Name:	
Class:	

YEAR 12

ASSESSMENT TASK 2 TERM 1, 2014

MATHEMATICS EXTENSION 1

General Instructions:

- · Reading Time: 5 minutes.
- Working Time: 2 hours.
- · Write in black or blue pen.
- · Board approved calculators & templates may be used
- · A Standard Integral Sheet is provided.
- In Question 6 12, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 82

Section I: 5 marks

- Attempt Question 1 5.
- Answer on the Multiple Choice answer sheet provided.
- Allow about 8 minutes for this section.

Section II: 77 Marks

- · Attempt Question 6 12
- Answer on blank paper unless otherwise instructed. Start a new page for each new question.
- Allow about 1 hours & 52 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 6, Question 7, etc. Each question must show your Candidate Number.

SECTION I MULTIPLE CHOICE (5 marks)

Attempt Question 1 - 5 (1 mark each)

Allow approximately 8 minutes for this section

- 1. A telephone number consists of 7 digits. How many different telephone numbers exist if each digit appears only once in the numbers?
- (A) 7!
- (B) 10⁷
- (C) 7⁷
- (D) $\frac{10!}{3!}$

2. The sum of the first four terms of an arithmetic progression is S_{AP} and the sum of the first four terms of a geometric progression is S_{GP} . If $\frac{S_{AP}}{S_{GP}} = \frac{2}{3}$ and the common difference and common ratio of the arithmetic and geometric progressions are both equal to 2, determine $S_{AP} + S_{GP}$.

- (A) 50
- (B) 40
- (C) 30
- (D) 20

3. The domain and range for $y = 3\sin^{-1}2x$ respectively are:

- (A) $-3 \le x \le 3$; $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
- (B) $-2 \le x \le 2$; $-3\pi \le y \le 3\pi$
- (C) $-\frac{1}{2} \le x \le \frac{1}{2}$; $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$
- (D) $-\frac{1}{3} \le x \le \frac{1}{3}$; $-\frac{2\pi}{3} \le y \le \frac{2\pi}{3}$

4. Simplify the expression:

$$\frac{2n!}{(n-1)!} + \frac{2(n-1)!(n-1)!}{[(n-2)!]^2}$$

- (A) $\frac{2n}{n-2}$
- (B) $\frac{2n}{(n-1)(n-2)}$
- (C) $2n + \frac{2}{(n-2)^2}$
- (D) $2(n^2 n + 1)$
- 5. If $t = \tan \alpha$, which of the following is an exact expression for $\frac{\cos 2\alpha}{1 + \sin 2\alpha}$?
- $(A) \quad \frac{t-1}{t+1}$
- $(B) \qquad \frac{1-t^2}{1+2t}$
- (C) $\frac{1-t}{1+t}$
- $(D) \qquad \frac{1}{t+\sqrt{1+t^2}}$

END OF SECTION I

P.T.O.

SECTION II EXTENDED RESPONSE (77 marks)

Total Marks is 77

Attempt Questions 6 – 12.

Allow approximately 1 hour & 52 minutes for this section.

QUESTION 6 (11 Marks)COMMENCE A NEW PAGEMARKS(a) Find $\int \frac{e^{2x}}{1+e^{2x}} dx$ 2

(b) Evaluate
$$\int_0^{\pi/3} \cos^2 5x \, dx$$
. [Leave answer in exact form]. 3

(c) Let
$$f(x) = 1 - 2\sin^2 x$$

(i) Sketch
$$y = f(x)$$
 for the domain $0 \le x \le 2\pi$ 1

(ii)	Shade the region on your sketch, bounded by the curve
	$y = 1 - 2 \sin^2 x$, the x-axis and the lines $x = 0$ and $x = \frac{5\pi}{4}$.

$$9\frac{1}{32} + 11\frac{1}{64} + 13\frac{1}{128} + \dots$$

P.T.O.

QUESTION 7 (11 Marks) COMMENCE A NEW PAGE MA

(a) How many arrangements of the word 'EQUATION' are there if none of the consonants are together?

(b) (i) Prove that
$$\frac{d}{dx} [\tan^{-1}(\csc x)] = \frac{-\cos x}{\sin^2 x + 1}$$

(ii) Hence prove that

$$\int_{\tan^{-1}(\frac{1}{\sqrt{3}})}^{\frac{\pi}{2}} \frac{\cos x}{\sin^2 x + 1} dx = \tan^{-1}(\frac{1}{3}).$$
 2

(c) The chord PQ of the parabola $x^2 = 4ay$ passes through the focus S. T is a point on the tangent to the parabola at Q such that TP is parallel to the axis of the parabola.

