

KINCOPPAL-ROSE BAY SCHOOL OF THE SACRED HEART

2010

HIGHER SCHOOL CERTIFICATE HALF YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks – 72

- Attempt Questions 1 6
- All questions are of equal value

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 1/Extension 2 Common, Half Yearly, March 2010

Question 1 (12 marks) Use a SEPARATE writing booklet Solve for x, $\frac{3}{2-3x} \le \frac{2}{3}$ 3 (a)

(b) Solve the equation
$$\sin 2\theta = \cos \theta$$
 for $0 \le \theta \le 2\pi$ 3

(c) Evaluate
$$\lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta}$$
 2

(d) If
$$f(x) = 2x^2 + x$$
, use the definition 2

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

to find the derivative of f(x) at the point where x = a

Find the coordinates of the point *P* which divides the interval *AB* externally 2 (e) in the ratio 4:1, if A is (1,4) and B is (3,-6)

End of Question 1

Marks

Question 2 (12 marks)Use a SEPARATE writing bookletMarks

(a) Use the substitution
$$u = 1 + x^2$$
 to evaluate $\int_{1}^{\sqrt{3}} 6x\sqrt{1 + x^2} dx$ 3

(b) Let
$$f(x) = \ln(\tan x), \ 0 < x < \frac{\pi}{2}$$
 3

Show that $f'(x) = 2\csc 2x$

- (c) (i) Express $\cos 3t \sqrt{3} \sin 3t$ in the form $R \cos(3t + \alpha)$ for some $R > \alpha$ 2 and $0 < \alpha < \frac{\pi}{2}$
 - (ii) Hence state the period and amplitude of $\cos 3t \sqrt{3} \sin 3t$. 2
- (d) The word EQUATIONS contains all five vowels. How many
 7-letter 'words' consisting of all fives vowels can be formed from the letters of EQUATIONS?

End of Question 2

2

Question 3 (12 marks)

Use a SEPARATE writing booklet

Prove by mathematical induction, for $n \ge 2$, that (a)

 $\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\dots\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n}.$

(b) Find the exact value of
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin^2 3x \, dx$$
 3

- The polynomial $p(x) = x^3 + ax^2 + bx + 12$ has a zero at x = -1 and has 3 (c) remainder 8 when divided by x+2. Find the constants *a* and *b*.
- If α , β and γ are the roots of $x^3 6x^2 2x + 4 = 0$, find the values of: (d)
 - $\alpha + \beta + \gamma$ (i) 1
 - (ii) $\alpha^2 + \beta^2 + \gamma^2$ 2

End of Question 3

Marks

3

C

0

Question 4 (12 marks)

Use a SEPARATE writing booklet

4

3

B

P

2

AB is the diameter of a circle, centre O. AB produced meets the secant CD at P. CD = 5, DP = 4 and BP = 3

Find the diameter of the circle.

A

(b) In the figure, AOB is the diameter of a circle centre O. D is a point on chord AC such that DA = DO and OD is produced to E. AF is the bisector of $\angle BAC$ and cuts BE in G.

Prove that:

(c) (i) Prove that
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

(ii) Hence find
$$\int 2\sin^3\theta \ d\theta$$
 3

Question 5 (12 marks) Use a SEPARATE writing booklet

Marks

(a) A boat sails from a point A to a point B.

At point *A* the captain of the ship measures the angle of elevation of the top of a lighthouse as 16° and the bearing of the lighthouse as 040° .

At point *B* the captain of the ship measures the angle of elevation of the top of the lighthouse as 18° and the bearing of the lighthouse as 340° .

The top of the lighthouse is known to be 80 m above sea level.

The diagram below shows the angles of elevation of the top of the lighthouse from A and B.

- (i) Draw a bearing diagram showing the relative positions of *A*, *B* and *C* 1 and use your diagram to explain why $\angle ACB = 60^{\circ}$.
- (ii) Hence, find the distance between *A* and *B*, correct to the nearest metre. **3**
- (iii) Hence, find the bearing of *B* from *A*, to the nearest degree. 2

Question 5 continued on page 7

Question 5 continued

Marks

- (b) The tangent at $T(2t, t^2)$, $t \neq 0$, on the parabola $x^2 = 4y$ meets the x axis at A. P(x, y) is the foot of the perpendicular from A to OT, where O is the origin. The equation of the tangent at T is $y = tx - t^2$
 - (i) Prove that the equation of AP is $y = -\frac{2}{t}(x-t)$ 2
 - (ii) Show that the equation of *OT* is $t = \frac{2y}{x}$ 1
 - (iii) Hence, or otherwise, prove that the locus of P(x, y) lies on a circle with centre **3** (0,1) and give its radius.

