Y12 Mathematics Extension 1 | Term 1 Assessment 2011

Question 1 (9 Marks)		Marks
(a) Differentiate with respect to <i>x</i> :		
(i)	$\ln(\cos^2 x)$	2
(ii)	$x^2 \operatorname{cosec}(x-1)$	2
(iii)	$e^x \cos(3x)$	2
(b) On a sting incre numl carro	cultivated farm plot, there are approximately 12 times as many carrot plants as ing nettle weeds. However, the plot becomes neglected and the number of weeds ases at 4% per day whilst the number of carrots decreases at 8% per day. Find the ber of days, to the nearest day, that must elapse before there are more weeds than ots.	3

(a) Find: $\int \frac{3x}{x-1} dx$.	2
(b) The area bound by $y = \sec x$, $y = 1 - 2x$, $y = 0$ and $x = \frac{\pi}{4}$ is rotated about the <i>x</i> -axis. Find the volume of the solid generated.	3

(c) An observer at *A* watches a falcon *F* flying downward to earth in pursuit of its prey. The falcon is descending at 220km/h and the point *B* directly beneath the falcon is 1.5km from the observer. Find the rate at which the observer's head is tilting, in radians per minute, when the falcon's altitude is 3.3km.

Question 2 (9 Marks) – START A NEW PAGE

Marks

4

4

(a) Express $\log\left(\frac{x^2}{\sqrt[3]{y}}\right)$ in terms of p and q if $p = \log x$ and $q = \log y$.	2
(b) A geometric series $S(r)$ has a first term of 5, a last term of 20,480 and a common ratio of r .	
(i) Find the difference between $S(2)$ and $S(4)$	2

(1)	Find the difference between 5(2) and 5(4).	2
(ii)	Find the total number of terms in $S(2)$.	1

(c) Neatly sketch the graph of $y = \sqrt{3} \sin x - \cos x$ for the domain $0 \le x \le 2\pi$, clearly showing 4 all intercepts and stationary points.

Question 4 (9 Marks) – START A NEW PAGE	Marks

(a) Evaluate:
$$\sum_{k=0}^{4} 3^{2k-3}$$
 2

(b) Evaluate the following integral using the substitution $\theta = \sin^{-1}$	$\left(\frac{x}{2}\right)$):
---	----------------------------	----

$$\int_0^{\sqrt{3}} \frac{2x^2}{\sqrt{4-x^2}} dx$$

(c) Use the principle of mathematical induction to prove that $5^n + 2(11^n)$ is divisible by 3 3 for all positive integers *n*.

Question 5 (9 Marks) – START A NEW PAGE	Marks
(a) Find: $\int \frac{x-3}{x^2+1} dx.$	2
(b) Find: $\int \sin 2x \sqrt{\cos 2x} dx$.	2

(c) The series S_n is given by the following:

 $S_n = 3^{2k} + 3^{2k-3} + 3^{2k-6} + \dots + 3^{-k}$

(i)	Find the value of <i>n</i> , the number of terms in the series, in terms of <i>k</i> .	1
(ii)	Show that the <i>n</i> th term is given by:	1
	$T_n = \frac{27 \times 3^{2k}}{2^{3n}}$	

$$=\frac{27\times3^{2\kappa}}{3^{3n}}$$

Calculate the sum of the series. (iii)

3

- (a) Use the principle of mathematical induction to prove that $\frac{d}{dx}x^n = nx^{n-1}$ for all positive integers *n*. (You may assume the product rule.) **3**
- (b) Neatly sketch the graph of $y = \ln(x^2 2x + 1)$.

