James Ruse Agricultural High School Year 122009 Term 1 Extension 1

Question 1.

(a) Find A if $\sum_{k=1}^{4} k \ln k=\ln A$
(b) (i) Express $1 . \overline{7} \dot{2}$ as an infinite series.
(ii) Hence write $1 . \dot{7} \dot{2}$ as an equivalent fraction in simplest terms.
(c) Find $\frac{d}{d x}\left(\operatorname{cosec}\left(x^{2}+1\right)\right)$.
(d) Find $\int \cos x e^{\sin x} d x$.
(e) (i) Write $3 \sqrt{3} \sin x-3 \cos x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0<\alpha<2 \pi$.
(ii) Find the first value of $x>0$ when $3 \sqrt{3} \sin x-3 \cos x$ is a maximum.

Question 2.

(a) Differentiate with respect to x in simplest terms:
(i) $\frac{\tan 3 x}{\sin 3 x}$.
(ii) $e^{5 x} \ln x^{2}$.
(b) Find $\int \frac{9+x}{4+x^{2}} d x$.
(c) (i) Simplify $\frac{9}{2 x+1}+\frac{4}{3 x+4}$.
(ii) Hence evaluate $\int_{0}^{1} \frac{7 x+8}{6 x^{2}+11 x+4} d x$.

Question 3.

(a) Find the area bounded by the curve $y=\tan x$, the x axis and the line $x=\frac{\pi}{3}$.
(b) If the sum S_{n} of n terms of a sequence is given by the formula $S_{n}=8 n^{2}-6 n$, find the formula for the $n t h$ term T_{n} of the sequence.
(c) Find the formula S_{n} for the summation of n terms of the sequence :

$$
2 \frac{1}{2}+4 \frac{1}{4}+6 \frac{1}{8}+8 \frac{1}{16}+\ldots \ldots . .
$$

(d) (i) Sketch the graph of $y=\frac{3 x+4}{2 x-1}$.
(ii) Find the values of x for a sum to infinity to exist :

$$
1+\left(\frac{3 x+4}{2 x-1}\right)+\left(\frac{3 x+4}{2 x-1}\right)^{2}+\ldots \ldots \ldots \ldots \ldots \ldots
$$

Question 4.

(a)
(i) Use the substitution $x=r \sin \theta$ and evaluate $\int_{0}^{r} \sqrt{r^{2}-x^{2}} d x$, where r is a constant.
(ii) An ellipse with the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is shown below.

Using (i) find the area of the ellipse.
(b) A man invests $\$ 180000$ at 4% p.a. at the beginning of the month.

Interest is credited at the end of each month.
If the man withdraws \$ 2000 at the end of each month, find the number of $\$ 2000$ withdrawals that can be made.

Question 5.

(a) Given $y=\cos \left(x^{2}\right)$ in the domain $0 \leq x \leq \pi$ then :
(i) Show $\frac{d^{2} y}{d x^{2}}=-2 \sin \left(x^{2}\right)-4 x^{2} \cos \left(x^{2}\right)$
(ii) Find the location of the turning points, and determine their nature.
(iii) Graph $y=\cos \left(x^{2}\right)$ in the domain $0 \leq x \leq \pi$.
(b) A helicopter which is initially on the ground, rises vertically at a constant speed of $5 \mathrm{~m} / \mathrm{s}$. If a man is initially 50 metres horizontally from the helicopter, find the rate of change of the angle of elevation θ of the helicopter when the helicopter is 20 metres above the ground.

Question 6.

(a) Without using Calculus and using a scale of $1 \mathrm{~cm}=1$ unit on each axis, graph the following functions on the same axes in the domain $0<x<2 \pi$:
(i) $y=\cos x$
(ii) $y=\cos 2 x$
(iii) $y=\cos x+\cos 2 x$
(b) Find the volume of revolution when the region bounded by the curve $y=\ln (x+1)$, The y axis and the line $y=\ln 2$ is rotated around the y axis.
(c) Prove by Mathematical Induction :

$$
1 \times 2^{2}+2 \times 3^{2}+3 \times 4^{2}+\ldots \ldots \ldots \ldots \ldots \ldots . . . n(n+1)^{2}=\frac{n}{12}(n+1)(n+2)(3 n+5)
$$

