

Moriah College

Year 122007 Pre-Trial

Extension 1 MATHEMATICS

Time Allowed: 2 hours plus 5 minutes reading time
Examiners: E. Apfelbaum , H. Dalakiaris, J. Cohen, C. White Instructions:

- Answer every question. All questions are of equal value.
- Show all necessary working. Draw clear, well labelled diagrams.
(a) Find the exact value of $\cos \left(\frac{5 \pi}{4}\right)$.
(b) Find:
(i) $\int e^{3 x-5} d x$

1
(ii) $\frac{d}{d x}\left(\tan ^{-1} 4 x\right)$.
(c) Evaluate $\int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} d x$.
(d) The point P divides the line $A B$ externally in the ratio $1: 4$.

2
Find P if A is $(2,1)$ and B is $(-4,5)$.
(e) $\lim _{x \rightarrow 0} \frac{\sin x}{3 x}$

1
(f) Find the values of x which satisfy $\frac{3}{x-1} \leq 3$.
(a) (i) Show that the curves $y=4 x$ and $y=x^{3}$ intersect at the point where $x=2$.
(ii) Find the acute angle between the two curves at $x=2$, correct to the nearest degree.
(b) Find the derivative of $f(x)=5 x^{2}-x$ from first principles using the definition :

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

(c) Find the exact value of $\int_{0}^{\frac{\pi}{3}} 3 \cos x \sin ^{2} x d x$.
(d) Find the exact values of
(i) $\sin ^{-1}\left(\cos \frac{\pi}{6}\right)$.
(ii) $\cos \left(2 \sin ^{-1} \frac{3}{7}\right)$.
(a) (i) Show that $\cos ^{2} x=\frac{1}{2} \cos 2 x+\frac{1}{2}$.

2
(ii) The shaded region bounded by the curve $y=2 \cos x$ and the coordinate axes is rotated around the x-axis to form a solid.

Using part (i), find the volume of the solid in terms of π.
(b) (i) Express $\sin 2 \theta+\sqrt{3} \cos 2 \theta$ in the form $R \sin (2 \theta+\alpha)$, where $0 \leq \alpha \leq \frac{\pi}{2}$ and $R>0$.
(ii) The graphs of $y=\sin 2 \theta+\sqrt{3} \cos 2 \theta$ and $y=1$ are shown on the real number plane below. The point A is a relative maximum and the points B and C are points of intersection.

Find the coordinates of the points A, B and C.
(a)

The diagram shows the graph of the parabola $x^{2}=4 y$. The line $P Q$ is a focal chord which intersects the y-axis at S.
(i) Prove that the equation of the tangent to the parabola at P is

$$
y=p x-p^{2}
$$

(ii) The tangents at P and Q meet at point R. Find the coordinates of R.
(iii) Find the equation of the line $P Q$ and hence, show that $p q=-1$.
(iv) Find the Cartesian equation of the locus of R, as P moves on the parabola.
(b) Given that $\frac{d}{d x}(x \log x)=\log x+1$, find the exact value of

$$
\int_{e}^{e^{2}} \frac{1+\log x}{x \log x} d x
$$

(c) Use the substitution $t=\tan \theta$ to show that $\sqrt{\frac{1-\sin 2 \theta}{1+\sin 2 \theta}}=\frac{1-\tan \theta}{1+\tan \theta}$, where $-1<\tan \theta \leq 1$.
(a)

2 m

A conical container, with diameter 2 metres and height 3 metres, is being filled with water at a rate of $0.5 \mathrm{~m}^{3} / \mathrm{min}$. The volume of water V in the container at any time t, is given by:

$$
V=\frac{\pi h^{3}}{27} \text { (cubic metres) }
$$

(i) Find $\frac{d V}{d h}$ and hence, show that the rate of increase in the height h, of the water at any time t is given by:

