

HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 122012

HSC COURSE EXTENSION 1 MATHEMATICS

ASSESSMENT TASK 2 HALF YEARLY EXAMINATION

Examiners : D. Crancher, G. Rawson, S. Hackett

General Instructions

- Reading time : 5 minutes
- Working time : 90 minutes
- This exam paper has three questions. Attempt all questions.
-Question 1 is worth 18 marks - three multiple choice questions worth one mark each and free response questions worth 15 marks.
- Question 2 and question 3 are worth 17 marks each - two multiple choice questions worth one mark each and free response questions worth 15 marks.
Total: 52 marks
- Start a new answer booklet for each question making sure your student number is written at the top of each page.
- All necessary working should be shown in each question. Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and mathematical templates may be used.
- This examination paper must not be removed from the examination room.

Students Name:

\qquad

Teacher:

\qquad

QUESTION 1. Start a new answer booklet.

For parts a), b) and c) choose the correct answer from A, B, C or D and write your chosen answer in the answer booklet.

a) How many real roots must the following equation have?

$$
x^{4}\left(x^{2}-4\right)+9\left(x^{2}-4\right)=0
$$

A 1
B 2
C 4
D none
b) If $P(x)=x^{3}-2 x^{2}+9 x-2$, which of the following statements are true?
I. $\quad x-3$ is a factor of $P(x)$
II. $x=3$ is a root of $P(x)=0$
III. $\quad P(3)=34$
IV. $\quad P(-3)=34$
A I only
B III only
C I and II only
D I and III only

For parts c), d), e), f), and g) show all necessary working out in the answer booklet.

c) $\quad \mathrm{A}, \mathrm{B}$ and P are the points $(-1,8),(6,-6)$ and $(4,-2)$ respectively.

The point P divides the interval AB internally in thr ratio $k: 1$.
Find the value of k.
d) If a, b and c are the roots of $x^{3}-3 x+2=0$, find $a^{2}+b^{2}+c^{2}$.
e) Find the acute angle between the lines $y=2 x-1$ and $3 x-2 y=5$.

Give your answer in radians correct to two decimal places.
f) The polynomial $Q(x)=x^{3}+a x+b$ has a factor of $(x+2)$.

When $Q(x)$ is divided by $(x-2)$ the remainder is 12 .
Find the values of a and b.
g) Let $f(x)=x^{3}+5 x^{2}+17 x-10$. The equation $f(x)=0$ has only one real root.
i) Show that the root lies between 0 and 2 .
ii) Use one application of the 'halving the interval' method to find a smaller interval containing the root.
iii) Which end of the smaller interval found in part ii) is closer to the root? Briefly justify your answer.

QUESTION 2. Start a new answer booklet.

For parts a), b) and c) choose the correct answer from A, B, C or D and write your chosen answer in the answer booklet.

a) If $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)$, then what is the $(k+1)^{\text {th }}$ term?
A $4 k^{2}$
B $(2 k+1)^{2}$
C $\frac{(k+1) 2 k(2 k+2)}{3}$
D $\frac{(k+1)(2 k+1)(2 k+3)}{3}$
b) In order to solve the inequality $\frac{(x+2)(x-3)}{x+1}<0$, which graph would be the most useful?
A

B

C

D

c) Which of the following is NOT equal to $\sin 75^{\circ}$?
A $\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
B $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
C $\frac{\sqrt{3}+1}{\sqrt{2}}$
D $\cos 60^{\circ} \cos 45^{\circ}+\sin 60^{\circ} \sin 45^{\circ}$

For parts d), e), f), g), and h) show all necessary working out in the answer booklet.
d) Solve the inequality $\frac{x^{2}}{x-2} \geq-1$
e) Solve the equation $\sin 2 \theta=\cos \theta$ for $0 \leq \theta \leq 2 \pi$
f) Find an expression for $\sin 5 x$ in terms of $\sin x$ and $\cos x$
g) Prove, by mathematical induction, that $9^{n+2}-4^{n}$ is divisible by 5 for any positive integer n.
h) A boat is sailing due north from a point A towards a point P on the shore line. The shore line runs from west to east.

In the diagram, T represents a tree on a cliff vertically above P, and L represents a landmark on the shore. The distance $P L$ is 1 km .

From A the point L is on a bearing of 020°, and the angle of elevation to T is 3°. After sailing for some time the boat reaches a point B, from which the angle of elevation to T is 30°.

Show that $B P=\frac{\sqrt{3} \tan 3^{\circ}}{\tan 20^{\circ}}$. 3

QUESTION 2. Start a new answer booklet.

For parts a), b) and c) choose the correct answer from A, B, C or D and write your chosen answer in the answer booklet.

a) In a game of Poker, 5 cards are dealt to each player.