Let the coordinates of P and Q be $(2ap, ap^2)$ and $(2aq, aq^2)$ respectively.

(i) Find the coordinates of T.

(ii) Further, assume that the equation of chord PQ is $y = \frac{1}{2}(p+q)x - apq$.

Hence show that the equation of the locus of T is

 $x^2(y + 2a) + 4a^3 = 0$

QUESTION 8 (11 Marks) COMMENCE A NEW PAGE

(a) (i) Find $\frac{d}{dx} [\ln x]^n$

(ii) Hence, find the volume of the solid of revolution formed if the portion of the curve $y = \frac{\ln x}{\sqrt{x}}$ from x = 1 to x = e is rotated about the x-axis.

(b) Find the equation of the normal to the curve $y = \ln \left[\frac{1 + \sin x}{\cos x} \right]$ at $x = \frac{\pi}{3}$. 4

Leave answer in the most simplified and exact form as ax + by + c = 0.

P.T.O.

MARKS

2

3

2

1

(c) The first term of an arithmetic series is $\log_e 2$ and the common difference is $\log_e 4$.

(i) Show that the sum to n terms of this series is
$$S_n = n^2 \log_e 2$$
. 1

(ii) Find the least value of n for which S_n is greater than fifty times 2 the *nth* term.

QUESTION 9 (11 Marks) COMMENCE A NEW PAGE

- (a) If $y = \cos \theta + \sqrt{3} \sin \theta$,
 - (i) Express y in the form $R \cos(\theta \alpha)$ where R > 0, and $0 \le \alpha \le \frac{\pi}{2}$. 2
 - (ii) Hence or otherwise, solve $\cos \theta + \sqrt{3} \sin \theta = 1$ for $0 \le \theta \le 2\pi$. 2
- (b) Rita borrows \$20 000 from City Credit at 12 % p.a. interest, compounded monthly. She pays it back at regular monthly intervals over 4 years. However, because she is a good customer she is given the first two months interest free.
 - (i) If each monthly payment is M, find in terms of M:
 (α) the amount she owes after the second payment.
 1
 - (β) the amount she owes after the fourth payment. 1
 - (ii) Show that the amount of each monthly payment can be expressed as

$$M = \frac{200\,(1.01)^{46}}{1.02(1.01)^{46} - 1}$$
3

(iii) At the end of the second year Rita decides to use her bonus to make a 2 once off payment of \$2 000 into her loan account. Assuming she then continues to make the same arranged monthly payment found in part (ii), how soon from this once off payment, will she be able to pay off her loan?

P.T.O.

Page 5

QUESTION 10 (11 Marks) COMMENCE A NEW PAGE

3

2

2

4

(a) Let $y = (x^2 - 3)e^{-x}$

- (i) Show that the stationary points occur at x = -1 and x = 3 and determine their nature.
- (ii) Make a neat sketch, including the intercepts with the axes, coordinates of any turning points and any asymptotes.

Express all intercepts, turning points and asymptotes as exact values.

- (iii) Using the sketch drawn and another sketch, solve the inequality $(e^x e^{-x})(x^2 3) \ge 0$. Show clearly how you obtained your answer.
- (b) If $y = \sin x$, prove $\frac{dy}{dx} = \cos x$.

QUESTION 11 (11 Marks) COMMENCE A NEW PAGE

(a) A diver is descending vertically from the centre of a hemispherical tank of radius r metres, at the rate of 2 metres per second. A light, L, at the edge of the tank throws the diver's shadow, M, on the curved surface of the tank, as shown in the diagram below. The diver at D is h metres from O at time t = 0.

(ii) If s is the distance the shadow moves through along the edge of the curve, how fast is the shadow moving along the tank's edge when the diver is halfway down i.e. find $\frac{ds}{dt}$.

P.T.O.

Page 6

QUESTION 12 (11 Marks) COMMENCE A NEW PAGE MARKS

(a) Evaluate
$$\int_{\sqrt{2}}^{2} \frac{1}{x^3 \sqrt{x^2 - 1}} dx$$
, using the substitution $x = \sec \theta$. 4

(b) (i) Write down an expression for $\tan(A - B)$ in terms of $\tan A$ and $\tan B$. 1

(ii) Deduce that for positive integer values of
$$n$$

 $1 + \tan n\theta \tan(n+1)\theta = \frac{\tan(n+1)\theta - \tan n\theta}{\tan \theta}$