$$
\frac{d h}{d t}=\frac{9}{2 \pi h^{2}}(\text { metres } / \mathrm{min})
$$

(ii) Find the exact rate of increase in the height h, of the liquid when the container is $\frac{1}{4}$ full. Give your answer in simplest form.
(b) The line $y=m x$ is a tangent to the curve $y=\log x$.
(i) Find the value of m.
(ii) Hence, find the range of values of k such that the equation $k x=\log x$ has two distinct roots.
(c) Prove that $\frac{\sin 5 \theta}{\sin \theta}-\frac{\cos 5 \theta}{\cos \theta}=4 \cos 2 \theta$
(a) Use the principle of mathematical induction to prove that for all integers $n \geq 1$,

$$
2+10+24+\ldots+n(3 n-1)=n^{2}(n+1) .
$$

(b) Consider the function $f(x)=\frac{x}{\sqrt{1-x^{2}}}$
(i) Write down the domain of $f(x)$.
(ii) Show that $f^{\prime}(x)=\frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}}$. 2
(iii) Find the equation of the tangent to $f(x)=\frac{x}{\sqrt{1-x^{2}}}$ at $x=0$.
(iv) Sketch a graph of $y=f(x)$ clearly showing the tangent at $x=0$, 2 and any asymptotes.
(v) Sketch an accurate graph of $y=f^{-1}(x)$ on the same set of axes.
(vi) Find the inverse function $y=f^{-1}(x)$.
(a) A boat sails from a point A to a point B.

At point A the captain of the ship measures the angle of elevation of the top of a lighthouse as 16° and the bearing of the lighthouse as 040°.

At point B the captain of the ship measures the angle of elevation of the top of the lighthouse as 18° and the bearing of the lighthouse as 340°.

The top of the lighthouse is known to be 80 m above sea level.
The diagram below shows the angles of elevation of the top of the lighthouse from A and B.

(i) Draw a bearing diagram showing the relative positions of A, B and C and use your diagram to explain why $\angle A C B=60^{\circ}$.
(ii) Hence, find the distance between A and B, correct to the nearest metre.
(iii) Hence, find the bearing of B from A, to the nearest degree.
(b) A ladder $\lambda \mathrm{m}$ long is leaning against a vertical wall so that it just touches the top of a fence that is 3 m high and 4 m from the wall. The ladder is inclined at an angle of θ radians to the ground.

(i) Prove that the length of the ladder $\lambda=\frac{3}{\sin \theta}+\frac{4}{\cos \theta}$.
(ii) Show that if $\lambda=10$ then the angle θ satisfies the equation
$\sin (2 \theta)=\sin (\theta+\varphi)$, where $\tan \varphi=\frac{3}{4}$.
(iii) Hence, find the value(s) of θ.

Question 1:
(a)

$$
\begin{aligned}
\cos \left(\frac{5 \pi}{4}\right) & =-\cos \frac{\pi}{4} \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\text { (b) (i) } \begin{aligned}
& \int e^{3 x-5} d x \\
= & \frac{1}{3} e^{3 x-5}+c
\end{aligned}
$$

(ii)

$$
\text { ii) } \begin{aligned}
& \frac{d}{d x}\left(\tan ^{-1} 4 x\right) \\
= & \frac{1}{1+(4 x)^{2}} \cdot 4 \\
= & \frac{4}{1+16 x^{2}}
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
& \int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} d x \\
& =\int_{0}^{1} \frac{1}{\sqrt{(\sqrt{2})^{2}-x^{2}}} d x \\
& =\left[\sin ^{-1} \frac{x}{\sqrt{2}}\right]_{0}^{1} \\
\sqrt{ }= & \sin ^{-1} \frac{1}{\sqrt{2}}-\sin ^{-1} 0 \\
& =\frac{\pi}{4}-0 \\
V & =\frac{\pi}{4}
\end{aligned}
$$

$$
\text { (d) } A
$$

$$
P\left(\frac{2 \times 4+-1 x-4}{3}, \frac{4 x 1+-1 \times 5}{3}\right) V
$$

$$
=\left(4,-\frac{1}{3}\right)
$$

$$
\text { (e) } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{3 x} \\
= & \frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
= & \frac{1}{3} \times 1 \\
= & \frac{1}{3} .
\end{aligned}
$$