End of Exam

0.1

YEAR 12 Terml 200G-EXTI
(a)

$$
\begin{aligned}
\sum_{k=1}^{A} \ln \text { luk } & =1 \ln 1+2 \ln 2+3 \ln 3+4 \ln 4 \\
& =\ln 2^{2} \cdot 3^{3} \cdot 4^{4} \\
& =\ln A \\
A & =2^{2} \cdot 3^{3} \cdot 4^{4} \\
& =27648
\end{aligned}
$$

(d) (i)
(i) $1412=1+\frac{92}{100}+\frac{72}{10000}+$
(í)

$$
\begin{aligned}
& =1+\frac{\frac{72}{100}}{1-\frac{1}{100}} \\
& =1+\frac{72}{99} \\
& =1 \frac{8}{11}
\end{aligned}
$$

(c) $\frac{d}{d x} \operatorname{shce}\left(x^{2}+1\right)=-2 x \operatorname{cosec}\left(x^{2}+1\right) \cot \left(x^{2}+1\right)$
d) $\int \cos x e^{\sin x} d x=e^{\sin x}+C$
(e) (i) $R \cos (x-\alpha)=R \cos x \cos \alpha+R$ sunx such

RSInd $=3 \sqrt{3} \quad R>0 \quad \frac{\pi}{2}<\alpha<\pi$.
$R \cos \alpha=-3$

$$
\begin{aligned}
R & =\sqrt{(3 \sqrt{3})^{2}+3^{2}} \\
& =\sqrt{36} \\
& =6 \\
\text { Tand } & =-\sqrt{3} \\
l & =\frac{2 y}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad 3 \sqrt{3} \sin x-3 \text { coske } \\
& \text { (ii) } \quad x-\frac{2 \pi}{3}=0 \\
& x=\frac{2 \pi}{3}
\end{aligned}
$$

Q $2\left(t^{(}\right)(i) \frac{d}{d x}$
(ii)

$$
\begin{aligned}
\frac{d}{d x} e^{5 x} \ln x^{2} & =\frac{d}{d x}\left(2 e^{5 x} \ln x\right) \\
& =2 \frac{e^{5 x}}{x}+10 e^{5 x} \ln x \\
& =2 e^{5 x}\left[\frac{1}{x}+5 \ln x\right]
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int \frac{q+x}{4+k^{2}} d x & =\int\left(\frac{9}{4+x^{2}}+\frac{k}{4+x^{2}}\right) d x \\
& =\frac{9}{2} \tan ^{4} \frac{x}{2}+\frac{1}{2} \ln \left(x^{2}+4\right)+C
\end{aligned}
$$

(c) $\left({ }^{i}\right)$

$$
\begin{aligned}
\frac{9}{2 x+1}+\frac{4}{3 x+4} & =\frac{9(3 x+4)+4(2 k+1)}{(2 x+1)(3 x+4)} \\
& =\frac{35 x+40}{6 k^{2}+4 x+4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{1} \frac{7 x+8}{6 x^{2}+11 x+4} d x & =\frac{1}{5} \int_{0}^{1}\left(\frac{9}{x x+1}+\frac{4}{3 x+1}\right) d x \\
& =\frac{1}{5}\left[\frac{9}{2} \ln (x+x)+\frac{4}{3} \ln (3 x+4)\right]_{0}^{1} \operatorname{for} x>0 \\
& =\frac{1}{5}\left[\frac{9}{2} \ln \left(\frac{3}{1}\right)+\frac{4}{3} \ln \left(\frac{7}{4}\right)\right]
\end{aligned}
$$

Q3(c) Ancx $=\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos x} d x$
$=[-\ln \cos x]_{0}^{\pi / 3} \quad \cos x>0$ for $0<x<\frac{\pi}{3}$
$=-\left[\ln \frac{1}{2}-0\right]=\ln 2$ square ants
(v)

$$
\begin{aligned}
S_{n} & =8 n^{2}-6 n \\
S_{n-1} & =8(n-1)^{2}-6(n-1) \\
T_{n} & =S_{n}-S_{n-4} \\
& =16 n-14
\end{aligned}
$$

(c)

$$
\begin{aligned}
S_{n} & =2 \frac{1}{2}+4 \frac{1}{4}+6 \frac{1}{8}+8 \frac{1}{16} \\
& =(2+4+\ldots 2 n)+\left(\frac{1}{2} \times \frac{1}{2^{2}} \times \frac{1}{2^{3}}+\cdots \frac{1}{2^{n}}\right) \\
& =\frac{n}{2}[4+(n-1) \cdot 2]+\frac{1}{2}\left(\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}\right. \\
& =n(n+1) \times 1-\left(\frac{1}{2}\right)^{n} \\
S_{n} & =n^{2}+n+1 \times 2^{-n}
\end{aligned}
$$