End of Question 5

Que	stion 6	(12 marks) Use a SEPARATE writing booklet	Marks
(a)	(i)	Draw a neat sketch of the function, $y = \log_e(x-1)$.	1
	(ii)	This function meets the line $y = 2$ at the point <i>P</i> and the <i>x</i> - axis at the point <i>Q</i> . Show that the coordinates of P and Q are $(e^2 + 1, 2)$ and $(2,0)$ respectively.	2
	(iii)	If S is the point $(0,2)$, find the co-ordinates of the point R if OSPR is a rectangle. Label the points S and R on your sketch.	1
	(iv)	Show that the arc <i>PQ</i> , divides the rectangle <i>OSPR</i> into two regions of equal area.	3

(b) The illustration below is part of the cross section of the roof of the Mathematics Faculty staffroom.

(i) If $\angle ABC = \angle DCB = \theta$ show that the area of this cross section is given by: 2

3

 $A = 25\sin\theta(1 + \cos\theta)$

(ii) Given
$$\frac{dA}{d\theta} = 50\cos^2\theta + 25\cos\theta - 25$$

and $\frac{d^2A}{d\theta^2} = -100\cos\theta\sin\theta - 25\sin\theta$

Find the value of θ which will make this area a maximum.

End of Examination

KINCOPPAL-ROSE BAY SCHOOL OF THE SACRED HEART

2010

HIGHER SCHOOL CERTIFICATE HALF YEARLY EXAMINATION

SOLUTIONS

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks – 72

- Attempt Questions 1 6
- All questions are of equal value

1(a) $\frac{3}{2-3x} \leq \frac{2}{3}$ $2-3x \neq 0$ $\therefore x = \frac{2}{3} \checkmark$ $\frac{3}{2-3x} = \frac{2}{3}$ $9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \checkmark$ $\boxed{2}$ Test points \boxed{2} \frac{-5}{6} \boxed{2} \checkmark $\frac{5}{6} and x > \frac{2}{3} \checkmark$ $\frac{5}{6} \boxed{2} \boxed{2} \boxed{2}$ $\frac{1}{1(b)} \frac{\sin 2\theta = \cos \theta}{2\sin \theta \cos \theta = 0}$ $\cos \theta = 0 \text{or } 2\sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $\frac{1}{3}$ $\frac{1}{1(c)} \lim_{x \to a} \frac{\tan \theta}{0} = \frac{\tan \theta}{0} \times \frac{\theta}{0} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$	Question	Answer	Marks
$2-3x \neq 0$ $\therefore x = \frac{2}{3} \qquad \checkmark$ $\frac{3}{2-3x} = \frac{2}{3}$ $9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \qquad \checkmark$ $Test points \qquad \boxed{ \boxed{ \frac{-5}{6} \boxed{\mathbf{x}} \frac{2}{3} \checkmark}}$ $\therefore x \leq \frac{-5}{6} and x > \frac{2}{3} \boxed{ \checkmark}$ $1(b) \qquad \sin 2\theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta$ $\cos \theta (2\sin \theta - 1) = 0 \qquad \boxed{ \checkmark}$ $\cos \theta = 0 \qquad \text{or } 2\sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \boxed{ \checkmark} \qquad \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \boxed{ \checkmark}$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\theta} \times \frac{\theta}{3} \boxed{ \checkmark}$ $= 1 \times \frac{1}{3} \qquad \boxed{ \checkmark}$	1(a)	$3 \leq 2$	3
$2-3x \neq 0$ $\therefore x = \frac{2}{3} \qquad \checkmark$ $\frac{3}{2-3x} = \frac{2}{3}$ $9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \qquad \checkmark$ $Test points \qquad \checkmark \frac{-5}{6} \qquad \swarrow \frac{2}{3} \qquad \checkmark$ $\therefore x \leq \frac{-5}{6} and x > \frac{2}{3} \qquad \checkmark$ $1(b) \qquad \sin 2\theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta$ $\cos \theta (2\sin \theta - 1) = 0 \qquad \checkmark$ $\cos \theta = 0 \qquad or 2\sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \qquad \checkmark \qquad \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \qquad \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \theta}{3} = \frac{\tan \theta}{3} \times \frac{\theta}{3} \qquad \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \qquad \checkmark$		$\overline{2-3x} \stackrel{\sim}{=} \overline{3}$	
$2-3x \neq 0$ $\therefore x = \frac{2}{3} \qquad \checkmark$ $\frac{3}{2-3x} = \frac{2}{3}$ $9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \qquad \checkmark$ $Test points \qquad \boxed{\checkmark} \frac{-5}{6} \boxed{\bigstar} \boxed{2}$ $1(b) \qquad \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{\tan \theta}{\frac{3}{3}} \times \frac{\theta}{\frac{3}{3}} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$			