(f) $\frac{3}{x-1} \leqslant 3$
(1) $x \neq 1$
(ii) Assume true

$$
\begin{array}{r}
\frac{3}{x-1}=3 \\
3 x-3=3 \\
3 x=6 \\
x=2
\end{array}
$$

(iii) test $x=0$ $-3 \leqslant 3$ (Trie,
2)a) i)

$$
\begin{array}{r}
x^{3}=4 x \\
x^{3}-4 x=0 \\
x\left(x^{2}-4\right)=0 \\
x=0, x^{2}=4 \\
x= \pm 2
\end{array}
$$

\therefore the carves $y=4 x$ ard $y=x^{3}$ intersect of the print where $x=2$.
ii)

$$
\frac{d y}{d x}=f \quad \frac{d y}{d x}=3 x^{2}
$$

$$
\begin{aligned}
\tan \theta & =\left|\frac{4-12}{1+(4)(12)}\right| \\
& =\left|\frac{-8}{1+48}\right| \\
& =\frac{8}{49} \\
\theta & =10 v \tan \left(\frac{8}{49}\right) \\
& =9^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-(x+h)-\left(5 x^{2}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5\left(x^{2}+2 x h+h^{2}\right)-x-h-5 x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-h-h-5 x^{2}+h}{h} \\
& =\lim _{h \rightarrow 0} 10 x+5 h-1 \\
& =10 x-1
\end{aligned}
$$

c)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{3}} 3 \cos x \sin ^{2} x d x & A\left[\sin ^{3} x\right]_{0}^{\frac{\pi}{3}} \\
& =\sin ^{3} \frac{\pi}{3}-\sin ^{3} 0 \\
& =\left(\frac{\sqrt{3}}{2}\right)^{3}-0 \\
& =\frac{\sqrt{27}}{8} \\
& =\frac{3 \sqrt{3}}{8}
\end{aligned}
$$

d) i)

$$
\begin{aligned}
\sin ^{-1}\left(\cos \frac{\pi}{6}\right) & =\sin ^{-1}\left(\sin \left(\frac{\pi}{2}-\frac{\pi}{6}\right)\right) \\
& \neq \sin ^{-1}\left(\sin \left(\frac{\pi}{6}\right)\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\cos \left(\sin ^{-1} \frac{3}{7}+\sin ^{-1} \frac{3}{7}\right) & =\cos ^{2}\left(\sin ^{-1} \frac{3}{7}\right)-\sin ^{2}\left(\sin ^{-1} \frac{3}{7}\right) \\
7 / 3 & =\left(\cos \left(\sin ^{-1} \frac{2 \sqrt{60}}{7}\right)\right)^{2}-\left(\frac{3}{7}\right)^{2} \\
\frac{10}{\sqrt{7^{2}-5^{2}}=\sqrt{40}} & =\left(\frac{2 \sqrt{10}}{7}\right)^{2}-\frac{9}{49} \\
& =2 \sqrt{10} \\
& =\frac{40}{49}-\frac{9}{49}=\frac{31}{49}
\end{aligned}
$$

Question 3:

$$
\begin{align*}
& \text { (a) (i) } \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \cos 2 x=\cos ^{2} x-\left(1-\cos ^{2} x\right) \\
& \cos 2 x=\cos ^{2} x-1+\cos ^{2} x \text {. } \\
& \left(-\frac{1}{2}\right. \\
& \text { forting } \\
& \text { out) } \\
& \cos 2 x=2 \cos ^{2} x-1 \\
& 2 \cos ^{2} x=\cos 2 x+1 \\
& \cos ^{2} x=\frac{1}{2}(\cos 2 x+1) \\
& \cos ^{2} x=\frac{1}{2} \cos 2 x+\frac{1}{2} \\
& \text { (ii) } \\
& V=\pi \int_{0}^{\pi / 2} y^{2} d x \\
& y=2 \cos 2 \\
& y=0 \text { : } \\
& =\pi \int_{0}^{\pi / 2}(2 \cos x)^{2} d x \text {. } \\
& 2 \cos x=0 \\
& \cos x=0 \\
& x=\pi / 2 \\
& =\pi \int_{0}^{\pi / 2}\left(4 \cos ^{2} x\right) d x \\
& =4 \pi \int_{0}^{\pi / 2} \frac{1}{2}(\cos 2 x+1) d x \text {. } \\
& =2 \pi \int_{0}^{\frac{\pi}{2}}(\cos 2 x+1) d x \\
& =2 \pi\left[\frac{\sin 2 x}{2}+x\right]_{0}^{\pi / 2} \text {. } \\
& =2 \pi[\pi / 2-0] \\
& =\pi^{2} \text { units }{ }^{3} \text {. }
\end{align*}
$$