(iv) Hence prove that the sum to *n* terms of the series 4 $\tan \theta \tan 2\theta + \tan 2\theta \tan 3\theta + \tan 3\theta \tan 4\theta + \dots$

is

 $S_n = \cot\theta \tan(n+1)\theta - (n+1)$

S END OF EXAMINATION S

JRAHS: MATHS EXTI	- Page 1-
Section I: TERMI TASK 2 2014	<i>J</i> ² (
1. from 0 to 9, trace are 10 digits. For a seven digit telephone number,	
The number of deficient numbers are $10x 9x 8x 7x 6x 5x 4 = 10!$ 3!	
Hence (D) $2 \zeta = \pm (2a \pm 3d)$	
$\frac{1.6}{1.6} \cdot \frac{3}{34} = 2(2a + 3d)$	
and $S_{4} = A(1-r^{4})$ 1-r 1.e $S_{QP} = A(1-r^{4})$	
$\frac{1-r}{But S_{AP} = 2} - \frac{4a + 6d}{s_{AP} 3} = \frac{4a + 6d}{a(1-r^4)/(1-r)}$	
But $d = r = 2$ $\frac{2}{3} = \frac{4a + 12}{4a + 12} \times (1-2)$ $q(1-2^{4})$	
= 4a + 12 15a 3aa - 12a + 27	
30q = 12q + 36 $l8a = 36$ $q = 2$	4
$\frac{14nce}{14nce} = \frac{5}{4a} + \frac{5}{ap} = 2(2\times2+3\times2) + 2(1-1)$	-2 [*]) = 20+30 = -2

-lage 2 -NY 3T Z y= 3514-122 3. $2x = Sin(\frac{y}{3})$ $\therefore x = 2Sin(\frac{y}{3})$ 0 -317 lence C 2(n-1)! (n-1)! 4. 21! (h-1)] $[(h-2)!]^2$ 2(1-1)! 2(n-1)(n-2)! (n-1)(n-2)! (h-1) (n-2)! (n-2)! 2 (n-1)(n-1) 24 + $2n + 2n^2 - 4n + 2$ - $2n^{2}-2n+2$ $= 2(n^2 - n + 1)$ Hence D Ji+t2 a dt S. t=tan x ⇒ cos & - Sin & ·; 6022 1+++2 -1+Sin 2d 1+2SINd Lond 1+ 2xt Jitt' Jitt' $1 - t^2$ 1+t2+2t $\frac{(1-t)(1+t)}{(1+t)(1+t)}$ 1-t 1++

MATHEMATICS: Question	la	
Suggested Solutions	Marks	Marker's Comments
(III) $A = 5 \int cos 2x dx$ $shaled = 5 \int cos 2x dx$ $= 5 \times \left[\frac{1}{5} \sin 2x \right] \frac{\pi}{4}$ $= 5 \times \left[\frac{1}{5} \sin 2x \right] \frac{\pi}{6}$ $= 5 \times \left(\frac{1}{2} \sin \pi 2 - \frac{1}{2} \times 0 \right)$ $= \frac{5}{2}$ $\therefore Area of Maded region is 2\frac{1}{2} unit^{2}$	2	Dintegration and "one bop" Dicorrect answer
$d) S_{n} = 9 \frac{1}{32} + 11 \frac{1}{64} + 13 \frac{1}{128} + \cdots$ $= (9 + 11 + 13 + \cdots) + (\frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \cdots)$ $= \frac{h}{2} (2x9 + (h-1)2) + \frac{1}{32} (1 - (\frac{1}{2})^{n})$ $= \frac{h}{2} (18 + 2n - 2) + \frac{1}{12} (1 - 2^{-n})$ $= h^{2} + 8n + \frac{1}{16} (1 - 2^{-n})$		

MARKING COMMENTS

Extension I - Question 7

(a)

Response	Mark
14 400	2
3! × 5! (720 in a row -> multiple of 720)	1
8! = 36000	1
Treated as 4 vowels and 4 consonants -> 480	1
Understand pattern only as CVCVCVCV or VCVCVCVC	0

(b) (i)

Response	Mark
Differentiated 'as a whole' to get $\frac{1}{1 + cosec^{2}x} \times \frac{d}{dx} (\frac{1}{sinx})$ OR $\frac{1}{1 + cosec^{2}x} \times \frac{d}{dx} cosecx$	1
Correct differentiation of $\frac{1}{sinx}$ and next step to get solution	1

(b) (ii)

Response	Mark
Use previous result to get $-[tan^{-1}(cosec(\frac{\pi}{2}) - tan^{-1}(cosec(\frac{\pi}{6}))]$	1
Use one of two methods to get the result	1

Response	Mark
Slope of tangent line at Q is q	1
Equation of tangent line at Q is $y = qx - aq^2$	1
Substitute in x coordinate 2ap	1
ANSWER: $T(2ap, aq(2p - q))$	

EQUATION

There are 8! possible arrangements. We need to subtract the arrangements where there are 3 or 2 consonants together.

