Question One

Marks

a) Find $\int \sin (4 x+6) d x$.
b) Differentiate 5^{x}.

1
c) For what values of x will $1-\tan ^{2} x+\tan ^{4} x-\tan ^{6} x+\tan ^{8} x-\ldots$

4 have a limiting sum for $0 \leq x \leq 2 \pi$.
d) The sketch of the curve of $y=\ln (x+2)$ is shown below.

If the shaded area is rotated about the y-axis, find the volume of revolution of the solid generated.

Question Two (Start a New Page)

a) i) Express $y=\sqrt{3} \cos x-\sin x$ in the form of $R \cos (x-\alpha)$,
where $R>0$ and $0 \leq \alpha \leq 2 \pi$.
ii) Sketch the graph of $y=\sqrt{3} \cos x-\sin x$, for $0 \leq x \leq 2 \pi$.
b) i) Differentiate $\ln (\sin x)-x \cot x$.
ii) Hence find $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} x\left(\operatorname{cosec}^{2} x\right) d x$.
a) Prove that $2^{10 n+3}+3$ is divisible by 11 for all nonnegative integers n by Mathematical Induction.
b) A spherical map of the earth is being inflated at a constant rate of $25 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate at which the length of the equator is changing when the radius is 10 cm .

Question Four (Start a New Page)

a) Differentiate $\ln \left(\frac{\sqrt{x}}{x+4}\right)$.
b) Consider the function $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$,
i) Prove that y has no stationary points. 2
ii) Prove that the lines $y= \pm 1$ are asymptotes.
iii) If k is a positive constant, find the area in the first quadrant enclosed by the above curve and the three lines $y=1, x=0$ and $x=k$.
iv) Prove that for all values of k, the area is always less than $\ln 2$.

Question Five (Start a New Page)

a) Find $\int \frac{x-1}{x+5} d x$.
b) Evaluate $\int_{0}^{\ln \sqrt{3}} \frac{e^{x}}{1+e^{2 x}} d x$.
c) Amy borrows $\$ 130000$ to start a sign writing business. Interest is charged on the balance owing at the rate of 9\% per annum, compounded monthly. Amy agrees to repay the loan, including interest, by making equal monthly instalment of $\$ P$.
i) How much does Amy owe at the end of the first month just before she makes an instalment payment?

Question Five cont'd

Marks
c) ii) Show that if the loan is repaid after n months, then
$P=\frac{130000(1.0075)^{n}}{1+1.0075+1.0075^{2}+\ldots+1.0075^{n-1}}$.
iii) Calculate how many months, to the nearest month, it will take for the loan to be repaid if Amy makes instalments of $\$ 1800$ per month.

Question Six (Start a New Page)

a) Using the substitution $x=2 \sin \theta$, show by integration that $\int \sqrt{4-x^{2}} d x=\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{2}+C$, where C is a constant.
b) A rectangular paddock in a vineyard measures 90 m by 120 m . In order to make best use of the sun, the grape vines are planted in diagonal rows as shown, with a 3 metre gap between adjacent rows.

Diagram not to scale

120 m
i) Find the length of R_{1}, the diagonal of the field.
ii) Show that length of the R_{2} is 143.75 m . 2
iii) Given that the rows $R_{1}+R_{2}+R_{3}+R_{4}+\ldots$ form an 3 arithmetic series, find the total number of rows of vines in the paddock.
$y_{r 12}\left(\right.$ Ass 2) $T_{\text {em al }} 2007+E_{R T} I$

Question One
a) $\frac{-\cos (4 x+6)}{4}+c$
b) $5^{x}(\ln 5)$
c)

$$
\begin{aligned}
& r=-\tan ^{2} x \\
&|r|<1 \quad \text { when } \tan ^{2} x<1 \\
&-1<\tan x<1 \\
& \therefore<x<\frac{\pi}{4}, \frac{3 \pi}{4}<x<\frac{5 \pi}{4}, \frac{7 \pi}{4}<x<2 \pi
\end{aligned}
$$

d) vol of revolution (V)

Question Two
ai)

$$
\left.\left.\begin{array}{rl}
R \cos (x-\alpha) & =R[\cos x \cos x+R \sin x \\
\sin \alpha
\end{array}\right]\right)
$$

