KINCOPPAL-ROSE BAY SCHOOL OF THE SACRED HEART

2010

HIGHER SCHOOL CERTIFICATE
HALF YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 72

- Attempt Questions 1-6
- All questions are of equal value
(a) Solve for $x, \quad \frac{3}{2-3 x} \leq \frac{2}{3}$
(b) Solve the equation $\sin 2 \theta=\cos \theta$ for $0 \leq \theta \leq 2 \pi$
(c) Evaluate $\lim _{\theta \rightarrow 0} \frac{\tan \frac{\theta}{3}}{\theta}$
(d) If $f(x)=2 x^{2}+x$, use the definition

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to find the derivative of $f(x)$ at the point where $x=a$
(e) Find the coordinates of the point P which divides the interval $A B$ externally in the ratio $4: 1$, if A is $(1,4)$ and B is $(3,-6)$

End of Question 1

Question 2 (12 marks)
Use a SEPARATE writing booklet
Marks
(a) Use the substitution $u=1+x^{2}$ to evaluate $\int_{1}^{\sqrt{3}} 6 x \sqrt{1+x^{2}} d x$
(b) Let $f(x)=\ln (\tan x), 0<x<\frac{\pi}{2}$

Show that $f^{\prime}(x)=2 \operatorname{cosec} 2 x$
(c) (i) Express $\cos 3 t-\sqrt{3} \sin 3 t$ in the form $R \cos (3 t+\alpha)$ for some $R>\alpha$
and $0<\alpha<\frac{\pi}{2}$
(ii) Hence state the period and amplitude of $\cos 3 t-\sqrt{3} \sin 3 t$.
(d) The word EQUATIONS contains all five vowels. How many 7-letter 'words' consisting of all fives vowels can be formed from the letters of EQUATIONS?

End of Question 2

(a) Prove by mathematical induction, for $n \geq 2$, that

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots .\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} .
$$

(b) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin ^{2} 3 x d x$
(c) The polynomial $p(x)=x^{3}+a x^{2}+b x+12$ has a zero at $x=-1$ and has remainder 8 when divided by $x+2$. Find the constants a and b.
(d) If α, β and γ are the roots of $x^{3}-6 x^{2}-2 x+4=0$, find the values of:

$$
\text { (i) } \quad \alpha+\beta+\gamma
$$

(ii) $\alpha^{2}+\beta^{2}+\gamma^{2}$

End of Question 3

(a)

$A B$ is the diameter of a circle, centre O .
$A B$ produced meets the secant $C D$ at P.
$C D=5, D P=4$ and $B P=3$
Find the diameter of the circle.
(b) In the figure, $A O B$ is the diameter of a circle centre $O . D$ is a point on chord $A C$ such that $D A=D O$ and $O D$ is produced to E. $A F$ is the bisector of $\angle B A C$ and cuts $B E$ in G.

Prove that:

(i) $G A=G B$
(ii) $A O G E$ is a cyclic quadrilateral
(c) (i) Prove that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
(ii) Hence find $\int 2 \sin ^{3} \theta d \theta$
(a) A boat sails from a point A to a point B.

At point A the captain of the ship measures the angle of elevation of the top of a lighthouse as 16° and the bearing of the lighthouse as 040°.

At point B the captain of the ship measures the angle of elevation of the top of the lighthouse as 18° and the bearing of the lighthouse as 340°.

The top of the lighthouse is known to be 80 m above sea level.
The diagram below shows the angles of elevation of the top of the lighthouse from A and B.

(i) Draw a bearing diagram showing the relative positions of A, B and C and use your diagram to explain why $\angle A C B=60^{\circ}$.
(ii) Hence, find the distance between A and B, correct to the nearest metre.
(iii) Hence, find the bearing of B from A, to the nearest degree.

