Newington College

Yr 12 Extension 1

Minis 2008

Total marks (75) Attempt Questions 1 – 6 74/75

Answer each question in a SEPARATE writing booklet.

QUEST	ION 1 (12 Marks) Use a SEPARATE writing booklet.	Marks
(a)	The third term of an arithmetic series is 32 and the sixth term is 17.	3
	(i) Find the common difference.	
	(ii) Find the sum of the first ten terms.	
•	The sum of the first 10 terms of the series $(x>0)$ $\log_2(\frac{1}{x}) + \log_2(\frac{1}{x^2}) + \log_2(\frac{1}{x^3}) + \dots$ is -440 . and the value of x .	3
(c) (Consider the series $\sin^2 x + \sin^4 x + \sin^6 x + \dots$, $0 < x < \frac{\pi}{2}$ (i) Show that a limiting sum exists.	3
	(ii) Find the limiting sum expressing the answer in simplest form.	
	se the Principle of Mathematical Induction to show that $9^{n+2} - 4^n$ divisible by 5 for all positive integers n .	3

QUESTION 2 (12 Marks)

Use a SEPARATE writing booklet.

Marks

- (a) The polynomial $P(x) = x^3 6x^2 + kx + 14$ has a zero at x = 1. Determine the value of the constant k, and for this value of k find:
 - (i) the linear factors P(x);

2

1

(ii) the roots of the equation P(x) = 0;

1

(iii) the set of values of x for which P(x) > 0.

2

- (b) The equation $x^3 2x^2 + 4x 5 = 0$ has roots α , β and γ .
 - (i) Write down the values of $\alpha \beta + \alpha \gamma + \beta \gamma$ and $\alpha \beta \gamma$.

2

(ii) Hence find the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$.

1

(c) Consider the equation $x^3 + 6x^2 - x - 30 = 0$. One of the roots of this equation is equal to the sum of the other two roots. Find the values of the three roots.

3

QUESTION 3 (12 Marks) Use a SEPARATE writing booklet.

Marks

Differentiate $\log_e \left(\frac{x}{x-1}\right)$ with respect to x. (a)

2

 $\int \frac{x+1}{x} dx.$ Find (b)

2

Evaluate $\int_0^{\ln 2} \frac{e^x}{e^x + 1} dx.$ (c)

(e)

2

Show that $\frac{d}{dx}(x \ln x) = 1 + \ln x$. (d)

1

2

Hence, or otherwise, find $\int \ln x \, dx$. (ii)

3

Use Simpson's rule with 5 function values to approximate $x \log_e x dx$, correct to two decimal places.

QUESTION 4 (12 Marks)

Use a SEPARATE writing booklet.

Marks

(a) Find the exact values of

(i)
$$\sin^{-1}\left(\cos\frac{\pi}{6}\right)$$
.

1

(ii)
$$\cos\left(2\sin^{-1}\frac{3}{7}\right)$$
.

2

- (b) Consider the function $f(x) = \log_e(2x+1)$.
 - (i) Write down the domain of f(x).

1

(ii) Find the inverse function of f(x), and write it in the form $f^{-1}(x) = \dots$

2

(iii) On the same diagrams, draw the graphs of y = f(x) and $y = f^{-1}(x)$.

2

- (c) Consider the function $f(x) = 2\sin^{-1}\left(\frac{x}{3}\right)$.
 - (i) State the domain and range.

2

2

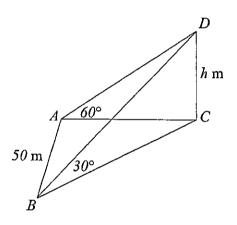
(ii) Sketch the graph of the function.

QUESTION 5 (12 Marks) Use a SEPARATE writing booklet.

Marks

(a) Find
$$\frac{d}{dx}(x \cos^{-1} 2x)$$
.

(b) Find
$$\int \frac{1}{\sqrt{4-x^2}} dx.$$


(c) Evaluate
$$\int_0^{\frac{1}{\sqrt{3}}} \frac{1}{1+9x^2} dx.$$

3

A vertical flagpole CD of height h metres stands with its base C on horizontal ground. A is a point on the ground due West of C and B is a point on the ground 50 metres due South of A. From A and B the angles of elevation of the top D of the flagpole are 60° and 30° respectively. Find the height of the flagpole correct to the nearest metre.

(e) Prove
$$\tan^{-1}\left(\frac{2}{3}\right) + \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) = \tan^{-1}\left(\frac{7}{4}\right)$$
.

3

QUESTION 6 (15 Marks)

Use a SEPARATE writing booklet.

Marks

(a) (i) Express $\sqrt{3}\cos x - \sin x$ in the form $R\cos(x+\alpha)$ where $0 < \alpha < \frac{\pi}{2}$ and R > 0.

2

(ii) Hence, solve $\sqrt{3}\cos x - \sin x = 1$ for $0 \le x \le 2\pi$.

3

(b) (i) Show that $\int_0^{\frac{\pi}{4}} \cos^2 x \, dx = \frac{\pi + 2}{8}.$

(ii) The region under the curve $y = \cos x + \sec x$, above the x axis and between x = 0 and $x = \frac{\pi}{4}$, makes a revolution about the x axis.

Show that the volume of the solid traced out is $\frac{5\pi(\pi+2)}{8}$ cubic units.

(c) Prove that $\frac{\sin 5\theta}{\sin \theta} - \frac{\cos 5\theta}{\cos \theta} = 4\cos 2\theta$.

3

End of paper