$\therefore x = \frac{2}{3} \qquad \checkmark$ $\frac{3}{2 - 3x} = \frac{2}{3}$ $g = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \qquad \checkmark$ $Test points \qquad \boxed{\checkmark} \frac{-5}{6} \boxed{\swarrow} \frac{2}{3} \checkmark$ $\therefore x \le \frac{-5}{6} and x > \frac{2}{3} \checkmark$ $1(b) \qquad \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $\cos \theta (2 \sin \theta - 1) = 0 \qquad \checkmark$ $\cos \theta = 0 \qquad or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \qquad \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{\tan \theta}{3} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \qquad \checkmark$		$2-3x \neq 0$	
$\therefore x = \frac{3}{3} [V]$ $\frac{3}{2-3x} = \frac{2}{3}$ $9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} [V]$ Test points $\boxed{V} \frac{-5}{6} [X] \frac{2}{3} [V]$ $\therefore x \le \frac{-5}{6} and x > \frac{2}{3} [V]$ $1(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $\cos \theta (2 \sin \theta - 1) = 0 [V]$ $\cos \theta = 0 or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} [V] \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} [V]$ $1(c) \lim_{\theta \to 0} \frac{\sin \theta}{3} = \frac{\tan \theta}{2} \times \frac{\theta}{3} [V]$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} [V]$		2	
$\frac{3}{2-3x} = \frac{2}{3}$ $9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \checkmark$ $Test points \checkmark \frac{\checkmark}{6} \swarrow \frac{2}{3} \checkmark$ $\therefore x \le \frac{-5}{6} and x > \frac{2}{3} \checkmark$ $1(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta - \cos \theta = 0$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta = 0 or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$		$\therefore x = \frac{1}{3}$	
$\frac{3}{2-3x} = \frac{2}{3}$ $9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \checkmark$ $Test points \boxed{\checkmark} \frac{-5}{6} \boxed{\varkappa} \frac{2}{3} \checkmark$ $\therefore x \le \frac{-5}{6} and x > \frac{2}{3} \checkmark$ $1(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta - \cos \theta = 0$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta = 0 or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \lim_{\theta \to 0} \frac{\tan \theta}{3} = \frac{\tan \theta}{3} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$			
$ \frac{\overline{2}-3x}{9} = \frac{3}{3} $ $ 9 = 4 - 6x $ $ -6x = 5 $ $ x = \frac{-5}{6} \checkmark $ $ \text{Test points} \boxed{\checkmark} \frac{-5}{6} \boxed{\bigstar} \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} \text{and} x > \frac{2}{3} \checkmark $ $ \frac{1}{5} x \le \frac{-5}{6} x = \frac{1}{3} \checkmark $		3 2	
$9 = 4 - 6x$ $-6x = 5$ $x = \frac{-5}{6} \checkmark$ $Test points \checkmark \frac{\checkmark}{6} \boxed{2} \boxed{2} \checkmark$ $\therefore x \leq \frac{-5}{6} and x > \frac{2}{3} \checkmark$ $\therefore x \leq \frac{-5}{6} and x > \frac{2}{3} \checkmark$ $1(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta = 0 or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$		$\frac{1}{2-3x} = \frac{1}{3}$	
$-6x = 5$ $x = \frac{-5}{6} \checkmark$ $Test points \checkmark \frac{\checkmark}{6} \frac{-5}{6} \varkappa \frac{2}{3} \checkmark$ $\therefore x \leq \frac{-5}{6} and x > \frac{2}{3} \checkmark$ $1(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta = 0 or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = \frac{\tan \theta}{\theta} \times \frac{\theta}{3} \checkmark$ $1 = 1 \times \frac{1}{3}$ $u = \frac{1}{3} \checkmark$		9 = 4 - 6x	
$x = \frac{-5}{6} \swarrow$ $Test points \bigtriangledown \boxed{\checkmark \frac{-5}{6} \boxed{\bowtie} \frac{2}{3} \checkmark}$ $\therefore x \le \frac{-5}{6} and x > \frac{2}{3} \checkmark$ $1(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta - \cos \theta = 0$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta = 0 or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3} \times \frac{\theta}{3}}{\frac{1}{3}} \checkmark$ $= 1 \times \frac{1}{3}$ $u = \frac{1}{3} \checkmark$		-6x = 5	