(c) Evaluate
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\cot x + \csc^2 x) dx.$$
 3

Question 7 (9 Marks) – START A NEW PAGE

- (a) A spherical balloon is being inflated at the rate of 85cm³ per second. Find the rate at which its radius is increasing after one minute (3 decimal places).
- (b) A man named Fischer is administered a drug that puts him to sleep. As long as there is 15mg of the drug in his body, he remains asleep. 10% of the drug leaves Fischer's body every 30 minutes. He is given an initial dose of 20mg, and an additional dose of *d* mg is given at the beginning of each new hour.
 - (i) Show that immediately after the second additional dose is administered, Fischer has 13.122 + 1.81d mg of the drug remaining in his body.
 - (ii) If R_n is the amount of drug remaining at the end of the *n*th hour, just before he receives his additional dose, show that R_n is given by:

 $R_n = 20(0.81)^n + d\left[\frac{81}{19} - \frac{(0.81)^n}{0.19}\right]$

(iii) If Fischer must be kept asleep for at least ten hours, find the minimum hourly dose required (to the nearest 0.01mg).

3

Marks

1

3

3

MATHEMATICS Extension 1 : Question	n l	2011
Suggested Solutions	Marks	Marker's Comments
$l(a)(i) d h(cos^2 x) = -2.5inx cos x$	١	
= -25m2	1	
Cosx	L	
= -2.Tan x-	2	
(i) dx h(los ² x) = dx (2hlos x) for XXXII	Ι	
= - ZSinz	4	
= -2: Tan >c	ŗ	
(ii) $\frac{d}{dx}(x^2(\operatorname{cosec}(x-i)) = \frac{d}{dx}\left[\frac{x^2}{\sin(x-i)}\right]^{\frac{1}{2}}$	-12	
$= \frac{Sin(x-1)xZx - x^{2}x \cos(x-1)}{Sin^{2}(x-1)}$	1	
[= Z.x. Cosec(x-1)-x Cost(x-1) Cosecta	りち	
<u>OR</u> = xcosec(x-i)(2-xcot(x-i))) _	
(iii) $\frac{d}{dn} \left[e^{\chi} \left(e^{\chi} \left(3\chi \right) \right] = \left(\cos(3\chi) e^{\chi} + e^{\chi} \left(-3\sin(3\chi) \right) \right)$	2	I mark each for
= e ² [Cos(3x) - 35m (3x)]		the pasts of the
		product rule
(b) Let t be the number of days elapsed		
· . Number of weeds = n(1.04)t for nER		
Number of corrots = 12n (0.92)t		
Solving 120(0.92) = 11 (1.04)t	t	
$12 = (1.04)^{t}$		1 mark last S-
(0.92)t		t-1 as the muse
$12 = \left(\frac{1-04}{2}\right)^{t}$		- na pous
(26)t		
$12 = \left(\frac{1}{23}\right)$		
t = log (26)12. i.e. 1012	I	
t = 20.268022 $ln26-1n23$, I	
··· 21 deus must elance Las-	•	
these are more weeds than commente		

7

.

J:\Maths\Suggested Mk solns template_V2_no Ls.doc

MATHEMATICS Extension 1 : Question Marks **Marker's Comments** Suggested Solutions 3x-3+3 Imk done. Imk done. Imk substitution). $\frac{1}{3} + \frac{3}{2} \frac{1}{4}$ + 3/n(x-1)+C $= \frac{1}{2} \pi \times (1 \times \sqrt{2})$ * lost 3 mk f they mixed up the cylinders beight and radius. * 1/2 mK off if they Π 6 roublint subtract properly. У. Ser-x dx ' = T 1-22) * If they did ((1-2)2 then they york. ~ 0 unt -Seco * no marks for graphing it correctly. * If they only did **}**ant **f**an $V = \pi \int_{0}^{\pi} \sec^{2} x \, dx = \pi$ -2x they got link. * If they did the area only and made errors they get O

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question ... Cont Marks **Marker's** Comments **Suggested Solutions** folcon's attitude=" $E_{n0} = \frac{2}{16}$ 20=1.5 tano 3.3Km $\frac{1}{10} = 1.5 \text{ Sec} 0$ žnk * If they get dx = 220 only they lost 1 mbzinterpretation mode question easier. 1.5Km dx (falcon is now 220 at figing down 20 de Æ dx 1/2 Ax 1/__ 20050 × -220 1 $5c=3\cdot3$, $tarro=\frac{3}{12}$ Y1_ $\Theta = 1.14-4168834$ * If they left it in degrees, but marks 12 1/2 * If they left in right bat tok. æ 219×60 head is tithing downwards observers 16 275 radmin 657 \bigcirc Æ tan O = tuber x = 3.30 = tan' 10 = -5500 red hr 1.5+ $\frac{d\Theta}{dE} = -\frac{275}{657} rad/min$ 20 do dx dy JE dE o The observers head 1.5 1.57 X2 -330 etc 5 1.5772^{2}