Question 5 continued

(b) The tangent at $T\left(2 t, t^{2}\right), t \neq 0$, on the parabola $x^{2}=4 y$ meets the x axis at A.
$P(x, y)$ is the foot of the perpendicular from A to $O T$, where O is the origin.
The equation of the tangent at T is $y=t x-t^{2}$
(i) Prove that the equation of $A P$ is $y=-\frac{2}{t}(x-t)$
(ii) Show that the equation of $O T$ is $t=\frac{2 y}{x}$
(iii) Hence, or otherwise, prove that the locus of $P(x, y)$ lies on a circle with centre $(0,1)$ and give its radius.

End of Question 5

(a) (i) Draw a neat sketch of the function, $y=\log _{e}(x-1)$.
(ii) This function meets the line $y=2$ at the point P and the x-axis at the point Q. Show that the coordinates of P and Q are $\left(e^{2}+1,2\right)$ and $(2,0)$ respectively.
(iii) If S is the point $(0,2)$, find the co-ordinates of the point R if $O S P R$ is a rectangle. Label the points S and R on your sketch.
(iv) Show that the arc $P Q$, divides the rectangle $O S P R$ into two regions of equal area.
(b) The illustration below is part of the cross section of the roof of the Mathematics Faculty staffroom.

(i) If $\angle A B C=\angle D C B=\theta$ show that the area of this cross section is given by:

$$
A=25 \sin \theta(1+\cos \theta)
$$

(ii) Given $\frac{d A}{d \theta}=50 \cos ^{2} \theta+25 \cos \theta-25$
and $\frac{d^{2} A}{d \theta^{2}}=-100 \cos \theta \sin \theta-25 \sin \theta$
Find the value of θ which will make this area a maximum.

End of Examination

KINCOPPAL-ROSE BAY
SCHOOL OF THE SACRED HEART

2010

HIGHER SCHOOL CERTIFICATE HALF YEARLY EXAMINATION

SOLUTIONS

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 72

- Attempt Questions 1-6
- All questions are of equal value

Question	Answer	Marks
1(a)	$\begin{aligned} & \frac{3}{2-3 x} \leq \frac{2}{3} \\ & 2-3 x \neq 0 \\ & \therefore x=\frac{2}{3} \quad \checkmark \end{aligned} \begin{aligned} & \frac{3}{2-3 x}=\frac{2}{3} \\ & 9=4-6 x \\ &-6 x=5 \\ & x=\frac{-5}{6} \\ & \text { Test points } \end{aligned}$	3
1(b)		3
1(c)	$\begin{aligned} \lim _{\theta \rightarrow 0} \frac{\tan \frac{\theta}{3}}{\theta} & =\frac{\tan \frac{\theta}{3}}{\frac{\theta}{3}} \times \frac{\theta}{\theta} \\ & =1 \times \frac{1}{3} \\ & =\frac{1}{3} \end{aligned}$	2

1(d)	$\begin{aligned} \frac{d y}{d x} & =\frac{f(x+h)-f(x)}{h} \\ & =\frac{2(x+h)^{2}+(x+h)-\left(2 x^{2}+x\right)}{h} \\ & =\frac{4 x h+h^{2}+h}{h} \\ & =\frac{h\left(4 x^{2}+h+1\right)}{h} \\ \lim _{x \rightarrow 0} & =4 x^{2}+0+1 \\ & =4 x^{2}+1 \end{aligned}$	2
1(e)	$(1,4)$ and $(3,-6)$ externally $4: 1$ $\begin{aligned} & \therefore \frac{1 \times 1+-4 \times 3}{1-4}, \frac{1 \times 4+-4 \times-6}{1-4} \\ & \therefore P\left(\frac{11}{3}, \frac{-28}{3}\right) \end{aligned}$	2