$x = \frac{-6}{6} [\checkmark]$ Test points $\overrightarrow{V} \frac{-5}{6} [\varkappa] \frac{2}{3} [\checkmark]$ $\therefore x \leq \frac{-5}{6} and x > \frac{2}{3} [\checkmark]$ $(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta - \cos \theta = 0$ $\cos \theta (2 \sin \theta - 1) = 0 [\checkmark]$ $\cos \theta = 0 or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} [\checkmark] \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} [\checkmark]$ $1(c) \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\frac{\theta}{3}}{\frac{\theta}{3}} [\checkmark]$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} [\checkmark]$		-5	
Test points \checkmark $\frac{-5}{6}$ \searrow $\frac{2}{3}$ \checkmark \therefore $x \le \frac{-5}{6}$ and $x > \frac{2}{3}$ \checkmark 1(b) $\sin 2\theta = \cos \theta$ \checkmark \checkmark $2\sin \theta \cos \theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta$ 3 $2\sin \theta \cos \theta = \cos \theta$ \circ \circ \circ $\cos \theta (2\sin \theta - 1) = 0$ \checkmark \circ \circ $\cos \theta = 0$ $or \ 2\sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$ \checkmark $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$ \checkmark $\sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$ \checkmark 1(c) $\lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3}$ \checkmark \checkmark \checkmark 2 $1(c)$ $\lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{\theta}$ \checkmark \checkmark \checkmark 2 $1(c)$ $\lim_{\theta \to 0} \frac{1}{3} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{\theta}$ \checkmark \checkmark \bullet \bullet $1(c)$ $\lim_{\theta \to 0} \frac{1}{3} = \frac{1}{3}$ \checkmark \checkmark \checkmark \bullet \bullet		$x = \frac{1}{6}$	
Test points $\boxed{\nabla \frac{1}{6} \boxed{\mathbf{x}} \frac{1}{3} \boxed{\nabla}}$ $\therefore x \leq \frac{-5}{6} and x > \frac{2}{3} \boxed{\nabla}$ 1(b) $\sin 2\theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta = 0$ $\cos \theta (2\sin \theta - 1) = 0 \boxed{\nabla}$ $\cos \theta = 0 or 2\sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \boxed{\nabla} \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \boxed{\nabla}$ 1(c) $\lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\frac{\theta}{3}}{\theta} \boxed{\nabla}$ $= 1 \times \frac{1}{3}$ $u = \frac{1}{3} \boxed{\nabla}$		-5 2	
$\therefore x \leq \frac{-5}{6} \text{ and } x > \frac{2}{3} \checkmark$ $1(b) \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $\cos \theta (2 \sin \theta - 1) = 0 \checkmark$ $\cos \theta = 0 \text{or } 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \lim_{\theta \to 0} \frac{\tan \theta}{3} = \frac{\tan \theta}{3} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$		Test points $\boxed{\checkmark}$ $\frac{3}{6}$ $\boxed{\bigstar}$ $\frac{2}{3}$ $\boxed{\checkmark}$	
$\therefore x \leq \frac{-5}{6} \text{ and } x > \frac{2}{3} \checkmark$ $1(b) \qquad \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta - \cos \theta = 0$ $\cos \theta (2 \sin \theta - 1) = 0 \qquad \checkmark$ $de = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark$ $de = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3} \times \frac{\theta}{3}}{\frac{\theta}{3}} \checkmark$ $= 1 \times \frac{1}{3} \qquad \checkmark$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\therefore x \leq \frac{1}{6} and x > \frac{1}{3} \bigvee$ $1(b) \qquad \sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta - \cos \theta = 0$ $\cos \theta (2 \sin \theta - 1) = 0 \qquad \checkmark$ $cos \theta = 0 \qquad or 2 \sin \theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \qquad \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \qquad \checkmark$		-5 2 -7	
1(b) $\sin 2\theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta$ $2 \sin \theta \cos \theta = \cos \theta = 0$ $\cos \theta (2 \sin \theta - 1) = 0 \qquad \checkmark$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \qquad \checkmark$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \qquad \checkmark$ 1(c) $\lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3}}{\frac{\theta}{3}} \qquad \checkmark$ $= 1 \times \frac{1}{3}$		$\therefore x \le \frac{1}{6} and x > \frac{1}{3} \checkmark$	