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

Y12 MATHERT ASSESSMENT TASK 2. TERMI 2011

 $\label{eq:linear} Woh08\IRAH M Fac Admin\Assessment in fo\Suggested Mk solns template_V4_half Ls.doc$

TERM 1 ASST. 2 2011 MATHEMATICS Extension 1 : Questio	n. 4-	i g z
Suggested Solutions	Marks	Marker's Comments
a) $\frac{4}{23} = 3^{-3} + 3^{-1} + 3^{1} + 3^{3} + 3^{5}$ $= 1 + 1 + 3 + 27 + 243$ $= 7381 = 273\frac{2}{27}$ b) $\Theta = \sin^{-1}(x) \Rightarrow d\Theta = 1$ $\frac{1}{\sqrt{14} - x^{2}}$	ł	Either answer got full marks,
$\frac{dx}{\sqrt{4-x^2}} = d\theta$ $\frac{\sqrt{4-x^2}}{0}$ $\frac{dso}{x=2\sin\theta}$ $\frac{x=\sqrt{3}}{0} = \sin^{-1}(5\pi) = \frac{7}{3}$ $\frac{x=0}{2} = \theta = \sin^{-1}(0) = 0$ $\int_{1}^{7} \int_{2}^{7} 2(2\sin\theta)^2 d\theta$	1/2	(limit)
$= \frac{7}{7_{3}}$ $= \frac{8}{5} + \frac{7}{5} + \frac{3}{2} + \frac{3}{2$		Most people transferred to $x = \sin 20$ before finding do This produced $\sqrt{\cos^2 0}$ in the denominator. Only a few explained away [cos 0] correctly (or even noticed it !)

 $\label{eq:linear} $$ TITAN StaffHome \ M Fac Admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc and the soln staff Admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc admin Assessment in fo Suggested Mk solns template_V4_half Ls.doc$

292 MATHEMATICS Extension 1 : Question ... 4. **Suggested Solutions** Marks Marker's Comments To Prove $5^{n}+2(11^{n})$ is divisible 3 for suteger $n \ge 1$, Essentially 2 Step 1 1/2 marks for a $9f_{n=1}, 5^{n}+2(11^{n})=5+22$ correctly argued Step 2 plus I mark =27 =3×9 Thus the for n=1. for the structure Step 2 including a is the for 2 correct step ! , some integer A $ie_{5} + 2(11^{k})$ = 3 A and step 3. It is necessary to prove that $5^{k+1}+2$ is divisible by 3. Step 3 was generally weak, $+ 2(11^{k+1}) = 5_{x}5^{k} + 2_{x}11_{x}11^{k}$ $= 5x5^{k} + 22x11^{k}$ although most $= 5(5^{k}+2(11^{k}))+12\times11^{k}$ people knew the general idea, it was grite poorly presented. = 5x3A + 12x11k (By $= 3(15A + 4(11^{k}))$ which is divisible by 3. Thus, if the for k. then also fine for k ん ing steps land2 by P.M. 1 the is divisible by 3 for 51+2(11) teger

 $\label{eq:linear} Woh08\IRAH M Fac Admin\Assessment in fo\Suggested Mk solns template_V4_half Ls.doc Mk solns template_V4_half Ls.$

MATHEMATICS Extension 1 : Question..... Marks **Suggested Solutions Marker's Comments** A olz chu K 3 2-3 \$ K41 x241 224 1 Cuch "n+1 Tem K YC -3 In 1 eff each enor 40 COSLK 2 1 2K-6 -3 3 2 4 -3\N-1 ~ и Number ferms 2k-3n+3=k 34 = 3k+3 $M = k \neq 1$ 12 est each mistake. 4-1 3 ~ 2 २ 24-6 1 est end 3 mistake, recepted, DR 13 26 n=kx1 n 3/44 -3 24+3 2. k+3 J:\Maths\Suggested Mk solns template_V3.doc