$R>0$,

$$
\left.\begin{array}{l}
\sqrt{3}=R \cos \alpha \\
-1=R \sin \alpha
\end{array}\right\} \therefore \alpha \text { in } 4^{\text {th }} \text { and }
$$

$$
\tan \alpha=-\frac{1}{\sqrt{3}} \quad / \alpha=\frac{11 \pi}{6}
$$

$$
(R \cos \alpha)^{2}+(R \sin \alpha)^{2}=(\sqrt{3})^{2}+(-1)^{2}
$$

$$
R^{2}=4 \quad \therefore R=2 \quad(R>0)
$$

$$
\therefore \quad \sqrt{3} \cos x-\sin x=2 \cos \left(x-\frac{11 \pi}{6}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
=\int_{0}^{\ln 2} \pi x^{2} d y \\
=\pi \int_{0}^{\ln 2}\left(e^{y}-2\right)^{2} d y
\end{array} \\
& \left.=\pi \int_{0}^{2 y} e^{2 y}-4 e^{y}+4\right] d y \\
& =\pi\left[\frac{e^{2 y}}{2}-4 e^{y}+4 y\right]_{0}^{\ln 2} \\
& =\pi\left[\frac{4}{2}-4.2+4 \ln ^{2}\right]-\pi\left[\frac{1}{2}-4\right] \\
& =\pi\left[4 \ln 2-2 \frac{1}{2}\right]_{\underset{H}{ }}^{\text {unit }^{3}}
\end{aligned}
$$

60, At $x=0 \quad y=2 \cos \left(-\frac{11 \pi}{6}\right)=\sqrt{3}$
$y=0$ when $\quad \cos \left(x-\frac{11}{6}\right)=0$

$$
\begin{array}{ll}
x-\frac{1 \pi}{6}=-\frac{\pi}{2} & \therefore x=\frac{4 \pi}{3} \\
x-\frac{11 \pi}{6}=-\frac{3 \pi}{2} & x=\frac{\pi}{3}
\end{array}
$$

MAX at $y=2 \quad 2=2 \cos \left(x-1 / \frac{x}{6}\right)$

$$
0=x-\frac{11 \pi}{6}
$$

$$
x=\frac{11 \pi}{6}
$$

max/ mind

Let $y=\ln (\sin x)-x \cot x$
b:)

$$
\begin{aligned}
& y^{\prime}=\frac{\cos x}{\sin x}+x \operatorname{cosec}^{2} x-\cot x \\
& =\cot x+x \operatorname{cosec}^{2} x-\operatorname{sot} x \\
& y^{\prime}=x \operatorname{cosec}^{2} x
\end{aligned}
$$

$i-) \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} x \operatorname{cosec}^{2} x d x=[\ln |\sin x|-x \cot x]_{\frac{\pi}{6}}^{\pi / 2}$

$$
\begin{aligned}
& =\left(\ln \left|\sin \frac{\pi}{2}\right|-\frac{\pi}{2} \cot \frac{\pi}{2}\right)-\left(\ln \left|\sin \frac{\pi}{6}\right|-\frac{\pi}{6} \cot \frac{\pi}{6}\right. \\
& =\left(\ln \dot{H}-\frac{\pi}{2}+0\right)-\left(\ln \frac{1}{2}-\frac{\pi}{6} \sqrt{3}\right) \\
& =-\ln \frac{1}{2}+\frac{\pi}{6} \sqrt{3}=\frac{\pi}{6} \sqrt{3}+\ln 2
\end{aligned}
$$

Quentin 3
a) when $n=0 \quad 2^{i 0.0+3}+3=2^{3}+3=11 \quad$ divis.te

Assume $2^{10 k^{+}+3}+3$ is divisible by 11

$$
\begin{aligned}
& \text { i+. } \quad 2^{10 x+3}+3=11 Q \quad Q \in J^{+} \\
& \therefore \quad 2^{10 x+3}=11 Q-3
\end{aligned}
$$