$2\sin\theta\cos\theta = \cos\theta$ $2\sin\theta\cos\theta - \cos\theta = 0$ $\cos\theta(2\sin\theta - 1) = 0 \qquad \checkmark$ $\cos\theta = 0 \qquad \text{or} \ 2\sin\theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \qquad \sin\theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan\frac{\theta}{3}}{\theta} = \frac{\tan\frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3}}{\frac{\theta}{3}} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \qquad \checkmark$	1(b)	$\sin 2\theta = \cos \theta$	3
$2\sin\theta\cos\theta - \cos\theta = 0$ $\cos\theta(2\sin\theta - 1) = 0 \checkmark$ $\cos\theta = 0 \text{or } 2\sin\theta - 1 = 0$ $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \sin\theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \lim_{\theta \to 0} \frac{\tan\frac{\theta}{3}}{\theta} = \frac{\tan\frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\frac{\theta}{3}}{\theta} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$		$2\sin\theta\cos\theta = \cos\theta$	
$\begin{vmatrix} \cos \theta (2\sin \theta - 1) = 0 & \checkmark \\ \cos \theta = 0 & \text{or } 2\sin \theta - 1 = 0 \\ \theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} & \checkmark & \sin \theta = \frac{1}{2} \\ \theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} & \checkmark \\ \end{vmatrix}$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = \frac{\tan \theta}{\frac{3}{3}} \times \frac{\theta}{3} \\ = 1 \times \frac{1}{3} \\ = \frac{1}{3} & \checkmark \\ \end{vmatrix}$		$2\sin\theta\cos\theta - \cos\theta = 0$	
$\begin{array}{c} \cos \theta = 0 & \text{or } 2\sin \theta - 1 = 0 \\ \theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark & \sin \theta = \frac{1}{2} \\ \theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark \\ \hline 1(c) & \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3} \\ = 1 \times \frac{1}{3} \\ = \frac{1}{3} \checkmark \\ \end{array}$		$\cos\theta(2\sin\theta-1)=0$	
$\begin{aligned} \cos \theta &= 0 \qquad \text{or } 2\sin \theta - 1 = 0 \\ \theta &= \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \qquad \sin \theta = \frac{1}{2} \\ \theta &= \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark \end{aligned}$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\frac{\theta}{3}}{\frac{\theta}{3}} \checkmark \qquad = 1 \times \frac{1}{3} \\ &= 1 \times \frac{1}{3} \qquad \checkmark \end{aligned}$			
$\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \checkmark \qquad \sin \theta = \frac{1}{2}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$		$\cos\theta = 0 \qquad or 2\sin\theta - 1 = 0$	
$ \begin{array}{c c} \theta = \frac{1}{2} & \theta r & \frac{1}{2} & \theta r & \frac{1}{2} \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \swarrow \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \frac{5\pi}{6} & \checkmark \\ \theta = \frac{\pi}{6} & \theta r & \frac{5\pi}{6} & \frac{5\pi}{6$		$a \pi = 3\pi$ [7] $a = 1$	
$\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \checkmark$ $1(c) \qquad \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$		$\theta = \frac{1}{2} \partial r = \frac{1}{2}$	
$1(c) \qquad \lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$		$\theta = \frac{\pi}{2} \text{ or } \frac{5\pi}{\sqrt{2}}$	
1(c) $\lim_{\theta \to 0} \frac{\tan \frac{\theta}{3}}{\theta} = \frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{3}$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3}$			
$\lim_{\theta \to 0} \frac{3}{\theta} = \frac{3}{\frac{\theta}{3}} \times \frac{3}{\theta} \checkmark$ $= 1 \times \frac{1}{3}$ $= \frac{1}{3} \checkmark$	1(c)	$\tan \frac{\theta}{2}$ $\tan \frac{\theta}{2}$ $\frac{\theta}{2}$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\lim_{n \to \infty} \frac{3}{n} = \frac{3}{n} \times \frac{3}{n} \checkmark$	
$=1 \times \frac{1}{3}$ $=\frac{1}{3} \qquad \checkmark$		$\psi \rightarrow \psi \qquad \psi \qquad \frac{\sigma}{3} \qquad \psi$	
$=1 \times \frac{1}{3}$ $=\frac{1}{3} \qquad \checkmark$		1	
$=\frac{1}{3}$		$=1 \times \frac{1}{3}$	
$=\frac{1}{3}$ \checkmark			
		$=\frac{1}{3}$	