(b) (i) $\sin 2 \theta+\sqrt{3} \cos 2 \theta=R \sin (2 \theta+\alpha$.

$$
\begin{aligned}
& R=\sqrt{1+3}=2 \\
& \sin (2 \theta+\alpha) \equiv \sin 2 \theta \cos \alpha+\sin \alpha \cos 2 \theta \\
& \cos \alpha=1 \tan \alpha=\sqrt{3} \\
& \sin \alpha=\sqrt{3} \quad \alpha=\frac{\pi}{3} \\
& R \sin (2 \theta+\alpha)=2 \sin \left(2 \theta+\frac{\pi}{3}\right)
\end{aligned}
$$

(ii) $\sin 2 \theta+\sqrt{3} \cos 2 \theta=2 \sin \left(2 \theta+\frac{\pi}{3}\right)$

For $A, y=2$.

$$
\begin{gathered}
\Rightarrow 2 \sin \left(2 \theta+\frac{\pi}{3}\right)=2 \\
\sin \left(2 \theta+\frac{\pi}{3}\right)=1 \\
\sin ^{-1}(1)=2 \theta+\frac{\pi}{3} \\
\frac{\pi}{2}=2 \theta+\frac{\pi}{3} \\
2 \theta=\frac{\pi}{2}-\frac{\pi}{3} \\
2 \theta=\frac{\pi}{6} \\
\theta=\frac{\pi}{12} \\
\therefore A\left(\frac{\pi}{12}, 2\right)
\end{gathered}
$$

For B and $c: y=1$.

$$
\begin{aligned}
& 2 \sin \left(2 \theta+\frac{\pi}{3}\right)=1 \\
& \sin \left(2 \theta+\frac{\pi}{3}\right)=\frac{1}{2} \\
& \sin ^{-1}\left(\frac{1}{2}\right)=2 \theta+\frac{\pi}{3}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{\pi}{6}=2 \theta+\frac{\pi}{3}, & \frac{5 \pi}{6}=2 \theta+\frac{\pi}{3} \\
2 \theta=\frac{\pi}{6}-\frac{\pi}{3}, & 2 \theta=\frac{5 \pi}{6}-\frac{\pi}{3} \\
2 \theta=-\frac{\pi}{6} & 2 \theta=\frac{\pi}{2} \\
\theta=\frac{-\pi}{12}, & \theta=\frac{\pi}{4}
\end{array}
$$

$$
\therefore B=\left(-\frac{\pi}{12}, 1\right) \quad c=\left(\frac{\pi}{4}, 1\right)
$$

4) a) i)

$$
\begin{aligned}
& x^{2}=4 y \\
& y=\frac{x^{2}}{4} \quad \frac{d y}{d x}=\frac{2 x}{4}
\end{aligned}
$$

$$
\begin{aligned}
m_{\text {tenge }} & =\frac{2 x}{4} \\
& =\frac{x}{2}
\end{aligned}
$$

$$
\text { at } p, x=2 p
$$

\therefore eq of tangent:

$$
\begin{aligned}
\Rightarrow m_{\text {tenet }} & =\frac{\partial p}{2} \\
& =p
\end{aligned}
$$

$$
\begin{aligned}
y-p^{2} & =p(x-2 p) \\
y & =p x-2 p^{2}+p^{2} \\
y & =p x-p^{2}
\end{aligned}
$$

ii) tangent of Q must hove eq. $y=q x-q^{2}$

- To l intersection of truyent from P and target prom Q :

$$
\begin{array}{rlrl}
p x-p^{2}=q x-q^{2} & \text { Sub } x \text { int } y=p x-p^{2} \\
(p-q) x=p^{2}-q^{2} & y=p(p+q)-p^{2} \\
x=\frac{p^{2}-q^{2}}{(p-q)} & =p^{2}+p q-p^{2} \\
x & =\frac{(p+q)(p-q)}{(p-q)} & & =p q \\
x & =p+q & \square R & =(p+q, p q)
\end{array}
$$

iii)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{p^{2}-q^{2}}{2 p-2 q} \\
& =\frac{(p+y)(p-q)}{2(p-q)} \\
& =\frac{p q}{2}
\end{aligned}
$$