3 consonants together

С	С	С	V	V	V	V	V

There are g places where the 3 consonants can be placed

 $\therefore 6 \times 3! \times 5!$

2 consonants together at the start or end.

C	C	V	CAU	CAU	CAU	CAU	CA
-	C	Y	LIV	-1×	-/ Y		C/ Y

	3	2	5	5	4	3	2	1
--	---	---	---	---	---	---	---	---

 $\therefore \mathbf{2} \times \mathbf{3} \times \mathbf{2} \times \mathbf{5} \times \mathbf{5}!$

2 consonants together in the "middle". There are 5 positions for the pair of 2 consonants

	V	С	С	V	C/V	C/V	C/V	C/V
--	---	---	---	---	-----	-----	-----	-----

 $\therefore 5 \times 5 \times 3 \times 2 \times 4 \times 4!$

 $:: 8! - (6 \times 3! \times 5! + 2 \times 3 \times 2 \times 5 \times 5! + 5 \times 3 \times 2 \times 4 \times 4!)$

= 14 400

1.1	1.0.0
(C)	111
(-)	1

Response	Mark
Prove that <i>pq=-1</i>	1
OR	
If this had been proved previously, there is an opportunity to gain this mark	
by establishing that:	
$q = -\frac{2a}{x}$	
Needed to relate <i>p</i> and <i>q</i> to get this mark.	1
Use the relationship $pq=-1$ successfully to remove p and q and establish the required equation with x and y as variables (and NO parameters)	1

Marks Marker's Comments **Suggested Solutions** 9) (i) dic = nllnx 11-26 n(1~2()"-I iii y2 dic V= TI Ins() Zdr Ô T 020 1 ۱ d -Unx (Inzu) n dic Too Mary (Inzi stide-13 said (Imil) = 21mil which is not tru C 2dr Inze L ni 30 again students said $(1-e)^3$ = 31-e (Ine) 1 -11 14 poor me thematics

\CALLISTO\StaffHome\$\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

ŀ

MATHEMATICS Extension #: Question	Marka	Markarla Commonto
Suggested Solutions	Marks	Marker's Comments
$(b) y = \ln(1+\sin 2t) - \ln(10) = t$		
$y' = \frac{\cos x}{1 + \sin x} - \frac{-\sin x}{\cos x}$	1	
$= \frac{\cos^2 x + \sin x + \sin^2 x}{\cos x (1 + \sin^2)}$		
$= 1 \pm \sin 2L$ $= \cos (1 \pm \sin 2L)$		many students
<u> </u>		Failed to simplify and
$at x = T_{3}$ $y' = \frac{1}{\cos T_{3}} = 2$	1	ended up with surds
$\frac{1}{2}$ M = -1 hormal 2		
when $x = TT$ $y = ln(1+SrT)_{T}$ $\overline{3}$ $y = ln(1+SrT)_{T}$		
$= \ln(2+13)$	1	
$y - \ln(2+3) = -\frac{1}{2}(21-TT_{3})$		
$x + 2y - (T_3 + 2ln(2+5)) = 0$	1	

\\TITAN\StaffHome\$\woh08\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question..... Marks **Marker's** Comments **Suggested Solutions** d= 2102 (c) (u q = 1 - 2)n-1)x21-2 needed to clearly indicite 1-4=21-2 201-In your working n2/22 -Ó UI) -Q+ In -1 O + (n-1) x 2/n = 1-2 kn-1) l 5, 250 Tp n2122 50(2n-1) 1-2 n=-100n+50 20 Hed to state 50-3552 OR N750+55/2 nS 100th term The-S 9 lesst value 100 least value of to gain Full marts Shee n 21 50-355 = 0-5 50+35/2 = 99.5