Required to prove $2^{10(k+1)+3}+3$ is divial by 4

$$
2^{10(k+1)+3}+3=\left(2^{10 k+3}\right) \cdot 2^{10}+3
$$

$$
=(11 Q-3) \cdot 2^{10}+3 \quad \text { from assurptia } 1
$$

$$
=11 Q \cdot 2^{10}-3 \cdot 2^{10}+3
$$

$$
=110 \times 2^{\prime *}-3072+3
$$

$$
=116 \cdot 2^{10}-3069
$$

$$
=11[1024 Q-279]
$$

$2^{10} Q-279$ is a positive integer $\sin \omega Q \in J^{+}$

$$
\therefore 2^{10(k+1)+3}+3 \text { a divisible by } 11
$$

Hence by the pRinciple of Mathematical Induction $2^{10+3}+3$ is divisible by all non-nepative integers n.
b) $\quad V=\frac{4}{3} \pi r^{3}$ (vol of sphere)
lengte of equation $l=2 \pi r \quad \therefore \quad r=\frac{l}{2 \pi}$

$$
\begin{aligned}
& V=\frac{4}{3} \pi \frac{l^{3}}{8 \pi^{3}}=\frac{l^{3}}{6 \pi^{2}} \\
& \frac{d v}{d l}=\frac{3 l^{2}}{6 \pi}=\frac{l^{2}}{2 \pi}
\end{aligned}
$$

Given $\frac{d v}{d t}=25$

$$
\begin{aligned}
& \text { Given } \frac{d v}{d t}=25 \frac{1}{l^{2}} \\
& \frac{d R}{d t}=\frac{d l}{d v} \cdot \frac{d v}{d t}=\frac{2 \pi}{2 \pi}
\end{aligned}
$$

$$
\times 25=\frac{50 \pi^{2}}{l^{2}} \cdot 1+1
$$

when $r=10 \quad l=20 \pi$

$$
\therefore \frac{d l}{d t}=\frac{50 \pi^{2}}{400 \pi}=\frac{1}{8} \mathrm{~cm} / \mathrm{s}
$$

Quentin 4
a) $\quad \ln \left(\frac{\sqrt{x}}{x+4}\right)=\frac{1}{2} \ln x-\ln (x+4)$

$$
\begin{gathered}
\frac{d}{d x}\left(\ln \frac{\sqrt{x}}{x+4}\right)=\frac{1}{2 x}-\frac{1}{x+4} \\
=\frac{x+4-2 x}{2 x(x+4)} \\
=\frac{4-x}{2 x(x+4)}
\end{gathered}
$$

b)i) $y^{\prime}=\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}$

$$
\begin{aligned}
& y^{\prime}=\frac{e^{2 x}+1+1+e^{-2 x}-\left(e^{2 x}-1-1+e^{-2 x}\right)}{\left(e^{x}+e^{-x}\right)^{2}} \\
& y^{\prime}=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}} \neq 0
\end{aligned}
$$

\therefore No stationary point
ii)

$$
\begin{array}{r}
y=\frac{\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)} \div e^{x} \\
y=\frac{1-e^{-2 x}}{1+e^{-2 x}}
\end{array}
$$

as $x \rightarrow \infty \quad e^{-2 x} \rightarrow 0 \quad \therefore y \rightarrow 1$
similarly $\quad y=\frac{\left(e^{x}-e^{-x}\right) \div e^{-x}}{\left(e^{x}+e^{-x}\right) \div e^{-x}}=\frac{e^{2 x}-1}{e^{2 x}+1}$

$$
a_{0} x \rightarrow-\infty \quad e^{2 x} \rightarrow 0 \quad y \rightarrow-1
$$

Hence the lines $y= \pm 1$ are asymptote.
iii) Shaded area A

$$
=k \times 1-\int_{0}^{k} \frac{e^{x} e^{-x}}{e^{x}+e^{-x}} d x
$$

$$
=x-\ln \left[\left|e^{x}+e^{-x}\right|\right]_{0}^{x}
$$

$$
\begin{aligned}
& =k-\ln \left(e^{k}+e^{-k}\right)+\ln (1+1) \\
& =k-\ln \left(e^{k}+e^{-k}\right)+\ln 2
\end{aligned}
$$

ii) \sin ce $e^{x}>0 \quad e^{-k}>0$

$$
e^{k}<e^{k}+e^{-k}
$$

Taking $\log _{e}$ on both side. $k<\ln \left(e^{k}+e^{-k}\right)$
$\therefore \quad A<\ln 2$

