

HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12 2012

HSC COURSE EXTENSION 1 MATHEMATICS

ASSESSMENT TASK 2 HALF YEARLY EXAMINATION

Examiners : D. Crancher, G. Rawson, S. Hackett

General Instructions

- Reading time : 5 minutes
- Working time : 90 minutes
- This exam paper has three questions. Attempt all questions.
 -Question 1 is worth 18 marks three multiple choice questions worth one mark each and free response questions worth 15 marks.
 Question 2 and question 3 are worth 17 marks each two multiple choice questions worth one mark each and free response questions worth 15 marks.
 Total: 52 marks
- Start a new answer booklet for each question making sure your student number is written at the top of each page.
- All necessary working should be shown in each question. Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and mathematical templates may be used.
- This examination paper must **not** be removed from the examination room.

Students Name:_____

Teacher:_____

QUESTION 1. *Start a new answer booklet.*

For parts a), b) and c) choose the correct answer from A, B, C or D and write your chosen answer in the answer booklet.

a)	How many real roots must the following equation have? $x^{4}(x^{2}-4)+9(x^{2}-4)=0$		1
	A 1	B 2	
	C 4	D none	
b)	If $P(x) = x^3 - 2x^2 + 9x - 2$, which of the following statements are true?		1
	I. $x-3$ is a factor of $P(x)$)	
	II. $x = 3$ is a root of $P(x)$	=0	
	III. $P(3) = 34$		
	IV. $P(-3) = 34$		
	A I only	B III only	
	C I and II only	D I and III only	

For parts c), d), e), f), and g) show all necessary working out in the answer booklet. A, B and P are the points (-1,8), (6,-6) and (4,-2) respectively. c) The point P divides the interval AB internally in thr ratio k:1. Find the value of *k*. 2 If a, b and c are the roots of $x^3 - 3x + 2 = 0$, find $a^2 + b^2 + c^2$. 2 d) Find the acute angle between the lines y = 2x - 1 and 3x - 2y = 5. e) Give your answer in radians correct to two decimal places. 2 The polynomial $Q(x) = x^3 + ax + b$ has a factor of (x+2). f) 2 When Q(x) is divided by (x-2) the remainder is 12. Find the values of *a* and *b*. Let $f(x) = x^3 + 5x^2 + 17x - 10$. The equation f(x) = 0 has only one real root. g) 3 i) Show that the root lies between 0 and 2. Use one application of the 'halving the interval' method to find a ii) smaller interval containing the root. 2 Which end of the smaller interval found in part ii) is closer to the root? iii) 2 Briefly justify your answer.

QUESTION 2. Start a new answer booklet.

For parts a), b) and c) choose the correct answer from A, B, C or D and write your chosen answer in the answer booklet.

a) If
$$1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$$
,
then what is the $(k+1)^{\text{th}}$ term?

A
$$4k^2$$
 B $(2k+1)^2$

C
$$\frac{(k+1)2k(2k+2)}{3}$$
 D $\frac{(k+1)(2k+1)(2k+3)}{3}$

b) In order to solve the inequality $\frac{(x+2)(x-3)}{x+1} < 0$, which graph would be the most useful?

- c) Which of the following is NOT equal to $\sin 75^{\circ}$?
 - A $\sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$ B $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
 - C $\frac{\sqrt{3}+1}{\sqrt{2}}$ D $\cos 60^{\circ} \cos 45^{\circ} + \sin 60^{\circ} \sin 45^{\circ}$

For parts d), e), f), g), and h) show all necessary working out in the answer booklet.

d) Solve the inequality
$$\frac{x^2}{x-2} \ge -1$$
 3

e) Solve the equation
$$\sin 2\theta = \cos \theta$$
 for $0 \le \theta \le 2\pi$ 3

- f) Find an expression for $\sin 5x$ in terms of $\sin x$ and $\cos x$ 3
- g) Prove, by mathematical induction, that $9^{n+2} 4^n$ is divisible by 5 for any positive **3** integer *n*.

h) A boat is sailing due north from a point *A* towards a point *P* on the shore line. The shore line runs from west to east.

In the diagram, T represents a tree on a cliff vertically above P, and L represents a landmark on the shore. The distance PL is 1 km.

