Total marks - 75

Attempt Questions 1-4

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

| QUESTION 1 (22 marks) START A NEW BOOKLET Marks |
| :--- | :--- | :--- | :--- |

(a) Evaluate $\int \frac{\cos x}{\sin x} d x$.
(b) Consider the curves $y=e^{x}$ and $y=x^{3}-3 x+1$.
(i) Show that they have a common point at $(0,1)$.
(ii) Find the acute angle (to the nearest minute) between the tangents to the curves at this point.
(c) Use $2 \cos ^{2} \theta=1+\cos 2 \theta$ to prove that $\cos \frac{\pi}{8}=\frac{\sqrt{2+\sqrt{2}}}{2}$.
(d) Let $f(x)=\ln (\tan x), 0<x<\frac{\pi}{2}$. Show that $f^{\prime}(x)=2 \operatorname{cosec} 2 x$.
(e) Use mathematical induction to prove that $3^{2 n-1}+5$ is divisible by 8 , for all integers $n \geq 1$.
(f) The diagram shows a point $P\left(2 p, p^{2}\right)$ on the parabola $x^{2}=4 y$. The tangent to the parabola at P cuts the x-axis at A . The normal to the parabola at point P cuts the y -axis at B .
(i) Find the equation of the tangent AP.
(ii) Show that B has coordinate $\left(0, p^{2}+2\right)$

2
(iii) Let M be the midpoint of AB . Find the Cartesian equation of the locus of M.

QUESTION 2 (18 marks) START A NEW BOOKLET
(a) Evaluate $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x$
(b) (i) Differentiate $\sin ^{-1} x^{3}$ with respect to x.
(ii) Hence or otherwise find $\int \frac{2 x^{2}}{\sqrt{1-x^{6}}} d x$
(c) Consider the function $f(x)=3 \sin ^{-1}(2 x-1)$
(i) Find the domain of $f(x)$
(ii) Find the range of $f(x)$
(iii) Sketch the graph of $f(x)$
(d) Consider the function $f(x)=e^{-x}-e^{x}$
(i) Show that $f(x)$ is decreasing for all values of x.
(ii) Show that the inverse function is given by:

$$
f^{-1}(x)=\log _{e}\left(\frac{-x+\sqrt{x^{2}+4}}{2}\right)
$$

(iii) Hence solve $e^{-x}-e^{x}=6$, giving your answer in simplest surd form.
(a) Solve $\sin ^{2} \theta=\frac{1}{2} \sin 2 \theta, 0 \leq \theta \leq 2 \pi$
(b) (i) Express $y=\sqrt{3} \sin x+\cos x$ in the form $R \sin (x+\alpha), R>0$ and α is acute.
(ii) Find the maximum and minimum values of $y=\sqrt{3} \sin x+\cos x$
(iii) Solve $\sqrt{3} \sin x+\cos x=1,0 \leq x \leq 2 \pi$
(c) Evaluate $\int_{0}^{\frac{\pi}{4}} \sin ^{2}\left(\frac{1}{2} x\right) d x$
(d) Using the substitution $t=\tan \frac{\theta}{2}$ prove that $\frac{1-\cos \theta}{1+\cos \theta}=\tan ^{2} \frac{\theta}{2}$
(e) TB is a tower such that the angle of elevation of T, the top of the tower, from point A is $\theta . \mathrm{A}, \mathrm{B}$ and C are on the same level and $\angle C A T=\beta$ and $\angle A C T=\alpha$. If $A C=d$ metres then show that the height of the tower is given by: $\quad T B=\frac{d \sin \theta \sin \alpha}{\sin (\alpha+\beta)}$.

QUESTION 4

(a) The velocity v, in metres per second, of a particle travelling in a straight line is given by $v=2 t-4$. The initial displacement of the particle is given by $x=3$.
(i) Find the acceleration of the particle.
(ii) Find the displacement of the particle when it is stationary.
(iii) How far does the particle travel in the first 3 seconds.
(b) A bug is oscillating in simple harmonic motion such that its displacement x metres from a fixed point O at time t seconds is given by the equation $=-4 x$.
When $t=0, v=2 \mathrm{~m} / \mathrm{s}$ and $x=5$.
(i) Show that $x=a \cos (2 t+\alpha)$ is a solution for this equation, where a and α are constants.
(ii) Find the period of the motion.
(iii) Show that the amplitude of the oscillation is $\sqrt{26}$.
(iv) What is the maximum speed of the bug?
(c) The acceleration of a particle P is given by the equation

$$
\frac{d^{2} x}{d t^{2}}=8 x\left(x^{2}+4\right)
$$

where x metres is the displacement of P from a fixed point O after t seconds.
Initially the particle is at O and has velocity $8 \mathrm{~ms}^{-1}$ in the positive direction.
(i) Show that the speed at any position x is given by $2\left(x^{2}+4\right)$
(ii) Hence find the time taken for the particle to travel 2 metres from O .