Quentin 5
a)

$$
\begin{aligned}
& \int \frac{x-1}{x+5} d x=\int \frac{x+5-6}{x+5} d x=\int 1-\frac{6}{x+5} d x \\
= & x-6 \ln (x+5)+c
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int_{1}^{\ln \sqrt{3}} \frac{e^{x}}{1+e^{2 x}} d x=\int_{1}^{\sqrt{3}} \frac{u}{1+u^{2}} d u \\
= & {\left[\tan ^{-1} u\right]_{1}^{\sqrt{3}}=\frac{\pi}{3}-\frac{\pi}{4} }
\end{aligned}
$$

$$
u=e^{x}
$$

$$
d u=e^{\pi} d x
$$

when $x=0$

$$
u=1
$$

$$
\text { weer } x=\ln \sqrt{3}
$$

$$
u=\sqrt{3}
$$

c) $9 \% p_{-4}=0.75 \%$ per month
i) At the end of first month $=130000(1.0075)-p$

At the end of n maths the loan g $\$ 130000$ will accumbete to $130000(1.0075)^{n}$ and the sum of all instalments will accumulate to

$$
P\left[1+1.0075+10075^{2}+\cdots+1.0075^{n-1}\right]
$$

For the loan to be paid off

$$
\begin{aligned}
& 1800=\frac{130,000\left(1.6075^{-n}\right)}{1+1007 r+\cdots+10071^{n-1}} \quad \text { (from } i=\text {) } \\
& 1800=\frac{130000\left(1.0075^{n}\right)}{\frac{i-1.0075^{n}}{1-1.0075}} \\
& 2400 \times\left(1.0075^{n}-1\right)=13000\left(1.0075^{-n}\right) \\
& 24\left(10075^{n}\right)-24=13\left(1.0075^{n}\right) \\
& 11\left(1.007 r^{-}\right)=24 \\
& n(\log 1.0075)=\operatorname{ly}\left(\frac{24}{11}\right) \\
& n=1.4 \text { (he root monte) }
\end{aligned}
$$

$$
\begin{aligned}
& 130000(1.0075)^{*}=P\left[1+1.0075+1.0075^{2}+\cdots+1.0075^{n-1}\right\} \\
& \therefore P=\frac{130000\left(1.0071^{-n}\right)}{1+1.0075+1.0075^{2}+\cdots+\left(.0075^{-1}\right.} \\
& \text { iii) } \\
& 1800=\frac{130,000\left(1.6075^{-n}\right)}{1+1007 r+\cdots+10071^{n-1}} \quad \text { (from } i=\text {) } \\
& 1800=\frac{130000\left(1.0075^{n}\right)}{\frac{i-1.0075^{n}}{1-1.0075}}
\end{aligned}
$$

Question l

$$
\begin{aligned}
& \text { a) } x=2 \sin \theta \quad \frac{d x}{d \theta}=2 \cos \theta \\
& \int \sqrt{4-x^{2}} d x \\
& =\int \sqrt{4-4 \sin ^{2} \theta} 2 \cos \theta d \theta \\
& =\int(2 \cos \theta)(2 \cos \theta) d \theta \\
& =4 \int \cos ^{2} \theta d \theta=\frac{4}{2} \int(+\cos 2 \theta d \theta \\
& =2\left(\theta+\frac{\sin 2 \theta}{2}\right)+c \\
& =2 \sin ^{-1}\left(\frac{x}{2}\right)+2 \sin \theta \cos \theta+c \\
& =2 \sin ^{-1}\left(\frac{x}{2}\right)+2\left(\frac{x}{4}\right) \frac{\sqrt{4-x^{2}}}{2}+c \\
& =\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{2}\left(\frac{x}{2}\right)+c
\end{aligned}
$$

b) $R_{1}=\sqrt{120^{2}+90^{2}}=150 \mathrm{~m}$
ii)

$$
\tan \theta=\frac{90}{120}=\frac{3}{4}
$$

$$
\begin{aligned}
& \tan \theta=\frac{3}{4}=\frac{m}{3} \\
& 4 m=9 \\
& m=2.25
\end{aligned}
$$

$$
\begin{aligned}
\therefore R_{2} & =150-2.25-4 \\
& =143.75 \mathrm{~m}_{4}
\end{aligned}
$$

\therefore Cut the rectangl into 2 Solves (triangles)
$\therefore i)$ Aet n be the last row in the triangle

$$
\begin{gathered}
R_{n}=a+(n-1) \alpha=150-6.25(n-1)>0 \\
150>6.25(n-1) \\
24 \geq n-1 \\
n<25 \quad \text { in } n=24
\end{gathered}
$$

Total number of rows of vine r

$$
=23+24=47
$$