Question	Answer	Marks
2(a)	$\begin{array}{ll} =\int_{1}^{\sqrt{3}} 6 x \sqrt{1+x^{2}} d x & u=1+x^{2} \\ =\int^{2 x} 6 x \sqrt{u} \frac{d u}{2 x} & \frac{d u}{d x}=2 x \\ =\int^{3} 3 \sqrt{u} d u & \therefore d x=\frac{d u}{2 x} \\ =\int_{3 u^{\frac{1}{2}} d u} \\ =\left[\frac{3 u^{\frac{3}{2}}}{\frac{3}{2}}\right] & \\ =\left[2\left(1+x^{2}\right)^{\frac{3}{2}}\right]_{1}^{\sqrt{3}} & \\ =\left[2\left(1+(\sqrt{3})^{2}\right)^{\frac{3}{2}}\right]-\left[2\left(1+1^{2}\right)^{\frac{3}{2}}\right] \\ =16-4 \sqrt{2} & \end{array}$	3
2(b)	$\begin{aligned} f(x) & =\ln (\tan x) \\ f^{\prime}(x) & =\frac{\sec ^{2} x}{\tan x} \\ & =\frac{1}{\cos ^{2} x} \times \frac{\cos x}{\sin x} \\ & =\frac{1}{\cos x \sin x} \\ & =\frac{1}{\frac{1}{2} \sin 2 x} \\ & =2 \cos e c 2 x \end{aligned}$	3
2(c)(i)	$\begin{aligned} & \cos 3 t-\sqrt{3} \sin 3 t \\ & \therefore R={\sqrt{1^{2}+\sqrt{3}^{2}}=2}^{\tan \alpha=\frac{\sqrt{3}}{1} \quad \text { hence } \alpha=\frac{\pi}{3}} \\ & \therefore \cos 3 t-\sqrt{3} \sin 3 t=2 \cos \left(3 t+\frac{\pi}{3}\right) \end{aligned}$	2

2(c)(ii)	$\begin{aligned} & \cos 3 t-\sqrt{3} \sin 3 t=2 \cos \left(3 t+\frac{\pi}{3}\right) \\ & \therefore \text { amplitude }=2 \\ & \text { period }=\frac{2 \pi}{3} \end{aligned}$	2
2(d)	$\begin{aligned} & \text { Equations }=9 \text { letters }(5 \text { vowels, } 4 \text { consonants }) \\ & \therefore 7 \text { letters }=5 \text { vowels and } 2 \text { consonants } \\ & \therefore{ }^{5} P_{5} \times{ }^{4} P_{2} \\ & \quad=1440 \text { ways } \end{aligned}$	2

3(b)	$\begin{aligned} \int \sin ^{2} 3 x d x= & \frac{1}{2} x-\frac{1}{12} \sin 6 x \\ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin ^{2} 3 x d x & =\left[\frac{1}{2} x-\frac{1}{12} \sin 6 x\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} \\ & =\left[\frac{1}{2}\left(\frac{\pi}{3}\right)-\frac{1}{12} \sin 6\left(\frac{\pi}{3}\right)\right]-\left[\frac{1}{2}\left(\frac{\pi}{4}\right)-\frac{1}{12} \sin 6\left(\frac{\pi}{4}\right)\right] \\ & =\left(\frac{\pi}{6}-0-\frac{\pi}{8}-\frac{1}{12}\right) \\ & =\frac{\pi}{24}-\frac{1}{12} \end{aligned}$	3
3(c)	$\begin{array}{ll} p(x)=x^{3}+a x^{2}+b x+12 & \\ p(-1)=-1+a-b+12=0 & \therefore a-b=-11 \\ p(-2)=-8+4 a-2 b+12=8 & \therefore 4 a-2 b=4 \end{array}$ $\begin{array}{r} (\text { ii })-2(i): \quad 2 a=26 \\ a=13 \\ \text { sub } a=13 \text { int } o(i) \\ \therefore 13-b=-11 \\ -b=-24 \\ b=24 \end{array}$	3
3(d)	$x^{3}-6 x^{2}-2 x+4=0$ (i) $\alpha+\beta+\gamma=\frac{-b}{a}=6$ $\text { (ii) } \begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2} \\ = & (\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma) \\ = & (6)^{2}-2(-2) \\ = & 36+4 \\ = & 40 \end{aligned}$	3