\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

CALLISTO\Staff1

YRIL TERM 1 2014 X MATHEMATICS: Question. 9.		193
Suggested Solutions	Marks	Marker's Comments
a) i) $y = R \cos(\theta - \alpha)$ = $R \cos \theta \cos \alpha + R \sin \theta \sin \alpha$ = $\cos \theta + \sqrt{3} \sin \theta$		
Equate coefficients:	2 d B	
Rsind= V3 (Rcos x = 1)	I	
Solve $R^{2} = 4$ R = 2 (R>0) tand = J3		
$x = T_{3} (0 \le x \le 1/2)$ $y = 2 \cos(0 - T_{3})$	l	
(i) $2\cos(\theta - T_{3}) = 1$		All 3 results
$\Theta - T_{3} = -T_{3}, T_{3}, S_{3}, \dots$		needed for last make. Too many
$\Theta = O, \frac{2\pi}{3}, 2\pi (0 \le 0 \le 2\pi)$	Ì	people missed a,
b) i) a) Let A. be amount owing after		5
nth payment A. = 20000 - M		
$A_2 = 20000 - 2M (no interest)$	1	
$\beta) A_3 = (20000 - 2M)(1.01) - M$		
$A_{\mu} = ((20000 - 2m)(1.01) - m)(1.01) - M$		
$= (20000 - 2M)(1.01)^{-} - M(1.01 + 1)$	1	
= [20000 - 2M](1,0]) - 2.01 M		

\\meroury\staffhome\$\WOH\Admin_M Fao\Assessment info\Suggested Mk solns template_V2.doo

$$\frac{\chi 1 \text{ MATHEMATICS: Question. 9. 3.1.3}}{\text{Suggested Solutions}} \xrightarrow{\text{Marks}} \frac{\pi}{\text{Marker's Comments}}$$

$$(1 \cdot 01)^n = \frac{100 \text{ M}}{100 \text{ M} - 8970.77}$$

$$= 1 \cdot 210224$$

$$\therefore n \ln(1.01) = \ln(1.210224)$$

$$h = \frac{\ln(1.210224)}{\ln(1.01)}$$

$$= \frac{19.176}{\ln(1.01)}$$

$$I$$

$$Locan paid off on 20th payment (Last step.)$$

$$I$$

 $\label{eq:limeroury} staffhome \WOH \Admin_M Fac \Assessment info \Suggested Mk solns template \V2. doo$

$$\frac{3n \text{ T} 1 \text{ } 2014 \text{ } 7.12 \text{ } Q10}{91 \text{ } 2 \text{ } e^{2x}(2x-x^{2}+3)}$$

$$y' = -e^{2x}(x-3)(x+1)$$

$$st y' = 0 \text{ } ubs x x = -1 \text{ } a 3 (e^{2x} = 0)$$

$$1 \text{ } n$$

$$\frac{1}{91} \frac{1}{91} \frac{-1}{91} \frac{1}{91} \frac{1$$

b)
$$f'(k) = \lim_{h \to \infty} \frac{\sin(x+h) - \sin^{n} \pi}{h}$$

$$= \lim_{h \to 0} \frac{\sin \pi \cosh + \cos \pi \sinh - \sin \pi}{h}$$

$$= \lim_{h \to 0} \frac{\sin \pi \cosh + \cos \pi \sinh - \sin \pi}{h} \cos x$$

$$= \lim_{h \to 0} \frac{\sin \pi (\cosh - 1)}{h} - \lim_{h \to \infty} (\frac{\sinh h}{h}) \cos x$$

$$= \lim_{h \to 0} \frac{\sin \pi (\cosh - 1)}{h} - \lim_{h \to \infty} (\cosh - 1)} - \lim_{h \to \infty} \cos x$$

$$= \lim_{h \to 0} \frac{\sin \pi (\cosh - 1)}{h} - \cos x$$

$$= \lim_{h \to 0} (\ln \pi x) \frac{(-\sin h)}{-h} - \cos x$$

$$= \lim_{h \to \infty} (\ln x) \frac{(-\sin h)}{-h} - \cos x$$

$$= \lim_{h \to \infty} (\ln x) \frac{(-\sin h)}{-h} - \cos x$$

$$= \lim_{h \to \infty} (1 - \cos x)$$

$$= \lim_{h \to \infty} 2 \cos x + \frac{1}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{\sin \frac{1}{h}}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{\sin \frac{1}{h}}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h}) \frac{(-\sin \frac{1}{h})}{h}$$

$$= \lim_{h \to \infty} 2 \cos(x + \frac{1}{h$$

Suggested Solutions	Marks	Marker's Comments
Some values used were !		
D dL = 2		
$\int \frac{ds}{da} = r$		
$3 d = \frac{8}{5r} = \frac{2r}{r^{2}rh^{2}} = 2 \cos \frac{6}{2}$		
3) $d\alpha = \frac{r}{r^2 + h^2}$ or $d(tan'(\frac{h}{2}))$		
D do = tr at rth		
$\frac{\partial}{\partial t} = \frac{2r}{r^2 + L^2}$		
$\frac{ds}{dh} = \frac{dQ \times dS}{dh} \text{ or } \frac{ds}{dx} \times \frac{d\alpha}{dh}$		

(4)