1(d)	$\frac{dy}{dx} = \frac{f(x+h) - f(x)}{h}$ = $\frac{2(x+h)^2 + (x+h) - (2x^2 + x)}{h}$ = $\frac{4xh + h^2 + h}{h}$		2
	$= \frac{h(4x + h + 1)}{h}$ $\lim_{x \to 0} = 4x^{2} + 0 + 1$ $= 4x^{2} + 1$	\checkmark	
1(a)	$(1 \ A)$ and $(2 \ B)$ artsmall: $A \cdot 1$		2
1(e)	(1,4) and $(5,-6)$ externally 4:1		2
	$\therefore \frac{1 \times 1 + -4 \times 3}{1 - 4} , \frac{1 \times 4 + -4 \times -6}{1 - 4}$	\checkmark	
	$\therefore P\left(\frac{11}{3}, \frac{-28}{3}\right)$	\checkmark	

Question	Answer	Marks
2(a)	$= \int_{-1}^{\sqrt{3}} 6x\sqrt{1+x^2} dx \qquad \qquad u = 1+x^2$	3
	$= \int 6x\sqrt{u}\frac{du}{2x} \qquad \qquad \frac{du}{dx} = 2x$	
	$= \int 3\sqrt{u} du \qquad \qquad \therefore dx = \frac{du}{2x}$	
	$=\int 3u^{\frac{1}{2}} du \qquad \checkmark$	
	$= \left\lfloor \frac{3u^{\frac{3}{2}}}{\frac{3}{2}} \right\rfloor$	
	$= \left[2(1+x^2)^{\frac{3}{2}} \right]_{1}^{\sqrt{3}}$	
	$= \left[2\left(1 + (\sqrt{3})^{2}\right)^{\frac{3}{2}} \right] - \left[2(1+1^{2})^{\frac{3}{2}} \right]$	
	$= 16 - 4\sqrt{2}$	
2(b)	$f(x) = \ln(\tan x)$ $f'(x) = \frac{\sec^2 x}{\tan x} \qquad \checkmark$ $= \frac{1}{\cos^2 x} \times \frac{\cos x}{\sin x}$ $= \frac{1}{\cos x \sin x}$ $= \frac{1}{\frac{1}{\frac{1}{2} \sin 2x}} \qquad \checkmark$	3
2(c)(i)	$\cos 3t - \sqrt{3} \sin 3t$ $\therefore R = \sqrt{1^2 + \sqrt{3}^2} = 2$ $\tan \alpha = \frac{\sqrt{3}}{1} hence \alpha = \frac{\pi}{3} \qquad \checkmark$ $\therefore \cos 3t - \sqrt{3} \sin 3t = 2\cos\left(3t + \frac{\pi}{3}\right) \qquad \checkmark$	2

2(c)(ii)	$\cos 3t - \sqrt{3}\sin 3t = 2\cos\left(3t + \frac{\pi}{3}\right)$	2
	$\therefore amplitude = 2 \qquad \checkmark \qquad \qquad$	
	period $=\frac{2\pi}{3}$	
2(d)	Equations = 9 letters (5 vowels, 4 consonants)	2
	\therefore 7 letters = 5 vowels and 2 consonants	
	$\therefore {}^{5}P_{5} \times {}^{4}P_{2} \qquad \checkmark$	
	$=1440 \ ways$ \checkmark	