$P Q$ passes though $P\left(2 p, p^{2}\right)$

$$
\begin{align*}
\Rightarrow y-p^{2} & =p+q(x-2 p) \\
y-p^{2} & =\frac{(p+q) x}{2}-p^{2}-p q \tag{1}\\
y & =\frac{(p+q) x-p q}{2}
\end{align*}
$$

$P Q$ poses though $S(0,1)$:

$$
\begin{align*}
\Rightarrow \quad 1 & =-p q \\
p q & =-1 \tag{1}
\end{align*}
$$

iv) $\Rightarrow R=(p+q,-1)$
$\therefore R$ moves ort the like $y=-1$
b)

$$
\begin{align*}
\frac{d}{d x}(x \log x)=\log x & +1 \\
\int_{e}^{e^{x}} \frac{1+\log x}{x \log x} d x & =[\log |x \log x|]_{e}^{e^{2}} /(1) \\
& =\log \left|e^{2} \log e^{x}\right|-\log |e \log e| \\
& =\log \left|2 e^{2} \log e\right|-\log |e| \\
& =\log \left|\frac{2 e^{2}}{e}\right| \\
& =\log |2 e| \tag{}\\
& =\log 2+1
\end{align*}
$$

c)

$$
\begin{aligned}
\text { LHS } & =\sqrt{\frac{1-\frac{2 t}{1+t^{2}}}{1+\frac{2 t}{1+t^{2}}}} \quad \text { RHS }=\frac{1-\tan \theta}{1+\tan \theta} \\
& =\sqrt{\frac{1+t^{2}-2 t}{1+t^{2}+2 t}} \\
& =\sqrt{\frac{\left(1-t^{2}\right.}{(t+1)^{2}}} \\
& =\frac{1-t}{t+1} \\
& =\frac{1-\tan \theta}{\tan \theta+1}
\end{aligned}
$$

5) a) i)

$$
\begin{aligned}
& \frac{d V}{d h}=\frac{3 \pi h^{2}}{27} \\
&=\frac{\pi h^{2}}{9} \\
& \begin{aligned}
\frac{d h}{d t} & =\frac{d h}{d V} \times \frac{d V}{d t} \\
& =\frac{9}{\pi h^{2}} \times \frac{1}{2} \\
& =\frac{9}{2 \pi h^{2}}
\end{aligned}
\end{aligned}
$$

ii)

$$
\begin{align*}
\frac{1}{4} V_{\text {TOT }} & =\frac{1}{4} \times \frac{\pi(3)^{3}}{27} \\
& =\frac{\pi}{4} \tag{1}
\end{align*}
$$

when $V=\frac{\pi}{L}$

$$
\begin{aligned}
\frac{\pi}{4} & =\frac{\pi h^{3}}{27} \\
\frac{27}{4} & =h^{3} \\
h & =\frac{3}{4^{\frac{1}{3}}} \\
& =\frac{3}{2^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d h}{d h} & =\frac{9}{2 \pi\left(\frac{3}{2 \sqrt[3]{3}}\right)^{2}} \\
& =\frac{2^{\frac{4}{3}}}{2 \pi} \\
& =\frac{2^{\frac{1}{3}}}{\pi} \\
& =\frac{\sqrt[3]{2}}{\pi}
\end{aligned}
$$

Rate of increase in h is:
b) i)

$$
\begin{array}{ll}
y=\log x & y=m x \\
\frac{d y}{d x}=\frac{1}{x} & \frac{d y}{d x}=m \\
\Rightarrow m=\frac{1}{x} &
\end{array}
$$

of pt of intersection

$$
\begin{aligned}
m x & =\log x \\
\frac{x}{x} & =\log x \\
1 & =\log x \\
c & =x
\end{aligned}
$$