) - Hatheratical Induction b prove $\frac{1}{2}$ it $\frac{1}{2}$ it $\frac{1}{2}$ is $\frac{1}{2}$ it $\frac{1}{2}$ it $\frac{1}{2}$ is $\frac{1}{2}$ it $\frac{1}{2$	Comments
) - Marke ratical Induction is is prove $4^{n} \ge 1+3n$, $n = 1, 2, 3$ 1 + uos 1 + 1 + 2 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	
The prove $h^{2} \pm 13n$, $n = 1, 2, 3$ and $h = 1 \pm 3n$, $h = 1, 2, 3$ and $h = 1 \pm 3n$, $h = 1$ $h = 1 \pm 3n$, $h = 1$ $h = 1 \pm 3n$, $h = n = 1$ $h = 1 \pm 3n$, $h = n = 1$ $h = 1 \pm 3n$, $h = n = 1$ $h = 2 \pm 1 \pm 3n$, $h = 1 \pm 3n$, $h = 2 \pm 1 \pm 3n$, $h = 1 \pm 3n$, $h = 2 \pm 1 \pm 3n$, $h = 1 \pm 3n$, $h = 2 \pm 1 \pm 3n$, $h = 1 \pm 1 \pm 12n$, $h = 1 \pm 12n$, h = 12n, h = 12n,	
here is the set of th	
L+S = 4' = 4 L+S = 1+3(1)=4 $\therefore 4^{n} = 1+3n$ for n=1 you could test for n=2 $urs = 4^{n} = 16$ RHS = 1+3(1)=7 $\therefore LHS > RHS$ $rep2$ Assume true for n=R where $K \in \mathbb{Z}^{n}$ $re = 4^{K} > 1+3K$. rep3 prove true for n=R+1 $re = prove = 4^{K+1} > 1+3(K+1)$ $4\times 4^{K} > 4 (1+3K) (-By assumption)$ $4\times 4^{K+1} > 4+12K$. $4^{K+1} > 4+12K$. $4^{K+1} > 4+3K + 9K$. since = 9K > 0 for $K \in \mathbb{Z}^{+}$, it should $4^{K+1} > 4+3K$. $4^{K+1} > 4^{K+1} > 4^{K+1} > 4^{K}$. $4^{K+1} > 4^{K+1} > 4^{K}$. $4^{K+1} > 4^{K+1} > 4^{K}$. $4^{K} > 1 > 4$	for
LHS = 4' = 4 pHS = (1+3(1))=4 phHS = (1+3(1))=4 phHS = (1+3(1))=4 phHS = (1+3(1))=7 phHS = (1+3(1))	to
PHS = 1 + 3(1) = 4 $PHS = 1 + 3(1) = 4$ $PHS = 1 + 3(1) = 14$ $PHS = 1 + 3(1) = 11$ $PHS = 1 + 3(1) = 1$ $PHS =$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S
you could test for n=2 $1+5 = 4^{k} = 1/6$ 2+5 = (+3(2)) = 7 $\therefore L+5 > R+5$ 2+5 = (+3(2)) = 7 $\therefore L+5 > R+5$ $1 = 2^{k} > 1+3(k)$ $1 = 2^{k} > 1+3k$. $1 = 2^{k} > 1+3k$. $1 = 2^{k} > 1+3k$. $1 = 2^{k} + 3k$.	re_
you could test tor $1+5 = 4^{k} = 1/6$ 2+5 = (1+3(2)=7) $\therefore L+5 > R+5$ 1+2(x) = 7 $\therefore L+5 > R+5$ 1+2(x) = 7 1 = prove true for n=k+1 1 = k+3k. 1 = k+3k. 1 = k+3k. 1 = k+3k + 9k. 1 = k+3k + 9k. 1 = k+3k + 9k. 1 = k+3k + 9k. 1 = k+3k. 1 =	event
Lines = $4 + 3(2) = 7$ $R_{145} = (1+3(2) = 7$ \therefore Lines > R_{45} $ep2$ Assume true for n=R where $K \in \mathbb{Z}^n$ $e = 4^{K} > 1+3K$. ep3 prove true for n=R+1 $ie prove 4^{K+1} > (1+3K) (FBy assumption)$ $4 \times 4^{K+1} > 4 + 12K$. $4 \times 4^{K+1} > 4 + 3K + 9K$. Since $9K > 0$ for $k \in \mathbb{Z}^+$, it stands $4 \times 4^{K+1} > 4 + 3K$. $4 \times 4^{K+1} > 4 + 3K$. Hence by Proof of mathematical Induction $k = 4 \times 4 + 4 \times 4 \times$	
RHS = (+5(c) :. LHS > RHS :. LHS :. LHS > RHS :. LHS	nne
$\frac{1}{2} LHS > RHS$ $\frac{1}{2} LHS + 3K.$ $\frac{1}$	Arris
tep2 Assume true for n=R where not KGZ ie $4^{K} \ge 1+3K$. kgZ prove true for n=k+1 ie prove $4^{K+1} \ge 1+3(K+1)$ Now $4^{K+1} = 4^{K} \times 4^{K}$ $4 \times 4^{K} \ge 4(1+3K)$ (-By assumption) $4 \times 4^{K+1} \ge 4+12K$. $4^{K+1} \ge 4+3K + 4K$. Since $4K \ge 0$ for $K \in \mathbb{Z}^{+}$, it stands $4^{K+1} \ge 4+3K$. $4^{K+1} \ge 4+3K$. $4^{K} \ge 4^{K} \ge 4^{K}$	- whom
ie $4^{k} \ge 1+3k$. $4^{k} \ge 1+3k$. $1^{k} \ge prove + rie for n=k+1$ $1^{k} \ge prove + k^{k+1} \ge 1+3(k+1)$ $2^{k} + 3k$. $1^{k} = 4^{k} \times 1^{k}$ $4^{k+1} \ge 4 + 12k$. $4^{k+1} \ge 4 + 12k$. $4^{k+1} \ge 4 + 12k$. $4^{k+1} \ge 4 + 3k + 9k$. $5ince = 9k \ge 0$ for $k \in \mathbb{Z}^{+}$, $1^{k} = 5inch$ $4^{k+1} \ge 4 + 3k$. $4^{k+1} \ge 4^{k+1} $	e intege