The deck has 4 suits with 13 cards in each suit.
How many different hands are possible?
A ${ }^{52} C_{5}$
B ${ }^{13} C_{5}$
C ${ }^{52} P_{5}$
D ${ }^{13} P_{5}$
b) In the same game of Poker, what is the probability of being dealt a "flush" (all five cards from the same suit)?
A $\frac{5}{52}$
B $\frac{1}{52^{5}}$
C $\frac{33}{66640}$
D $\left(\frac{5}{52}\right)^{5}$

For parts \mathbf{c}), d), e), f), g), and \mathbf{h}) show all necessary working out in the answer booklet.

c) AB is a common chord of two circles and a straight line through B cuts the circles in X and Y . Tangents to the circles at X and Y meet at C .

Prove that AXCY is a cyclic quadrilateral.

d) $\quad C T$ is a tangent to the circle, centre O, touching at $P . P A B C$ is a rhombus and $C T$ is parallel to $A B$.

(i) Let $\angle T P A=\alpha$ and prove that $\angle P O B=2 \alpha$.
(ii) Find the value of α such that POBC is a cyclic quadrilateral, giving reasons.
e) How many nine letter arrangements can be made using the letters of the
f) A club has 9 male and 7 female members. How many ways can a team of four be chosen if it is to consist of 2 men and 2 women?
g) In how many ways can 6 boys and 5 girls be arranged in a row if 3 particular girls are kept together?
h) Debby and John and six other people go through a doorway one at a time.

In how many ways can the eight people go through the doorway if
John goes through the doorway after Debby with no-one in between?

END OF EXAMINATION

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\quad \ln x+C, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+C, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x+C, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x+C, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C, a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

PE3-Solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations.

	Solutions	Marking Guidelines
	Question 1. $\text { a) } \begin{aligned} \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \text { and }(x, y) & \text { ratio } \mathrm{m}: n \\ (-1,8),(6,-6) \text { and }(4,-2) & \text { ratio } k: 1 \\ x=\frac{m x_{2}+n x_{1}}{m+n}, & \\ 4 & =\frac{k(6)+1(-1)}{k+1}, \\ 4 k+4 & =6 k-1, \\ 10 & =2 k, \\ \therefore k & =\frac{5}{2} \end{aligned}$	2 marks complete correct solution 1 marks for partial correct solution
PE3	b) $\begin{aligned} & a^{2}+b^{2}+c^{2} \\ & =(a+b+c)^{2}-2(a b+b c+a c) \\ & =(0)^{2}-2\left(\frac{-3}{1}\right) \\ & =6 \end{aligned}$ c) $\begin{gathered} \tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \\ y=2 x-1 \text { has gradient } m_{1}=2 \\ 3 x-2 y=5 \text { has gradient } m_{2}=\frac{3}{2} \\ \therefore \tan \theta=\frac{2-\frac{3}{2}}{1+(2) \cdot\left(\frac{3}{2}\right)} \\ =\frac{\frac{1}{2}}{4} \\ =\frac{1}{8} \\ \therefore \theta=7^{\circ} 8^{\prime} \end{gathered}$ The angle between the two lines is $7^{\circ} 8^{\prime}$	2 marks complete correct solution 1 marks for partial correct solution 2 marks complete correct solution 1 marks for partial correct solution

	d)	
PE3	$Q(x)=x^{3}+a x+b$	
	$Q(-2)=(-2)^{3}+a(-2)+b=0$	
	$\therefore-8-2 a+b=0$	
	$Q(2)=(2)^{3}+2(2)^{2}+a(2)+b=12$	
	$\therefore 8+2 a+b=12$	solution
	$\begin{equation*} \therefore 2 a+b=4 \text {. } \tag{B} \end{equation*}$ $(A)+(B)$	
	$\begin{aligned} & 2 b=12 \\ & \therefore b=6 \end{aligned}$	2 marks partial correct solution with only one error.
	$\therefore a=-1$	1mark for any correct work that could lead to a solution.
	e)	
PE3	i) $f(0)=(0)^{3}+5(0)^{2}+17(0)-10=-10$	2 marks complete correct solution
	$f(2)=(2)^{3}+5(2)^{2}+17(2)-10=52$ Since $f(0)$ is negative and $f(2)$ is positive and the polynomial is continuous between $x=0$ and $x=2$, then the root lies between 0 and 2 .	1 mark for partial correct solution
PE3	ii) $f\left(\frac{0+2}{2}\right)=f(1)=(1)^{3}+5(1)^{2}+17(1)-10=13>0$ Hence, the roots lies between 0 and 1 .	2 marks complete correct solution 1 marks for partial correct solution
	iii)	
PE3	$f\left(\frac{0+1}{2}\right)=f(0 \cdot 5)=-0.125 \text { or }-\frac{1}{8}$ Therefore, the root lies between 0.5 and 1 . The root is close to 1 than 0 .	2 marks complete correct solution 1 marks for partial correct solution