From *A* the point *L* is on a bearing of 020° , and the angle of elevation to *T* is 3° . After sailing for some time the boat reaches a point *B*, from which the angle of elevation to *T* is 30° .

Show that
$$BP = \frac{\sqrt{3} \tan 3^{\circ}}{\tan 20^{\circ}}$$
.

QUESTION 2. *Start a new answer booklet.*

For parts a), b) and c) choose the correct answer from A, B, C or D and write your chosen answer in the answer booklet.

a) In a game of Poker, 5 cards are dealt to each player.

The deck has 4 suits with 13 cards in each suit.

How many different hands are possible?

A
$${}^{52}C_5$$
 B ${}^{13}C_5$

$$C^{52}P_5$$
 $D^{13}P_5$

b) In the same game of Poker, what is the probability of being dealt a "flush" (all five cards from the same suit)?

A
$$\frac{5}{52}$$
 B $\frac{1}{52^5}$

C
$$\frac{33}{66640}$$
 D $\left(\frac{5}{52}\right)^5$

1

For parts c), d), e), f), g), and h) show all necessary working out in the answer booklet.

c) AB is a common chord of two circles and a straight line through B cuts the circles in X and Y. Tangents to the circles at X and Y meet at C.

Prove that AXCY is a cyclic quadrilateral.

d) CT is a tangent to the circle, centre O, touching at P. *PABC* is a rhombus and CT is parallel to AB.

- (i) Let $\angle TPA = \alpha$ and prove that $\angle POB = 2\alpha$.
- (ii) Find the value of α such that POBC is a cyclic quadrilateral, giving reasons.

2

e)	How many nine letter arrangements can be made using the letters of the word <i>ISOSCELES</i> ?	2
f)	A club has 9 male and 7 female members. How many ways can a team of four be chosen if it is to consist of 2 men and 2 women?	2
g)	In how many ways can 6 boys and 5 girls be arranged in a row if 3 particular girls are kept together?	2
h)	Debby and John and six other people go through a doorway one at a time.	
	In how many ways can the eight people go through the doorway if John goes through the doorway after Debby with no-one in between?	1

END OF EXAMINATION

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = -\frac{1}{a} \sec ax + C, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a} + C, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right) + C$$

$$\text{NOTE : } \ln x = \log_{x} x, \quad x > 0$$

HAHS Extension 1 HSC Task 2 – Half Yearly Examination 2012

Extension 1 Mathematics Solutions and Marking Guidelines Outcome Addressed in this Question

PE3-Solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations.		
	Solutions	Marking Guidelines
	Question 1.	
PE3	a) $(x_1, y_1), (x_2, y_2) \text{ and } (x, y)$ ratio m : n (-1,8), (6,-6) and (4,-2) ratio k : 1 $x = \frac{mx_2 + nx_1}{m+n}$, $4 = \frac{k(6) + 1(-1)}{k+1}$, 4k + 4 = 6k - 1, 10 = 2k, $\therefore k = \frac{5}{2}$ b) $a^2 + b^2 + c^2$ $= (a+b+c)^2 - 2(ab+bc+ac)$ $= (0)^2 - 2\left(\frac{-3}{1}\right)$	 2 marks complete correct solution 1 marks for partial correct solution 2 marks complete correct solution 1 marks for partial correct solution
	=6 c) $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ $y = 2x - 1 \text{ has gradient } m_1 = 2$ $3x - 2y = 5 \text{ has gradient } m_2 = \frac{3}{2}$ $\therefore \tan \theta = \frac{2 - \frac{3}{2}}{1 + (2) \cdot (\frac{3}{2})}$ $= \frac{1}{2}$ $= \frac{1}{8}$ $\therefore \theta = 7^{\circ}8'$ The angle between the two lines is 7^{\circ}8'	2 marks complete correct solution 1 marks for partial correct solution