END OF THE PAPER

(a) $\int \frac{\cos x}{\sin x} d x=\ln \sin x+C$
(b) (i) $y=e^{x}: x=0, y=1$
(ii) $y=x^{3}-3 x+1: \quad x=0, y=1$
(ii)

$$
\begin{aligned}
m_{1} & =e^{0}=1 \\
m_{2} & =3 x^{2}-3=m \\
& =-3 \\
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{1+3}{1-3}\right| \\
& =\left|\frac{4}{-2}\right| \\
& =2 \\
\therefore \theta & =\tan ^{-1} 2 \\
& =63^{\circ} 26^{\prime} \text { (nearest minute) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
\cos ^{2} \theta & =\frac{1+\cos 2 \theta}{2} \\
\cos \theta & = \pm \sqrt{\frac{1+\cos 2 \theta}{2}} \\
\therefore \cos \frac{\pi}{8} & =\sqrt{\frac{1+\cos \frac{\pi}{4}}{2}} \quad\left(\cos \frac{\pi}{8}>0\right) \\
& =\sqrt{\frac{1+\sqrt{2} / 2}{2}} \\
& =\sqrt{\frac{2+\sqrt{2}}{4}} \\
& =\frac{\sqrt{2+\sqrt{2}}}{2}
\end{aligned}
$$

(d)

$$
\begin{aligned}
f(x) & =\ln \tan x \quad 0<x<\frac{\pi}{2} \\
f^{\prime}(x) & =\frac{\sec ^{2} x}{\tan x} \\
& =\frac{1}{\sin x \cos x} \\
& =\frac{2}{\sin 2 x} \\
& =2 \operatorname{cosec} 2 x
\end{aligned}
$$

(e) To prove: $3^{2 n-1}+5$ is divis. by 8 for all integers $n \geqslant 1$

$$
n=1: 3+5=8
$$

\therefore true for $n=1$
$n=k$: assume that it is thrive for $n=k$

$$
\begin{align*}
& 3^{2 k-1}+5=8 M \\
\therefore & 3^{2 k-1}=8 M-5
\end{align*}
$$

$n=k+1$: prove true for $n=k+1$

$$
\begin{aligned}
& \text { LiS } \begin{aligned}
& 3^{2(k+1)-1}+5=8 N \quad(N \in Z) \\
= & 3^{2 k+1}+5 \\
= & 3^{2 k-1}+5 \\
= & 7 M-5)+5 \\
= & 8(9 M-40 \\
= & 8 N \quad \text { (since } M \in Z \text { then } 9 M-5 \in Z)
\end{aligned}
\end{aligned}
$$

\therefore Since it is true for $n=1$, and if we assume that it is true for $n=k$ then it is also true for $n=k+1$, then by the principle of math. induction it is true for $n=1,2,3, \ldots$.
(f) (i)

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-p^{2}=p(x-2 p) \\
& y-p^{2}=p x-2 p^{2} \\
& p x-y-p^{2}=0
\end{aligned}
$$

(ii) gradient of normal is $\frac{-1}{p}$

$$
\begin{aligned}
& y-p^{2}=-\frac{1}{p}(x-2 p) \\
& y-p^{2}=-\frac{1}{p} x+2 \\
& y=-\frac{1}{p} x+2+p^{2}
\end{aligned}
$$

when $x=0 \quad y=p^{2}+2$

$$
\therefore B \text { is }\left(0, p^{2}+2\right)
$$

(iii) in $p x-y-p^{2}=0 \quad$ let $y=0$

$$
\begin{array}{rl}
& p x-p^{2}=0 \\
p x & =p^{2} \\
& x=p \\
\therefore A \text { is }(p, 0) \\
\therefore M & =\left(\frac{0+p}{2}, \frac{p^{2}+2+0}{2}\right) \\
& =\left(\frac{p}{2}, \frac{p^{2}+2}{2}\right) \\
\text { let } x & x=\frac{p}{2} \quad \therefore p=2 x \\
y & =\frac{p^{2}+2}{2} \\
& =\frac{(2 x)^{2}+2}{2} \\
& =\frac{4 x^{2}+2}{2} \\
\therefore y & =2 x^{2}+1
\end{array}
$$

2(a)

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{6} x^{2}} x & =\left[\sin ^{-1 \frac{x}{2}}\right]_{0}^{1} \\
& =\sin ^{-1} \frac{1}{2} \\
& =\frac{\pi}{6}
\end{aligned}
$$