Lep3 prove true for $n=k+1$ ie prove $t^{k+1} \ge 1+3(k+1)$ Now $4^{k+1} = 4^k \times t^k$ $4 \times 4^k \ge 4(1+3k)$ (-By assumption) $4 \times 4^k \ge 4+12k$. $4^{k+1} \ge 4+12k$. 5 ince 9k > 0 for $k \in \mathbb{Z}^+$, it stands $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. Hence by Proof of mathematical Induction $4^{k+1} \ge 4+3k$.	2
upp prove $\mu^{k+1} \ge (1+3(k+1))$ 2 + + 3k. Now $\mu^{k+1} = 4^{k} \times 4^{k}$ $4 \times 4^{k} \ge 4(1+3k)$ (-By assumption) $4 \times 4^{k+1} \ge 4+12k$. $4^{k+1} \ge 4+12k$. Since $4k > 0$ for $k \in \mathbb{Z}^{+}$, $1+ stands$ $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. Hence by Proof of nothernatical Induction $4^{k} + 1 \ge 4+3k$.	ot
Now $4^{k+1} = 4^{k} \times 4^{k}$ $4 \times 4^{k} = 4(1+3k)$ (-By assumption) you use $4 \times 4^{k} = 4(1+3k)$ (-By assumption) you use $4^{k+1} = 4+12k$. $4^{k+1} = 4+3k$ for step $k \in \mathbb{Z}^{+}$, it stands $4^{k+1} = 4+3k$. Since $9k > 0$ for $k \in \mathbb{Z}^{+}$, it stands $4^{k+1} = 4+3k$. $4^{k+1} = 4+3k$. $4^{k+1} = 4+3k$. $4^{k+1} = 4+3k$. $4^{k+1} = 4+3k$. Hence by Proof of nathematical Induction $k = 1, n \geq 1, n \in \mathbb{Z}^{+}$.	
Now $4^{k+1} = 4^{k} \times 4^{k}$ $4 \times 4^{k} \ge 4(1+3k)$ (-By assumption) you use $4^{k+1} \ge 4+12k$. $4^{k+1} \ge 4+12k$. $4^{k+1} \ge 4+3k + 9k$. 5ince gk > 0 for $k \in \mathbb{Z}^{+}$, it should $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. $4^{k+1} \ge 4+3k$. Hence by Proof of mathematical Induction $4^{k+1} \ge 4+3k$.	2, 2
(Now 4 = 4 × T) 4×4 ^k = 4 (1+3k) (-By assumption) 4×4 ^k = 4 (1+3k) (-By assumption) 4×4 ^k = 4 + 12k. 4 ^{k+1} = 4+3k + 9k. 5ince 9k>0 for k 6 Z ⁺ , it stands to prove 4 ^{k+1} = 4+3k. 4 ^{k+1} = 4+3k. 4 ^{k+1} = 4+3k. to prove to prove	~
$4 \times 4^{k} \ge 4 (1+3k) (-by) - 1$ $4 \times 4^{k} \ge 4 (1+3k) (-by) - 1$ $4^{k+1} \ge 4+12k.$ $4^{k+1} \ge 4+3k + 9k.$ Simplify need to a need to a need to a not not $4^{k+1} \ge 4+3k.$ $4^{k+1} \ge 4+3k.$ $4^{k+1} \ge 4+3k.$ $4^{k+1} \ge 4+3k.$ Hence by Proof of notherization Induction $4^{k+1} \ge 4+3k.$	d to (u)
4 ^{k+1} = 4+12k. 4 ^{k+1} = 4+3k+9k. Since 9k>0 for k 6 Z ⁺ , it stands that 4 ^{k+1} = 4+3k. 4 ^{k+1} = 4+3k. Lepth reason that 4 ^{k+1} = 4+3k. Hence by Proof of mathematical Induction to prove	4-2(#
4 ^{k+1} = 4+3k+9k. Since 9k>0 for k 6 Z ⁺ , it stands and not what 4 ^{k+1} = 4+3k. 4 ^{k+1} = 4+3k. Left reason that 4 ^{k+1} = 4+3k. Hence by Proof of mathematical Induction to prove	2
4 ^{k+1} = 4+3 k + 1 k. Since 9k>0 for k 6 Z ⁺ , it stands and not what 4 ^{k+1} = 4+3 k. Leptr i reason that 4 ^{k+1} = 4+3 k Hence by Proof of nathematical Induction whether all n>-1, n6Z ⁺	, 11 S at
Since $qk > 0$ for $k \in \mathbb{Z}^{+}$, it should and not what $4^{k+1} \ge 4+3k$ Hence by Proof of nathematical Induction Hence to prove $4^{k+1} \ge 4+3k$	
Lepte reason that $4^{k+1} \ge 4+3k$ Hence by Proof of nathematical Induction Hence to the true for all n>1, n62 ^t	Je LIT
Hence by Proof of nothernatical Induction Hence by Proof of nothernatical Induction	use
4 ** 1 = 4+31x. to prove Lept reason that 4 ** 1 = 4+3 k Hence by Proof of nothematical Induction Hence by Proof of nothematical Induction	u tryin
Hence by Proof of nothernatical Induction Hence by Proof of nothernatical Induction	
Hence by Proof of nathematical Induction Hence by Proof of nathematical Induction	
Hence by Proof of nothernatical Induction Hence by Proof of nothernatical Induction	
Hence by Proof of nothernatical Induction	
Hence by Proof of nathematical Induction there for all n>1, n62t	
the true for all n>1, n62	
the state the state of the stat	
statement is	
iternatively	
steph - 4 > 1+3k can be written - T	
Surlanly	
4KT1-3K+1)-1 = 0	
10 1141 -430	
- 4/. K. 31-1) +9 K 20.	