$\therefore m=\frac{1}{e}$ when $y=m x$ is a longest to $y=\log x$
ii) The range of values for which $k x=\log x$ has the distinct roots wi

$$
0<k<\frac{1}{e}
$$

c)

$$
\begin{aligned}
\frac{\sin 5 \theta}{\sin \theta}-\frac{\cos 5 \theta}{\cos \theta} & =\frac{\sin 5 \theta \cos \theta-\cos 5 \theta \sin \theta}{\sin \theta \cos \theta} \\
& =\frac{\sin (5 \theta-\theta)}{\sin \theta \cos \theta} \\
& =\frac{\sin 4 \theta}{\frac{1}{2} \sin 2 \theta} \\
& =\frac{4 \sin 2 \theta \cos 2 \theta}{\sin 2 \theta}=4 \cos 2 \theta
\end{aligned}
$$

6) a) Prove that $2+10+24+\cdots+n(3 n+1)=n^{2}(n+1)$ for all integer $n \geq 1$,

Let $n=1$

$$
\begin{aligned}
\text { HS }=2 \quad \text { RHS } & =1^{2}(1+1) \\
& =1 \times 2 \\
& =2
\end{aligned}
$$

\therefore proposition is true for $n=1$
Assume' bree for $n=k$; where $k \geqslant 1$

$$
\begin{equation*}
2+10+2 k+\ldots+k(3 k+1)=k^{2}(k+1) \tag{1}
\end{equation*}
$$

Prove true for $n=k+1$

$$
\begin{aligned}
& 2+10+24+\cdots+k(3 k+1)+(k+1)(3 k+1)+1)=(k+1)^{2}((k+1+1) \\
\text { LHS } & \left.=k^{2}(k+1)+(k+1)(3 k+1)+1\right) \quad \text { RH }=(k+1)^{2}(k+2) \\
& =(k+1)\left(k^{2}+3 k+3+1\right) \\
& =(k+1)\left(k^{2}+3 k+2\right) \\
& =(k+1)(k+1)(k+2) \\
& =(k+1)^{2}(k+2) \\
\therefore & \text { CHS }=k+15
\end{aligned}
$$

\therefore proposition is true for $n=k+1$ if it is true for $n=k$.
\therefore As the proposition is true for $n=1$ it is true for $n \geqslant 1$.
6) blip: $x \in \mathbb{R},-1<x<1$
ii) Let $u=x$ and $v=\left(1-x^{2}\right)^{\frac{1}{2}}$

$$
\begin{align*}
& \quad u^{\prime}=1 \quad v^{\prime}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \times-2 x \\
& =-x\left(1-x^{2}\right)^{-\frac{1}{2}} \\
& y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{-2}} \\
& =\frac{\left(1-x^{2}\right)^{\frac{1}{2}}+x^{2}\left(1-x^{2}\right)^{-\frac{1}{2}}}{\left(1-x^{2}\right)} \tag{1}\\
& =\frac{\left(1-x^{2}\right)^{\frac{1}{2}}+x^{2}(1-x)^{-\frac{1}{2}}}{1-x^{2}} \times \frac{\left(1-x^{2} \frac{1}{2}_{\frac{1}{2}}^{\left(1-x^{2}\right)^{\frac{1}{2}}}\right.}{=} \\
& =\frac{1-x^{2}+x^{2}}{\left(1-x^{2}\right)\left(1-x^{2}\right)^{\frac{1}{2}}} \\
& =\frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}}
\end{align*}
$$

iii)

$$
\begin{array}{rlr}
m_{\text {targat }}=\frac{1}{\left(1-a^{2}\right)^{\frac{3}{2}}} & f(0) & =\frac{0}{\sqrt{1-0^{2}}} \\
& =1 & =0 \\
y-0 & =1(x-0) &
\end{array}
$$

eq"of togent: $y=x$
iv)

$f(-x)$ is -ie $\quad f^{\prime}(x)=1$ when $x=0$
$f(x)$ is $+v$
V)

$$
\begin{aligned}
& y=f(x) \\
& y=\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