-		
PE3	d) $Q(x) = x^3 + ax + b$	
	$Q(-2) = (-2)^{3} + a(-2) + b = 0$	
	$\therefore -8 - 2a + b = 0$	
	$\therefore -2a + b = 8(A)$	
	$Q(2) = (2)^{3} + 2(2)^{2} + a(2) + b = 12$	2
	$\therefore 8 + 2a + b = 12$	solution
	$\therefore 2a + b = 4(B)$	
	(A) + (B)	2 montre nontiel connect
	2b = 12	solution with only one error.
	$\therefore b = 6$	
	$\therefore a = -1$	1mark for any correct work that could lead to a solution.
	e)	
PE3	i) $f(0) - (0)^3 + 5(0)^2 + 17(0) - 1010$	2 marks complete correct
	$f(0) = (0)^3 + 5(0)^2 + 17(0) + 10 = 10$	solution
	$f(2) = (2)^{2} + 5(2)^{2} + 17(2) - 10 = 52$	1 mark for partial correct
	Since $f(0)$ is negative and $f(2)$ is positive and the polynomial	solution
	is continuous between $x = 0$ and $x = 2$, then the root lies	
	between 0 and 2.	
PE3	ii)	2 marks complete correct
	$f\left(\frac{0+2}{2}\right) = f(1) = (1)^3 + 5(1)^2 + 17(1) - 10 = 13 > 0$	solution
	Hence the roots lies between 0 and 1	1 marks for partial correct
		solution
	iii)	
PE3	(0+1) (1)	2 marks complete correct
	$f\left(\frac{0+1}{2}\right) = f(0.5) = -0.125 \text{ or } -\frac{1}{8}$	solution
	Therefore, the root lies between 0.5 and 1.	1 marks for partial correct
	The root is close to 1 than 0.	solution

Year 12	Mathematics Extension 1	H/Y Exam 2012	
Question N	Io. 2Solutions and Marking Guidelines		
Outcomes Addressed in this Question			
HE2 - uses	inductive reasoning in the construction of proofs		
PE3 - solve	es problems involving permutations and combinations, ineq	ualities, polynomials, circle	
geometry a	nd parametric representations		
Outcome	Solutions	Marking Guidelines	
DEA	$x^2 > 1$	<u>3 marks:</u> correct solution	
PE3	$(a) \qquad \frac{1}{x-2} \ge -1$		
	$r^{2}(r, 2) > (r, 2)^{2}$	<u>2 marks:</u> Substantially correct	
	$x (x-2) \ge -(x-2)$	1	
	$x^{2}(x-2)+(x-2)^{2} \ge 0$	<u>I mark:</u> Makes some progress	
	(-2)(-2) > 0	OR multiplies both sides by $(x-2)^2$	
	$(x-2)(x + x-2) \ge 0$	OR solves separately for $x < 2$ and $x > 2$.	
	$(x-2)(x+2)(x-1) \ge 0$		
	y y		
	\uparrow		
	(0,1)		
	(0, -2) (0, 2)		
	$-2 \le x \le 1, \ x > 2$		
	(b) $\sin 2\theta = \cos \theta$	3 marks: correct solution	
	$\sin 2\theta - \cos \theta = 0$	(must be in radians for full marks)	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
	$2\sin\theta\cos\theta - \cos\theta = 0$	<u>2 marks:</u> Substantially correct	
	$\cos\theta(2\sin\theta-1)=0$	(finds three correct solutions OR makes a minor error)	
	1		
	$\cos\theta = 0$ or $\sin\theta = \frac{1}{2}$	<u>1 mark:</u> Makes some progress	
	т. 3 т. т. 5 т.	$(\text{uses } \sin 2\theta = 2\sin\theta\cos\theta)$	
	$\theta = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{4}$		
	2 2 6 6		
	$(c) \sin 3r - \sin (2r + r)$		
	$(0) \sin 3x - \sin (2x \pm x)$		
	$= \sin 2x \cos x + \cos 2x \sin x$	3 marks: for any form that	
	$-2\sin r\cos r\cos r \pm (\cos^2 r \sin^2 r)\sin r$	includes only powers of sinx	
	$-2\sin x\cos x \cos x + (\cos x - \sin x)\sin x$		
	$=3\sin x\cos^2 x - \sin^3 x$	2 marks: for incomplete	
	$2 \cdot (1 \cdot 2) \cdot 3$	expansion	
	$= 3\sin x (1 - \sin^2 x) - \sin^3 x$		
	$=3\sin r - 4\sin^3 r$	<u>1 mark:</u> if started using any	
		valid breakup of $\sin 3x$	