Question	Answer	Marks
4(a)	Using similar triangles: $\begin{aligned} & \frac{4}{d+3}=\frac{3}{9} \quad(\text { where } d=\text { diameter }) \\ & 3 d+9=36 \\ & 3 d=27 \\ & d=9 \\ & \therefore \text { diameter }=9 \end{aligned}$	3
4(b)(i)	$O B=O E \quad$ (equal radii) $\angle O B E=\angle O E B \quad$ (base $\angle ' s$ of isoceles \triangle are $=$) $\angle O E B=\angle B A C \quad$ (angles $s \tan$ ding on same arc are equal) $\therefore \angle O B E=\angle B A C$ $\therefore \triangle A G B$ is isoceles (base \angle 's of isoceles \triangle are $=$) $\therefore A G=G B$	3
4(b)(ii)	$\angle O A G=\angle G E O$ (angles standing on same arc are equal) label X (intersection of $A F$ and $O E$) $\therefore \angle A X O=\angle E X G \quad$ (vertically opp $\angle ' s=$) $\therefore \angle A O X=\angle E G X$ (angle sum of a \triangle is supplementary) since $\angle A O X=\angle E G X$ \therefore angles standing on the same arc are equal $\therefore A O G E$ is a cyclic quadrilateral	2
4(c)(i)	$\begin{aligned} \sin 3 \theta & =\sin (2 \theta+\theta) \\ & =\sin 2 \theta \cos \theta+\sin \theta \cos 2 \theta \\ & =(2 \sin \theta \cos \theta)(\cos \theta)+\sin \theta\left(1-2 \sin ^{2} \theta\right) \\ & =2 \sin \theta \cos ^{2} \theta+\sin \theta-2 \sin ^{3} \theta \\ & =2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta-2 \sin ^{3} \theta \\ & =2 \sin \theta-2 \sin ^{3} \theta+\sin \theta-2 \sin ^{3} \theta \\ & =3 \sin \theta-4 \sin ^{3} \theta \end{aligned}$	2

4(c)(ii)	$\begin{aligned} & \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \\ & 4 \sin ^{3} \theta=3 \sin \theta-\sin 3 \theta \\ & \sin ^{3} \theta=\frac{1}{4}(3 \sin \theta-\sin 3 \theta) \\ & \int \begin{aligned} 2 \sin ^{3} \theta d \theta & =2 \int \sin ^{3} \theta d \theta \\ & =2 \int \frac{1}{4}(3 \sin \theta-\sin 3 \theta) \\ & =\frac{1}{2} \int(3 \sin \theta-\sin 3 \theta) \\ & =\frac{1}{2}\left[-3 \cos \theta+\frac{1}{3} \cos 3 \theta\right] \\ & =\frac{-3}{2} \cos \theta+\frac{1}{6} \cos 3 \theta+C \end{aligned} \end{aligned}$

Question	Answer	Marks
5(a)(i)	\square alternate \angle 's = $\therefore \angle A C B=20+40=60^{\circ}$	1
5(a)(ii)	$\begin{aligned} & \text { Let } A C=x, B C=y \text { and } C T=80 m \\ & \therefore \tan 16=\frac{80}{x}, \tan 18=\frac{80}{y} \text { and } A B^{2}=x^{2}+y^{2}-2 x y \cos 60 \\ & A B^{2}=\left(\frac{80}{\tan 16}\right)^{2}+\left(\frac{80}{\tan 18}\right)^{2}-2\left(\frac{80}{\tan 16}\right)\left(\frac{80}{\tan 18}\right) \cos 60 \\ & A B^{2}=80^{2}\left(\frac{1}{\tan ^{2} 16}+\frac{1}{\tan ^{2} 18}-\frac{2 \cos 60}{\tan 16 \tan 18}\right) \\ & A B^{2}=69766.6396 \\ & A B=\sqrt{69766.6396} \\ & A B=264 m \text { (nearest metre) } \end{aligned}$	3
5(a)(iii)		2