\therefore inverse is:

$$
\begin{array}{ll}
x=\frac{y}{\sqrt{1-y^{2}}} & \begin{array}{ll}
x^{2}-x^{2} y^{2}=y^{2} & y^{2}=\frac{x^{2}}{1+x^{2}} \\
-y^{2}-x^{2} y^{2}=-x^{2} & y=\frac{x}{\sqrt{1+x^{2}}} \\
x \sqrt{1-y^{2}}=y & y^{2}+x^{2} y^{2}=x^{2} \\
x^{2}\left(1-y^{2}\right)=y^{2} & \therefore f(x)=\frac{x}{\sqrt{1+x^{2}}}
\end{array}
\end{array}
$$

$$
\angle A C B=60^{\circ} .
$$

$$
\begin{aligned}
& \angle C A B=50^{\circ} \\
& \angle \angle B A=70^{\circ} \\
& \therefore 3 \angle \text { of } \triangle=180^{\circ}
\end{aligned}
$$

In $\triangle A C T$:

$$
\begin{aligned}
& \frac{A C}{80}=\cot 16^{\circ} \\
& A C=\frac{80}{\tan 16}
\end{aligned}
$$

In $\triangle B C T$.

$$
\begin{aligned}
& \frac{B C}{80}=\cot 15^{\circ} \\
& B C=\frac{80}{\tan 18^{\circ}}
\end{aligned}
$$

In $\triangle A B C$
By cosine rue:

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2}-2(A C)(B C) \cos 60^{\circ} \\
& A B^{2}=\left(\frac{80}{\tan 16}\right)^{2}+\left(\frac{80}{\tan 18}\right)^{2}-2\left(\frac{80}{\tan 16}\right)\left(\frac{80}{\tan 18}\right) \cos 60^{\circ} \\
& A B^{2}=69766 \\
& A B=264.13 \\
& A B=264.13 \quad(10 \text { nearest } m) .
\end{aligned}
$$

264

$$
\begin{gathered}
\frac{\sin \theta}{246 \cdot 2}=\frac{\sin 60}{264} \\
\sin \theta=\frac{\sin 60}{264} \times 246.21 \\
\operatorname{shc}=0.807 \\
\theta=53^{\circ} 50^{\prime} \\
\therefore \text { bearng }=40^{\circ}+53^{\circ} 50^{\prime} \\
=93^{\circ} 50^{\prime}
\end{gathered}
$$

7) b) 11

$$
\left.\begin{array}{c|c}
\sim=- & \operatorname{Tn} \triangle A C \varepsilon \\
A D=\frac{3}{A D} & \cos \theta=\frac{A \varepsilon}{\lambda} \\
\tan \theta= & \lambda=\frac{A \varepsilon}{\cos \theta} \\
\lambda=\frac{A D+4}{\cos \theta}
\end{array}\right]
$$

if

$$
\begin{gathered}
\lambda=10: \quad 10=\frac{3 \cos \theta+4 \sin \theta}{\sin \theta \cos \theta} \\
10 \sin \theta \cos \theta=3 \cos \theta+4 \sin \theta \\
5(2 \sin \theta \cos \theta)=3 \cos \theta+4 \sin \theta \\
2 \sin \theta \cos \theta=\frac{5}{5} \cos \theta+\frac{5}{5} \sin \theta \\
\sin 2 \theta=\sin \phi \cos \theta+\cos \phi \sin \theta \\
=\sin (\theta+\phi) .
\end{gathered}
$$

iii)

$$
\begin{aligned}
& \sin \alpha \theta=\sin (\theta+\phi) \\
& \therefore 2 \theta=\theta+\phi \wedge \text { or } \quad 2 \theta=180-(\theta+\phi) \\
& \theta=\phi
\end{aligned} \quad \begin{array}{ll}
\quad \alpha \theta=180-\phi .
\end{array}
$$

$$
\phi=\tan ^{-1} 3 / 4
$$

$$
\phi=36^{\circ} 5 \alpha^{\prime} \quad \cos \pi
$$

$$
\begin{aligned}
\therefore \theta=36^{\circ} 32^{\prime} \sqrt{ } \text { or } \quad 3 \theta & =180-36^{\circ} 52^{\prime} \\
3 \theta & =143^{\circ} 8^{\prime} \\
\theta & =47^{\circ} 43^{\prime}
\end{aligned}
$$