Question	Answer	Marks
3(a)	$\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{4^2}\right)\dots\left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$	3
	step1: prove true for $n = 2$	
	<i>LHS</i> = $1 - \frac{1}{2^2} = \frac{3}{4}$ <i>RHS</i> = $\frac{2+1}{2 \times 2} = \frac{3}{4}$	
	$\therefore LHS = RHS (hence true for n = 2)$	
	Step 2: assume true for $n = k$	
	$\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{4^2}\right)\dots\left(1 - \frac{1}{k^2}\right) = \frac{k+1}{2k}$	
	Step 3: prove true for $n = k + 1$	
	$RTP: \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \left(1 - \frac{1}{k^2}\right) \left(1 - \frac{1}{(k+1)^2}\right) = \frac{k+2}{2(k+1)}$	
	$LHS = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \left(1 - \frac{1}{k^2}\right) \left(1 - \frac{1}{(k+1)^2}\right)$	
	$=\frac{k+1}{2k}\left(1-\frac{1}{(k+1)^{2}}\right)$	
	$=\frac{k+1}{2k}\left(\frac{(k+1)^2 - 1}{(k+1)^2}\right)$	
	$=\frac{k+1}{2k}\left(\frac{k(k+2)}{(k+1)^2}\right)$	
	$=\frac{1}{2}\left(\frac{k+2}{(k+1)}\right)$	
	$=\frac{k+2}{2(k+1)}$	
	= RHS	
	$\therefore true for n = k + 1 \qquad \checkmark$	
	Step 4: since true for $n=2$ and $n=2+1=3$, and true for $n = k$ and $n = k+1$	
	therefore it is true for $n \ge 2$	

3(b)	$\int \sin^2 3x dx = \frac{1}{2} x - \frac{1}{12} \sin 6x \qquad \checkmark$	3
	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \sin^2 3x dx = \left[\frac{1}{2}x - \frac{1}{12}\sin 6x\right]_{-\frac{\pi}{4}}^{\frac{\pi}{3}}$	
	$= \left[\frac{1}{2}\left(\frac{\pi}{3}\right) - \frac{1}{12}\sin 6\left(\frac{\pi}{3}\right)\right] - \left[\frac{1}{2}\left(\frac{\pi}{4}\right) - \frac{1}{12}\sin 6\left(\frac{\pi}{4}\right)\right] \checkmark$	
	$=\left(\frac{\pi}{6}-0-\frac{\pi}{8}-\frac{1}{12}\right)$	
	$=\frac{\pi}{24}-\frac{1}{12}$	
3(c)	$p(x) = x^3 + ax^2 + bx + 12$	3
	$p(-1) = -1 + a - b + 12 = 0$ $\therefore a - b = -11$ (i)	
	$p(-2) = -8 + 4a - 2b + 12 = 8$ $\therefore 4a - 2b = 4$ (<i>ii</i>)	
	(ii) - 2(i): 2a = 26	
	a = 13	
	$sub\ a = 13\ int\ o\ (i)$	
	$\therefore 13 - b = -11$	
	-b = -24	
	b = 24	
3(d)	$x^3 - 6x^2 - 2x + 4 = 0$	3
	(i) $\alpha + \beta + \gamma = \frac{-b}{a} = 6$	
	(ii) $\alpha^2 + \beta^2 + \gamma^2$	
	$= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma) \checkmark$	
	$=(6)^2-2(-2)$	
	= 36 + 4	
	= 40	

Question	Answer	Marks
4(a)	Using similar triangles:	3
	$\frac{4}{\sqrt{2}} = \frac{3}{\sqrt{2}}$ (where $d = diameter$)	
	$\frac{1}{d+3} = \frac{1}{9}$ (where $u = uumeter)$ [.]	
	3d + 9 = 36	
	3d = 27	
	d = 9	
	$\therefore diameter = 9 \qquad \checkmark$	
4(1-)(:)		2
4(b)(1)	$OB = OE (equal \ radii)$	3
	$\angle OBE = \angle OEB (base \ \angle 's \ of \ isoceles \ \Delta \ are =)$	
	$\angle OEB = \angle BAC$ (angles s tan ding on same arc are equal)	
	$\therefore \angle OBE = \angle BAC$	
	$\therefore \Delta AGB \text{ is isoceles (base $\angle's$ of isoceles Δ are =)} \qquad \checkmark$	
	$\therefore AG = GB$	
4(b)(ii)	$\angle OAG = \angle GEO$ (angles standing on same arc are equal)	2
	label X (intersection of AF and OE)	
	$\therefore \ \angle AXO = \angle EXG \ (vertically \ opp \ \angle's =) \qquad \checkmark$	
	$\therefore \ \angle AOX = \angle EGX$ (angle sum of a \triangle is supplementary)	
	$\sin ce \angle AOX = \angle EGX$	
	\therefore angles standing on the same arc are equal	
	$\therefore AOGE$ is a cyclic quadrilateral	
4(c)(i)	$\sin 3\theta = \sin(2\theta + \theta)$	2
	$=\sin 2\theta\cos\theta + \sin\theta\cos 2\theta$	
	$= (2\sin\theta\cos\theta)(\cos\theta) + \sin\theta(1 - 2\sin^2\theta)$	
	$= 2\sin\theta\cos^2\theta + \sin\theta - 2\sin^3\theta$	
	$= 2\sin\theta(1-\sin^2\theta) + \sin\theta - 2\sin^3\theta \qquad \checkmark$	
	$=2\sin\theta - 2\sin^3\theta + \sin\theta - 2\sin^3\theta$	
	$-3\sin\theta - 4\sin^3\theta$	