$d_{(i)}$

(ii) For limiting sum $\quad-<r<1 \quad r \neq 0$.

$$
\begin{array}{cc}
\begin{array}{rl}
\frac{3 x+4}{2 x-1}=1 & \frac{3 x+4}{2 k-1} \\
x=-5 & x=-\frac{3}{5} \\
\therefore \text { Soln }\left\{-5<x<-\frac{4}{3}\right\} & \text { or }\left\{-\frac{4}{3}<x<-\frac{3}{5}\right\}
\end{array} .
\end{array}
$$

04 灾

$$
\begin{align*}
& \int_{0}^{1} \sqrt{x^{2}-x^{2}} d x \\
& =\int_{0}^{\frac{\pi}{2}} \sqrt{r^{2}-r^{2} \sin ^{2} \theta} \cdot r \cos \theta d \theta \tag{1}\\
& =\int_{0}^{\frac{\pi}{2}} \sqrt{\mu^{2}\left(1-\sin ^{2} \theta\right)} \cdot \mu \cos \theta d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sqrt{r^{2} \cos ^{2} \theta} \cdot r \cos \theta d \theta \\
& =r^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
& =r^{2} \int_{0}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta \\
& =\frac{r^{2}}{2}\left[\theta+\frac{\sin ^{2} \theta}{2}\right]_{0}^{\pi} \\
& =\frac{r^{2}}{2}\left[\frac{\pi}{2}+0-0\right] \tag{1}\\
& =\frac{\pi r^{2}}{4} \\
& \text { ver rsuco } \\
& d x=r \cos \theta d \theta \\
& x=0 \quad \theta=0 \\
& x=r^{r} \quad \theta=\frac{\pi}{2} \\
& \text { stllyse } \\
& =4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x \\
& =\frac{4 b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \tag{1}\\
& =\frac{4 b}{a} \cdot \frac{\pi \cdot a^{2}}{4}=\pi n d s
\end{align*}
$$

(ii) Area

5
(d) (i)

$$
\begin{align*}
y & =\cos x^{2} \\
\frac{d y}{d x} & =-2 x \sin x^{2} \tag{1}\\
\frac{d^{2} y}{d x^{2}} & =-2 x \cdot \cos x^{2} \cdot 2 x-2 \sin x^{2} \\
& =-2 \sin \left(x^{2}\right)-4 x^{2} \cos x^{2}
\end{align*}
$$

(ii) For torning poub

$$
\frac{d y}{d y}=0
$$

$-2 x, \sin x^{2}=0$
$x=0 \quad x^{2}=0, \pi, 2 \pi, 3 \pi \cdots$

$$
x=0, \pm \sqrt{\pi}, \pm \sqrt{2 \pi} \pm \sqrt{34}, \ldots .
$$

But $x=\sqrt{\pi}, \quad \sqrt{2 \pi}$ axi $y=1, \frac{\sqrt{3 \pi}}{}$ as $0<x<\pi$

$$
\begin{align*}
& y=-1 \tag{1}\\
& \text { Turning poits }(\sqrt{\pi},-1),(\sqrt{2 \pi}, 1) \text { \& }(\sqrt{3 \pi},-1)
\end{align*}
$$

For nature of turnugs point test $\frac{d^{2} y}{d m}$ for sijo concarty as $\theta<k<\pi$ is continiois.

At $x=\sqrt{2 \pi}$

$$
=-8 \pi
$$

$$
\begin{aligned}
& =-8 \pi \\
& <0 \\
& \text { live maximumat }(\sqrt{2 \pi}, 1)
\end{aligned}
$$

is Relartive minimim at $(\sqrt{3 \pi},-1)$
be)

$$
\begin{align*}
& \text { Amount left } \tag{60}\\
& \text { end isx mowth }=(180000)(1+r)-2000 \quad \\
& \text { Amount left } \\
& \text { end 2ud Morth }=[180000(14 r)-2000](14 r)-2000 \\
&=180000(14 r)^{2}-2000,[1+(14 r)]
\end{align*}
$$

Amount left
end 3ud.
mouth

$$
\begin{aligned}
& =\left[180000(14 r)^{2}-2000(1+(14 r))\right]\left(14 r_{0}\right)-2000 \\
& =(180000)(14 r)^{8}-2000\left[1+(14 r)+(14)^{3}\right]^{3}
\end{aligned}
$$