Year 12	Mathematics Extension 1	H/Y Exam 2012
Question No. 2	Solutions and Marking Guidelines	
Outcomes Addressed in this Question		

HE2 - uses inductive reasoning in the construction of proofs
PE3 - solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

Outcome	Solutions	Marking Guidelines
PE3	(a) $\begin{aligned} \frac{x^{2}}{x-2} & \geq-1 \\ x^{2}(x-2) & \geq-(x-2)^{2} \\ x^{2}(x-2)+(x-2)^{2} & \geq 0 \\ (x-2)\left(x^{2}+x-2\right) & \geq 0 \\ (x-2)(x+2)(x-1) & \geq 0 \end{aligned}$ $-2 \leq x \leq 1, x>2$ (b) $\begin{aligned} \sin 2 \theta & =\cos \theta \\ \sin 2 \theta-\cos \theta & =0 \\ 2 \sin \theta \cos \theta-\cos \theta & =0 \\ \cos \theta(2 \sin \theta-1) & =0 \\ \cos \theta & =0 \text { or } \sin \theta=\frac{1}{2} \\ \theta & =\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6} \end{aligned}$ $\text { (c) } \begin{aligned} \sin 3 x & =\sin (2 x+x) \\ & =\sin 2 x \cos x+\cos 2 x \sin x \\ & =2 \sin x \cos x \cos x+\left(\cos ^{2} x-\sin ^{2} x\right) \sin x \\ & =3 \sin x \cos ^{2} x-\sin ^{3} x \\ & =3 \sin x\left(1-\sin ^{2} x\right)-\sin ^{3} x \\ & =3 \sin x-4 \sin ^{3} x \end{aligned}$	3 marks: correct solution 2 marks: Substantially correct 1 mark: Makes some progress Eg indicates $x \neq 2$ OR multiplies both sides by $(x-2)^{2}$ OR solves separately for $x<2$ and $x>2$. $\mathbf{3}$ marks: correct solution (must be in radians for full marks) 2 marks: Substantially correct (finds three correct solutions OR makes a minor error) 1 mark: Makes some progress (uses $\sin 2 \theta=2 \sin \theta \cos \theta$) 3 marks: for any form that includes only powers of $\sin x$ 2 marks: for incomplete expansion 1 mark: if started using any valid breakup of $\sin 3 x$

Year 12 Half Yearly 2012 - Extension 1 Mathematics		
Outcomes Addressed in this Question: PE2 - uses multi-step deductive reasoning in a variety of contexts PE3 - solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations		
Outcome	Sample Solution	Marking Guidelines
PE2	a) $\begin{aligned} & \angle C X Y=\angle B A X=\theta(\text { alternate segment theorem }) \\ & \angle C Y X=\angle Y A B=\alpha(\text { alternate segment theorem }) \\ & \alpha+\theta+\angle Y C X=180^{\circ}\left(\text { angle sum of } \triangle C Y Z=180^{\circ}\right) \\ & \therefore \angle Y C X=180^{\circ}-(\alpha+\theta) \\ & \angle Y A X+\angle Y C X=\alpha+\theta+180^{\circ}-(\alpha+\theta) \\ & =180^{\circ} \end{aligned}$ $\therefore A Y C X$ is cyclic (opposite angles are supplementary)	4 marks - correct solution with reasons 3 marks - three of four correct deductions with correct reasons 2 marks - two of four correct deductions with correct reasons 1 mark - one of four correct deductions with correct reasons
PE2	b) i) $\angle P A B=\angle T P A=\alpha$ (alternate angles, $P C \square A B$) $\angle P O B=2 \angle P A B \quad$ (angle at the centre equals twice the angle at the circumference standing on arc PB) $=2 \alpha$	2 marks -correct answer 1 mark - substantial progress towards correct answer
PE2	b) ii) $\begin{aligned} \angle P C B=\angle P A B & =\alpha \quad \text { (opposite angles of a rhombus are equal) } \\ \angle P C B+\angle P O B & =180^{\circ}(\text { opposite angles of a cyclic quadrilateral are supplementary }) \\ 2 \alpha+\alpha & =180^{\circ} \\ \therefore \alpha & =60^{\circ} \end{aligned}$	2 marks -correct answer 1 mark - substantial progress towards correct answer
PE3	c) $\frac{9!}{3!2!}=30240$	2 marks -correct answer 1 mark - substantial progress towards correct answer
PE3	d) ${ }^{9} C_{2} \times{ }^{7} C_{2}=756$	2 marks -correct answer 1 mark - substantial progress towards correct answer
PE3	e) $91 \times 3!=2177280$	2 marks -correct answer 1 mark - substantial progress towards correct answer
PE3	f) $7!=5040$	1 mark - correct answer