5(b)(i)	$t^2 - 0 t$	2
	$m_{OT} = \frac{1}{2t - 0} = \frac{1}{2}$	
	$AP \perp OT$	
	$\therefore m_{AP} = -\frac{2}{t} \qquad \checkmark$	
	A is where tangent $y = tx - t^2$ crosses x axis $\therefore A(t,0)$	
	$\therefore equation \ AP: \ y-0 = -\frac{2}{t}(x-t)$	
	$y = -\frac{2}{t}(x-t)$	
5(b)(ii)	$m_{OT} = \frac{t^2 - 0}{2t - 0} = \frac{t}{2}$	1
	: Equation OT is: $y-t^2 = \frac{t}{2}(x-2t)$	
	$y - t^2 = \frac{tx}{2} - t^2$	
	$y = \frac{tx}{2}$	
	\therefore $tx = 2y$	
	$t = \frac{2y}{2}$	
5(b)(iii)	<u> </u>	3
5(0)(11)	P lies on the line $AP: y = -\frac{2}{t}(x-t)$	5
	and $t = \frac{2y}{x}$	
	$\therefore y = \frac{-2}{\underline{2y}} \left(x - \frac{2y}{x} \right) \qquad \checkmark$	
	$y = \frac{-2x}{2y} \left(x - \frac{2y}{x} \right)$	
	$y = \frac{-x}{y} \left(x - \frac{2y}{x} \right)$	
	$y^2 = -x^2 + 2y$	
	$x^2 - 2y + y^2 = 0$	
	$(x-1)^{-} + y^{-} = 1$	
	\therefore circle with centre (1,0) \checkmark	
	\therefore radius = 1	

6(a)(iv)	Area rec tan $gle = L \times B = 2(e^2 + 1)$	3
	$y = \log_e(x-1)$ $\therefore x = e^y + 1$	
	$\int_{-\infty}^{\infty} e^{y} + 1 dy = \left[e^{y} + y \right]_{0}^{2} \qquad \checkmark$	
	$ \int_{0}^{0} = \left[(e^{2} + 2) - (e^{0} + 0) \right] $	
	$= \left[\left(e^2 + 2 \right) - \left(e^0 + 0 \right) \right]$	
	$= \left\lceil \left(e^2 + 2\right) - 1 \right\rceil$	
	$=e^2+1$	
	\therefore Area arc $PQ = e^2 + 1$	
	Area $arc = \frac{1}{2}(area \ rec \tan gle)$	
6(b)(i)	Area of trapezium = area rectangle + 2 area of triangles	2
	$A = 5y + 2 \times \frac{1}{2}xy \qquad where \ \sin \theta = \frac{y}{5} \implies y = 5\sin \theta \qquad \checkmark$	
	$\cos\theta = \frac{x}{5} \implies x = 5\cos\theta$	
	$\therefore A = 25\sin\theta + (5\cos\theta)(5\sin\theta)$	
	$A = 25\sin\theta(1 + \cos\theta)$	
6(b)(ii)	Max occurs when $\frac{dA}{d\theta} = 0$	3
	$\therefore \frac{dA}{d\theta} = 50\cos^2\theta + 25\cos\theta - 25 = 0$	
	$25(2\cos^2\theta + \cos\theta - 1) = 0$	
	$25(2\cos\theta - 1)(\cos\theta + 1) = 0$	
	$\therefore 2\cos\theta - 1 = 0 \qquad or \ \cos\theta + 1 = 0$	
	$2\cos\theta = 1 \qquad \cos\theta = -1$	
	$\theta = 60 \text{ or } 300 \qquad \theta = 270 \qquad \checkmark$	
	since θ is acute \therefore test $\theta = \frac{\pi}{3}$	
	$\left \frac{d^2 A}{d\theta^2} = -100\cos 60\sin 60 - 25\sin 60 < 0 \qquad \therefore \text{ concave up since } \frac{d^2 A}{d\theta^2} < 0 \right $	
	\therefore max of $at \ \theta = \frac{\pi}{3}$	