Amonent left

$$
\begin{align*}
& \text { Amoont left } \\
& \text { End n mouths }=180000 \cdot(14 r)^{n}-2000\left[1+(14 r)+\cdots(1+r)^{n}\right] \\
&=180000(14 r)^{n}-2000\left[1 \cdot \frac{(14 r)^{n}-1}{14 r-1}\right] \tag{1}\\
&=180000(14 r)^{n}-2000\left[\frac{(1+r)^{n}-1}{r}\right] \\
& 0=180000(14 r)^{n}-2000\left[\frac{(14)^{n}-1}{r}\right] \\
& \therefore 180000\left(1+\frac{1}{300}\right)^{n}=2000(300)\left[\left(1+\frac{1}{300}\right)^{n}-1\right] \\
& 420000\left(\frac{301}{300}\right)^{n}=600000 \tag{3}
\end{align*}
$$

$$
\left(\frac{301}{300}\right)^{n}=\frac{10}{7}
$$

$$
\begin{equation*}
n=107.18 \tag{1}
\end{equation*}
$$

\therefore Number of \$2000 pougmento is 107

$$
\begin{aligned}
& A t x=\sqrt{\pi} \quad \begin{array}{ll}
d x^{2} & =-2 \cdot 0-4 \pi x-1
\end{array} \\
& 70
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& x=0 \quad y=1 \quad y^{\prime}=0 \\
& x=\pi \quad y=-0.9 \quad y^{\prime}=-2 \cdot 70 \\
& y_{1}, ~(\sqrt{2}, 1)
\end{aligned}
$$

(4)
$Q()^{(e)}$

(1) each graph
(b)

$$
\begin{align*}
\operatorname{Tan} \theta & =\frac{x}{50} \\
\theta & =\operatorname{Tan}^{4} \frac{x}{50} \\
\frac{d \theta}{d x} & =\frac{50}{2500+x^{2}} \\
\frac{d x}{d t} & =5 \\
\therefore \text { Rate of change angle elevachan } & =\frac{d \theta}{d x} \\
& =\frac{d \theta}{d x} \cdot \frac{d x}{d t} \tag{1}\\
& =\frac{50}{2500+20^{2}} \cdot 5 \quad \text { whan } x=20 \\
& =\frac{250}{2400} \\
& =\frac{5}{58} x a d / \mathrm{s} . \tag{1}
\end{align*}
$$

(ce)
Step 1 $n=1$

$$
\begin{array}{rlrl}
n=1 \\
T_{1} & =1 \cdot(1+1)^{2} \\
& =4 & S_{1} & =\frac{1}{12}(1+1)(1+2)(3+5) \\
& =\frac{2 \cdot 3 \cdot 8}{12} \\
& =\frac{18}{12} \\
& & \\
& & T_{1} & =S_{1}
\end{array}
$$

\therefore statement thac $n=1$
steq2 Assume iflatimet i ture $n=k$
u $1 \times 2^{2}+2 \times 3^{2}+\cdots \quad h(h+1)^{2}-\frac{k}{12}(k+1)(k+2)(3 h+5)$
To prove statencest is the $n=k+1$

$$
\begin{aligned}
& \text { To prove staturest is thue } n=k+1 \\
& k(k+1)^{2}+(k+1)(k+2)^{2}=\left(\frac{k+1)}{12}(k+2)(k+3)(3 k+8)\right. \\
& u^{\prime}\left(x 2^{2}+2 \times 3^{2}+\cdots \quad k(k+1)^{2}+(k+1)(k+2)^{2}\right.
\end{aligned}
$$

$$
\text { New } 1 \times 2^{2}+2 \times 3^{2}+\cdots h(h+1)^{2}+(h+1)(h+2)^{2}
$$

$$
\begin{aligned}
& =\frac{k}{12}\left(h w_{1}\right)(h w a)(3 h+5)+(h+1)(h d)^{2} \\
& =(k+1)(k+2)\left[3 k^{2}+5 k+k\left(k k_{2}\right)\right] \\
& =\left(\frac{k}{12}\right)(k+2)\left[3 k^{2}+7 h k+2 k\right] \\
& =\frac{(h+1)}{10}(h+2)\left[3 h^{2}+8 k+9 h+2 k\right] \\
& =\prod_{\substack{h \\
k}}^{1 i}(h+2)[k[z h+8]+3[3 / 2 \alpha-s]] \\
& \text { - } \frac{(h 21)(h+2)(k+3)(3 h+s}{12}
\end{aligned}
$$

