

GIRRAWEEN HIGH SCHOOL

HALF YEARLY EXAMINATIONS

2017

MATHEMATICS

EXTENSION 1

Time Allowed: Two hours

(Plus 5 minutes reading time)

Instructions:

- There are 10 questions in this paper. All questions are compulsory.
- Use blue or black pen.
- Write all your answers in the Answer Booklets provided.
- For Questions 1 5, fill in the circle corresponding to the correct answer in your answer booklet.
- For Questions 6 10, start each question on a new page.
- Write on both sides of the paper.
- Show all necessary working.
- Board-approved calculators may be used.
- Mathematics reference sheets are provided.
- Marks may be deducted for careless or badly arranged work.
- Write 'End of Solutions' at the conclusion of your solutions to the task.

Multiple Choice

For Questions 1 - 5, fill in the circle corresponding to the correct answer in your answer booklet.

- 1. What is the size of the angle between the lines 2x y = 0 and x + y = 0 correct to the nearest degree?
 - A. 18° B. 19° C. 71° D. 72°
- 2. A(-2, 5) and B(4, -1) are two points on the number plane. What are the coordinates of P(x, y) that divides *AB* internally in the ratio 2:1?
 - A. (-5,8) B. (0,3) C. (2,1) D. (7, -4)
- 3. Which of the following is an expression for $\cos(A B) \cos(A + B)$?

A.	2sinAsinB	B. 2cosAcosB
C.	– cosAcosB	D. – $2\sin A \sin B$

4. In how many ways can 10 boys be arranged in a straight line if the first boy in the line is Martin and the last boy is Edward?

A.	80 640	B. 40 320		
C.	3 628 800	D.	7 257 60)0

- 5. The equation $2x^3 + x^2 13x + 6 = 0$ has roots α , $\frac{1}{\alpha}$ and β . What is the value of β ?
 - A. 3 B. 2 C. 3 D. 6

Question 6 (17 marks)

a. Solve the inequality
$$\frac{x+4}{x-3} \le 2$$
. [3]

- b. The interval *AB* has endpoints *A* (3, 2) and *B* (4, 5). Find the coordinates of the [3] point *P* which divides the interval *AB* externally in the ratio 3: 4.
- c. Find the value of *m*, where m > 0, such that the acute angle between the [3] lines y = 2x and y = mx is 45° .
- d. (i) Express $\cos x \sqrt{3}\sin x$ in the form $A\cos(x + \alpha)$ where A > 0 [3] and α is an acute angle.

[2]

(ii) Hence or otherwise, solve the equation

$$\cos x - \sqrt{3}\sin x = 2$$
 for $0^\circ \le x \le 360^\circ$.

e. Show that the expression
$$\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta}$$
 is independent of θ . [3]

(where $\sin \theta \neq 0$ and $\cos \theta \neq 0$)

Question 7 (13 marks)

a. Consider the function $f(x) = \frac{e^x}{3 + e^x}$.

Note that e^x is always positive and that f(x) is defined for all real x.

(i) Show that f(x) has no stationary points. [2]

(ii) Show that
$$f''(x) = \frac{3e^x(3-e^x)}{(3+e^x)^3}$$
 [3]

(ii) Find the coordinates of the point of inflexion. [3]

b. Differentiate
$$\log_2 x^2$$
 [2]

c. Find the volume generated when $y = \log_e x$ is rotated about the y-axis between [3]

y = 1 and y = 3. Express your answer in exact form.

Question 8 (16 marks)

- a. When the polynomial P(x) = (x 1)(x 2)Q(x) + 3x + k is divided by
 - (x 1), the remainder is -1. Find the remainder when P(x) is divided by (x 2) [3]
- b. The equation $\tan^2 \theta + b \tan \theta + c = 0$ has roots $\tan \alpha$ and $\tan \beta$. Find the expression for $\tan(\alpha + \beta)$ in terms of b and c. [2]
- c. Find the term independent of x in the expansion of $\left(3x^2 + \frac{2}{x}\right)^6$. [3]
- d. Five different fair dice are thrown together. Find the probability that
 (i) the five scores are all different
 (ii) the five scores include at most one 6.
- e. In how many ways can 11 people occupy seats at two circular tables, where one tablecan seat 6 people and the other can seat 5 people. [3]

Question 9 (13 marks)

a. The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$ such that PQ is a focal chord.

The normal at P and Q intersect at R.

(i) Show that the equation of the normal at P is given by $x + py = ap^3 + 2ap$. [3]

- (ii) Show that *R* is the point $(-apq(p+q), a(p^2+q^2+pq+2))$. [3]
- (iii) Hence, show that the equation of the locus of $\,R\,{
 m as}\,\,P$ and $\,Q\,{
 m move}$ on

the parabola is given by
$$x^2 = a(y - 3a)$$
 [3]

Question 9 continues on the next page...

In the diagram, MAN is tangent to the circle at A. BC is a chord of the circle such that BC //MN.

- *D* is a point on the circle.
- (i) Copy the diagram into your answer booklet.
- (ii) Show that AD bisects $\angle BDC$

[4]

Examination continues on the next page...

Question 10 (9 marks)

a. Use the principal of Mathematical Induction to prove that

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} \text{ for } n \ge 1$$
[4]

b.

From a point A due south of a tower, the angle of elevation of the top of the tower T, is 23°. From another point B, on a bearing of 120° from the tower, the angle of elevation of T is 32°. The distance A B is 200 metres.

(i) Copy the diagram into your writing booklet and add the given information.	[1]
(ii) Find the height of the tower.	[4]

End of Examination

$$\begin{aligned} x \cdot f(x) &= \frac{e^{x}}{3+e^{x}} \\ y \cdot f'(x) &= \frac{e^{x}}{(3+e^{x})e^{x}} \\ &= \frac{3e^{x}}{(3+e^{x})^{2}} \\ &> 0 \quad \text{for all values } 9x \\ &= \frac{3e^{x}}{(3+e^{x})^{2}} \\ &= \frac{3e^{x}}{(3+e^{x})^{2}} \\ &= \frac{3e^{x}}{(3+e^{x})^{2}} \\ &= \frac{3e^{x}}{(3+e^{x})^{4}} \\ &= \frac{3e^{x}}{(3+e^{x})^{3}} \\ &= 0 \\ &= \frac{1}{169e^{2}} \\ &=$$

ı

 $h^{2} \left(\frac{1}{4an^{2} 33^{\circ}} + \frac{1}{4an^{2} 32^{\circ}} + \frac{1}{4an^{2$

۰. فو