5(b)(i)	$\begin{aligned} & m_{O T}=\frac{t^{2}-0}{2 t-0}=\frac{t}{2} \\ & A P \perp O T \\ & \therefore m_{A P}=-\frac{2}{t} \end{aligned}$ A is where tangent $y=t x-t^{2}$ crosses x axis $\therefore A(t, 0)$ $\begin{aligned} \therefore \text { equation } A P: y-0 & =-\frac{2}{t}(x-t) \\ y & =-\frac{2}{t}(x-t) \end{aligned}$	2
5(b)(ii)	$m_{O T}=\frac{t^{2}-0}{2 t-0}=\frac{t}{2}$ \therefore Equation OT is: $y-t^{2}=\frac{t}{2}(x-2 t)$ $\begin{aligned} y-t^{2} & =\frac{t x}{2}-t^{2} \\ y & =\frac{t x}{2} \end{aligned}$ $\begin{array}{ll} \therefore & t x=2 y \\ & t=\frac{2 y}{x} \end{array}$	1
5(b)(iii)	P lies on the line $A P: y=-\frac{2}{t}(x-t)$ and $t=\frac{2 y}{x}$ $\begin{aligned} & \therefore y=\frac{-2}{\frac{2 y}{x}}\left(x-\frac{2 y}{x}\right) \\ & y=\frac{-2 x}{2 y}\left(x-\frac{2 y}{x}\right) \\ & y=\frac{-x}{y}\left(x-\frac{2 y}{x}\right) \\ & y^{2}=-x^{2}+2 y \\ & x^{2}-2 y+y^{2}=0 \\ &(x-1)^{2}+y^{2}=1 \end{aligned}$ \therefore circle with centre $(1,0)$ $\therefore \text { radius }=1$	3

Question	Answer	Marks
6(a)(i)		1
6(a)(ii)		2
6(a)(iii)	$R\left(e^{2}+1,0\right) \quad \boxed{\square}$	1

6(a)(iv)	Area rec $\tan g l e=L \times B=2\left(e^{2}+1\right)$ $\begin{aligned} & y=\log _{e}(x-1) \quad \therefore x=e^{y}+1 \\ & \begin{aligned} \int_{0}^{2} e^{y}+1 d y & =\left[e^{y}+y\right]_{0}^{2} \\ = & {\left[\left(e^{2}+2\right)-\left(e^{0}+0\right)\right] } \\ = & {\left[\left(e^{2}+2\right)-\left(e^{0}+0\right)\right] } \\ = & {\left[\left(e^{2}+2\right)-1\right] } \\ & =e^{2}+1 \end{aligned} \end{aligned}$ \therefore Area arc $P Q=e^{2}+1$ Area arc $=\frac{1}{2}($ area rec \tan gle $)$	3
6(b)(i)	Area of trapezium $=$ area rectangle +2 area of triangles $\begin{aligned} & A=5 y+2 \times \frac{1}{2} x y \quad \text { where } \sin \theta=\frac{y}{5} \quad \Rightarrow y=5 \sin \theta \\ & \qquad \cos \theta=\frac{x}{5} \Rightarrow x=5 \cos \theta \\ & \therefore A=25 \sin \theta+(5 \cos \theta)(5 \sin \theta) \\ & A=25 \sin \theta(1+\cos \theta) \end{aligned}$	2
6(b)(ii)	Max occurs when $\frac{d A}{d \theta}=0$ since θ is acute \therefore test $\theta=\frac{\pi}{3}$ $\begin{aligned} \frac{d^{2} A}{d \theta^{2}}=-100 \cos 60 \sin 60-25 \sin 60<0 & \therefore \text { concave up since } \frac{d^{2} A}{d \theta^{2}}<0 \\ & \therefore \max \text { of at } \theta=\frac{\pi}{3} \end{aligned}$	3