(b) (i) $\frac{d\left[5^{-1} x^{3}\right]}{d x}=\frac{3 x^{2}}{\sqrt{1-x^{6}}}$

3
(ii) $\int \frac{2 x}{\sqrt{1-x^{6}}} d x=\frac{2}{3} \sin ^{-1} x^{3}+c$
(c)

$$
f(x)=3 \operatorname{Sin}^{-1}(2 x-1)
$$

(i) Demaii $-1 \leq 2 x-1 \leq 1$

$$
0 \leqslant 2 x \leqslant 2
$$

$$
0 \leq x \leq 1
$$

(iv) Ronge $\frac{\bar{z}}{2} \leqslant \frac{y}{3} \leq \frac{\pi}{2}$.

$$
-\frac{3 \bar{\pi}}{2} \leq y \leqslant \frac{3 \pi}{2}
$$

(ii)

(d) $(i) f(x)=e^{-x}-e^{x}$
(ii) it $x=e^{-y}-e^{y}$

$$
f^{\prime}(x)=-e^{-x}-e^{x}
$$

$$
\therefore e^{y}=\frac{-x \pm \sqrt{x^{2}+e}}{2}
$$

$$
=-\left(e^{-x}+e^{x}\right)
$$

<0 as $e^{-x}>0$ ad $e^{x}>0$ fordollo
(iii)
iii) 6

$$
\begin{aligned}
& \operatorname{lot} 5[x(x)]=-x \\
& x=\ln [-6+\sqrt{40}] \\
&=\ln [-3+\sqrt{10}]
\end{aligned}
$$

Solutions
(d)

$$
\begin{array}{lll}
& \sin ^{2} \theta=\frac{1}{2} \sin 2 \theta & \\
& \sin ^{2} \theta=\frac{1}{2}(2 \sin \theta \cos \theta) & \\
& & \\
\therefore \sin 2 \theta-\sin \theta \cos \theta & =0 & \\
\therefore & \sin \theta(\sin \theta-\cos \theta)=0 &
\end{array}
$$

$$
\sin \theta=0 \text { or } \sin \theta \prime-\cos \theta=0
$$

$$
\sin \theta=\cos \theta, \quad \cos \theta \neq 0
$$

$$
\therefore \theta=0, \pi, 2 \pi \quad \therefore \operatorname{can} \theta=1
$$

or $\theta=\frac{\pi}{4}, 5 \frac{\pi}{4}$.

$$
\begin{equation*}
\therefore \theta=0, \pi / 4,8 \pi / 4, \pi, 2 \pi . \tag{3}
\end{equation*}
$$

(b) (1) $\quad y=\sqrt{3} \sin x+\cos x$

Let $\quad \sqrt{3} \sin x+\cos x=\rho \sin (x+\alpha)$

$$
\begin{array}{ll}
\therefore \quad & \sqrt{3} \sin x+\cos x=R \\
\therefore \quad & R \sin x=1 \\
& R \cos \alpha+R=1 \\
& R^{2}=4
\end{array}
$$

and $\tan x=\frac{-1}{\sqrt{3}} \quad \therefore \quad \alpha=2=\pi / 6$.

$$
\sqrt{3} \sin x+\cos x=2 \sin (x+\pi / 6)
$$

(ii) Maxinuat x Minimum $-2 \leq 2 \sin (n+\pi / 3) \leq 2$.

$$
\begin{equation*}
\therefore \text { Maniuua }=2 \text { and Mininum }=-2 \text {. } \tag{1}
\end{equation*}
$$

$\begin{array}{lll}\text { (iii) If } & \sqrt{3} \sin x+\cos x=1 ; & 0 \leq x \leq 2 \pi \\ \text { Hen } & 2(\sin (x+\pi / 6))=1 & ; \cos / 8 \leq x+\pi / 3 \leq 13 \pi / 8\end{array}$

$$
\therefore \quad \sin (x+\pi)=\frac{1}{2}
$$

If $\sin \alpha=\frac{1}{2}, \alpha=\frac{\pi}{6}$.

$$
\begin{array}{ll}
\therefore & x+\pi / 6=\pi \\
\therefore & x=-60 \text { or } x+\pi / 6
\end{array}=5 \pi / 6
$$

firaded

or $x+\pi / 6=73 \pi / 6$.

$$
\text { or } x=\pi / 52 \pi
$$

$$
\therefore \quad x=\pi / 40<1 \pi \pi / 4, \frac{5 \pi}{3}, 2 \pi, 4
$$

Q3
(c) $\operatorname{lor} \int_{0}^{\pi / 4} \sin ^{2}\left(\frac{1}{2} x\right) d x$

Now,

$$
\therefore \int_{0}^{\pi / 4} \sin ^{2}\left(\frac{1}{2} x\right) d x=\frac{1}{2} \int_{0}^{\pi / 4} 1-\operatorname{tax} x d x
$$

(d) Let $t=\tan \frac{\theta}{2}, \frac{1-\cos \theta}{1+\cos \theta}=\tan ^{2} \frac{0}{2}$