(5)

Marks **Marker's** Comments Suggested Solutions oc = seco 0 Se 9) = Seco.tano 0 = See 2 2 A=T/2 $= J^{2}, \quad \Theta = Sec^{2}(J^{2})$ $\Theta = J^{2}_{4}$ Sec30 JSec0=1, Sec0 toodo Inte 1 TV3 sec Q +600 sec'e tang TH * very sad to see Th nombe 20 de who integrated state as tane = Zmks cos A LO mk -11. (0520+1) do TY you didn't know the value at Sin T/2 - 11/2 11/2 SinTy and SinTy (A - B 1= tan I mk (nA tin

\\CALLISTO\StaffHome\$\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

•

2/2 MATHEMATICS Extension 1 : Question.) 2-Marks Marker's Comments Suggested Solutions statets didn't pit this in $A = (n+i)\Theta$ T BENO at rbi 1112 0-tano 00 (A+i)0. tan an(n+i)0. tano +ca (no+0-no) to (n+i) 0. Ξ 10 * Some tan (n+) Btand statets tan (n+1) = - tan no tried to Fan(a+1) + fan O prove th giver identity but $(n+1)\theta + an\theta = tm(n+1)\theta = Han \theta$ fudged the - 7 up like a prost, king LHS = the RHS to prove that I was new used the Max 111) + top (no) ton (n+1)0 2030 motan20 + tan 20 m20 tan 20 +ton (n+i) O -ta ton O tan (n+1)0 - tan ta 20- tan0+ +m 30 ton 20 tano tino teninti *A 1st of fudging cato tan(n+1 badly set out, 0 Int1 10 n+ * Some did it by RHS Induction but dishif set at properly or fidged it e oct noves ome Ser 11

\\CALLISTO\StaffHome\$\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc