O$:

$$
\begin{aligned}
& \tan 45=\frac{h}{O A} \\
& \therefore \quad O A=h
\end{aligned}
$$

h \triangle ToP:

$$
\begin{aligned}
& \tan \alpha=\frac{h}{o p} \\
& \therefore \quad \rho=h \cot \gamma
\end{aligned}
$$

(ii) MUsing cosme rule on $\triangle A O P$:

$$
\begin{aligned}
& A P^{2}=\theta A^{2}+O P^{2}-2 \times O A \times O P \times \cos 60 \\
& A P^{2}=h^{2}+h^{2} \cot ^{2} \alpha-2 h^{2} \cot \alpha \times \frac{1}{2} \\
& A P^{2}=h^{2}+4^{2} \cot ^{2} Q-h^{2} \cot \alpha
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& A T^{2}=h^{2}+h^{2}=2 h^{2} \\
& \therefore A T=\sqrt{2} h \\
& T P^{2}=h^{2}+h^{2} \cot ^{2} \alpha \\
&=h^{2}\left(1+\cot ^{2} \alpha\right) \\
& \therefore \quad T P=h \sqrt{1+c t^{2} \alpha} \\
&=h \operatorname{cosec} \alpha
\end{aligned}
$$

(iii)

So.

$$
\begin{aligned}
& A P^{2}=A T^{2}+T P^{2}-2 \times A T \times T P \times \cos \theta \\
& =2 h^{2}+h^{2}+h^{2} \cot ^{2} \alpha-2 \sqrt{2} h \operatorname{cosec} \alpha \cos \theta \\
& =3 h^{2}+h^{2} \cot ^{2} \alpha-2 \sqrt{2} h^{2} \operatorname{cosec} \alpha \cos \theta
\end{aligned}
$$

(iv)

Equating the expressions for $A P^{2}$ from part (ii) \& (iii) we get :

$$
\begin{aligned}
& h^{2}+h^{2} \cot ^{2} \alpha-h^{2} \cot \alpha= \\
& 3 h^{2}+h^{2} \cot ^{2} \alpha-2 \sqrt{2} h^{2} \operatorname{cosec} \alpha \cos \theta \\
& 2 h^{2}+h^{2} \cot \alpha-2 \sqrt{2} h^{2} \operatorname{cosec} \alpha \cos \theta=0 \\
& 2+\cot \alpha-2 \sqrt{2} \operatorname{cosec} \alpha \cos \theta=0 \\
& 2+\frac{\cos \alpha}{\sin \theta}-2 \sqrt{2} \frac{\cos \theta}{\sin \alpha}=0 \\
& 2 \sin \theta+\cos \alpha-2 \sqrt{2} \cos \theta=0 \\
& 2 \sqrt{2} \cos \theta=2 \sin \theta+\cos \alpha \\
& \cos \theta=\frac{1}{\sqrt{2}} \sin \alpha \varphi \frac{h}{2 \sqrt{2}} \cos \theta
\end{aligned}
$$