MATHEMATICS Extension : Question...... Marks **Suggested Solutions Marker's Comments** n-1 for n=1,2,3,... dfr"I Qb(a) Let P(n) be the proposition : = A .0. For P(1) Lits = el [22] RITS f(x) = 21, 10 $(\frac{1}{2})$ for $\frac{d}{dk} = 1$ = lx = line (x+4) - x t l if explana L-90 La Vice First Principles = lim h h-=> h · Leometrical) . L45 - Atts i. P(L) is true -i if state 2 KERT "k>1" opto some integer k 21 P(n) is the (*) 2 P(K) for u= k+1 P(n) is true BT-P 4 ~ K+1 = (K+1) x AX PCK+C PAOSF 100 201-1 el[xkx] d NO ~ ex ex Preduct Kule 1/2 x x d x ex uesing P(1) and kx K-I + x x 1 120 LESUMPTIO. Kat + 2 $(\kappa + \kappa) \times$ istrace P(K+1) 3 is true for n= 1, 2, 3, ... -P(n) PMI Ley Hence ZIN(26-1) only if $ln(x-i)^2$ 220+1 = (b) In S 2621. u(x-l) I For VAK=0 with sketch coucove . (ownor od) L Fos each inter copt 0 for c.d shope 2 for Mœx x=210(x-1) 13 VA-x=1 1 1/2 sketch. (052 + cosee + cose (x) dx I COTX c)&z 11/2 SINC Ŵ. 1 for each cotse (m/s ln(sinx) [lu(sin #) - cot #] + For subst ln(sin =) - cot =] -07 ln 13 answer (convect) - en(53 7 T 3

MATHEMATICS Extension 1 : Ouestion				
Suggested Solutions	Marks	Marker's Comments		
a) $\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt} = \frac{1}{4\pi r^2} \times 85$	lm			
$t=60 V=60\times 85 = 5100 = \frac{4}{3}\pi v^{2}$ $v = \left(\frac{3825}{\pi}\right)^{\frac{1}{2}} = 10.67809\cdots$	[m	many get r wrong		
$\frac{dv}{dt} = \frac{85}{4\pi} = \frac{65}{4\pi} = \frac{65932}{4\pi} = \frac{65932}{4\pi} = \frac{1}{1000} = $				
radius noversing at 1057 cm/sec or 3.559 cm/sin #	[m			
b) After 1 st additional dose = $20(0.9)^{1+d}$ After 2 ^{4d} additional dose = $[20(0.9)^{1+d}]^{0.9}$ + d = $13.122 + 1.81 d$	١٣			
ii) Before additional dor. $R_1 = 2.0(0.81)$ $R_2 = 2.0(0.81)^2 + d(0.81)$ $R_2 = 2.0(0.81)^3 + d(0.81^2 + 0.81)$	1m	many fudging if show consistency in GP Set 1m		
$R_{n} = 2o(0.81)^{n} + d(0.81^{n-1} + 0.81^{n-2} + 0.81)$ = $2o(0.81)^{n} + d(0.81^{n-1} + 0.81^{n-1})$	Im	must show the first term & last ferm, min 3 terms		
$= 2 \omega (0.81)^{n} + d \left[\frac{81}{19} - \frac{0.81^{n}}{0.19} \right] \#$	lm	,		
$i = R_{10} = 15$ $2_0(0.81)^6 + d(\frac{81}{19} - \frac{0.81}{0.19}) = 15$	lin	Student solve R10=0 Get no marks		
$d = \frac{15 - 30(0.01)}{19} = 3.47 \text{ mp } \text{ H}$ $\frac{81}{19} - \frac{0.81'}{0.19} \qquad (\text{recast 0.0] m})$))	as it makes calculation ressier of the answer is - 0.67 m		
		does not make sense		

J:\Maths\Suggested Mk solns template_V2_no Ls.doc