HE2	(d) show true for $n = 1$. $9^{1+2} - 4^1 = 729 - 4$ = 725	
	=5(145) which is true	
	Assume true for $n = k$ ie $9^{k+2} - 4^k = 5M$ where <i>M</i> is an integer so $9^{k+2} = 5M + 4^k$ (1)	<u>3 marks:</u> correct solution <u>2 marks:</u> substantially correct
	prove true for $n = k + 1$ $9^{k+3} - 4^{k+1} = 9.9^{k+2} - 4.4^k$	
	$=9(4^{k}+5M)-4.4^{k} (\text{from } (1))$ $=5(4^{k})+9(5M)$	<u>mark</u> : partial progress towards correct solution
	$=5(4^{k}+9M)$	
	= 5N where N is an integer $\therefore \text{ true for all positive integers } n \text{ by induction}$	
	(e) $\frac{PL}{PA} = \tan 20^{\circ}$	
	$PA = \frac{PL}{\tan 20^\circ} = \frac{1}{\tan 20^\circ}$	3 marks: correct solution
	$\frac{PT}{PA} = \tan 3^{\circ}$	
	$PT = PA \tan 3^\circ = \frac{\tan 3^\circ}{\tan 20^\circ}$	2 marks: substantially correct
	$\frac{PT}{BP} = \tan 30^\circ = \frac{1}{\sqrt{3}}$ $BP = \sqrt{3} PT$	<u>1 mark:</u> partial progress towards correct solution
	$= \frac{\sqrt{3}\tan 3^{\circ}}{\tan 20^{\circ}}$	

Year 12 Half Yearly 2012 – Extension 1 Mathematics

Solutions and Marking Guidelines

Outcomes Addressed in this Question:

Question No: 3

PE2 - uses multi-step deductive reasoning in a variety of contexts

PE3 - solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

Outcome	Sample Solution	Marking Guidelines
PE2		4 marks – correct solution with
	$\angle CXY = \angle BAX = \theta$ (alternate segment theorem)	leasons
	$\angle CYX = \angle YAB = \alpha$ (alternate segment theorem)	3 marks – three of four correct deductions with correct reasons
	$\alpha + \theta + \angle YCX = 180^{\circ}$ (angle sum of $\triangle CYZ = 180^{\circ}$)	deductions with correct reasons
	$\therefore \angle YCX = 180^{\circ} - (\alpha + \theta)$	2 marks – two of four correct deductions with correct reasons
	$\angle YAX + \angle YCX = \alpha + \theta + 180^{\circ} - (\alpha + \theta)$	1 1 66 4
	=180°	deductions with correct reasons
	\therefore AYCX is cyclic (opposite angles are supplementary)	
PE2	b) i)	2 marks –correct answer
	$\angle PAB = \angle TPA = \alpha$ (alternate angles, $PC \sqcup AB$)	1 mark substantial
	$\angle POB = 2 \angle PAB$ (angle at the centre equals twice the angle at the	progress towards correct
	circumference standing on arc PB)	answer
	$=2\alpha$	
PE2	b) ii)	2 marks –correct answer
	$\angle PCB = \angle PAB = \alpha$ (opposite angles of a rhombus are equal)	
	$\angle PCB + \angle POB = 180^{\circ}$ (opposite angles of a cyclic quadrilateral are supplementary)	1 mark – substantial
	$2\alpha + \alpha = 180^{\circ}$	answer
	$\therefore \alpha = 60^{\circ}$	
PE3	c)	2 marks –correct answer
	$\frac{9!}{30240}$ = 30240	4 1 1 1
	3!2!	I mark – substantial
		answer
PE3	d)	2 marks –correct answer
	${}^{9}C_{2} \times {}^{7}C_{2} = 756$	1 months substantial
		I mark – substantial progress towards correct
		answer
PE3	e)	2 marks –correct answer
	9≿3!=2177280	1 mante substantial
		progress towards correct
		answer
	Ð	1 monte come et en errer
PE3	7! = 5040	1 mark – correct answer