Nor $\quad \cos \theta=\frac{1-t^{2}}{1+t^{2}}$,

$$
\therefore \quad \frac{1-\cos \theta}{1+\cos \theta}=\left(1-\frac{1-t^{2}}{1+t^{2}}\right) \div\left(1+\frac{1-t^{2}}{1+t^{2}}\right)
$$

(e)

$$
\begin{align*}
& =\left(\frac{1+t^{2}-1+t^{2}}{1+t^{2}}\right) \div\left(\frac{1+t^{2}+1-t^{2}}{1+t^{2}}\right), \\
& =\frac{2 t^{2}}{1+t^{2}} \frac{1+t^{2}}{\pi} \\
& =t^{2} \\
& =\tan ^{2} \frac{\theta}{2} \tag{3}
\end{align*}
$$

in $\triangle A B T$

$$
\sin \theta=\frac{T B}{A T}
$$

$\therefore T B=A T \sin \theta$.
in $\triangle C A T, \angle A T C=[180-(\alpha+\beta)]$

$$
\begin{aligned}
\therefore \frac{A T}{\sin \beta} & =\frac{A C}{\sin (180-(\alpha+\beta))} \\
\therefore \quad A T & =A C \sin B
\end{aligned}
$$

$$
\begin{equation*}
\therefore A T=\frac{\alpha \sin \beta}{\sin \alpha,}, \therefore T B=\frac{d \sin \beta \sin \theta}{A T}=\frac{A C \sin \beta}{\sin (\alpha+\beta)} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \begin{aligned}
\cos 2 \theta & 1-2 \sin ^{2} \theta \\
\therefore \quad 2 \sin ^{2} \theta & =1-\sin 20
\end{aligned} \\
& \therefore \quad \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) . \\
& \sin ^{2}\left(\frac{1}{2} x\right)=\frac{1}{2}(1-\cos x) \text {. } \\
& =\frac{1}{2} \int_{8}^{0}[x+\sin x]_{0}^{\pi / 6} \\
& =\frac{1}{2}\left(\pi / 4+\frac{\sqrt{2}}{2}\right)-\frac{1}{2}(0) \\
& =\frac{1}{2}\left(\frac{\pi}{4}+\frac{\sqrt{2}}{2} \alpha M\right) \quad 1 \tag{3}
\end{align*}
$$

QUESTION FOUR

a) $v=2 t-4$
(i) $\quad a=2 \mathrm{~m} / \mathrm{s}^{2}$
(ii) stationary when $t=2$

$$
\begin{aligned}
& x=t^{2}-4 t+c \\
& \text { when } t=0 \quad x=3 \quad \therefore c=3 \\
& x=t^{2}-4 t+3
\end{aligned}
$$

$v^{2}=n^{2}\left(a^{2}-x^{2}\right)$
$\therefore \quad a=\sqrt{26}$
(iv) $\quad x=-2 a \sin (2 t+\alpha)$
$x=-2 \sqrt{26} \sin (2 t+\alpha)$
$-1 \leq \sin (2 t+\alpha) \leq 1$
\therefore max speed is $2 \sqrt{26} \mathrm{ml} 5$
(c) $\quad{ }^{1} \quad x=8 x\left(x^{2}+4\right)=8 x^{3}+32 x$

$$
\text { when } t=0 \quad k=0 \text { and } v=8
$$

(i) $\frac{d}{d x}\left(\frac{1}{2} \cdot v^{2}\right)=8 x^{3}+32 x$

$$
\begin{aligned}
& \frac{1}{2} v^{2}=2 x^{4}+16 x^{2}+c \\
& \text { When } x=0, v=8 \therefore c=32 \\
& \therefore \quad \frac{1}{2} v^{2}=2 x^{4}+16 x^{2}+32 \\
& v^{2}=4 x^{4}+32 x^{2}+64 \\
&=4\left(x^{4}+8 x^{2}+16\right) \\
&=4\left(x^{2}+4\right)^{2}
\end{aligned}
$$

$$
\therefore \operatorname{spec} d=\sqrt{v^{2}}=2\left(x^{2}+4\right)
$$

$$
\begin{aligned}
x & =-2 a \sin (2 t+\alpha) \\
x & =-4 a \cos (2 t+\alpha) \\
x & =-4[a \cos (2 t+\alpha)] \\
& =-4 x
\end{aligned}
$$

(ii) $\quad T=\frac{2 \pi}{2}=\pi$

$$
\begin{align*}
& \frac{d t}{d x}=\frac{1}{2\left(x^{2}+4\right)} \quad\left\{\begin{array}{r}
\text { rote } v \text { is alwango } \\
\text { positive. Particle } \\
\text { starts with } v>0 \\
\text { and } x>0+v \neq 0
\end{array}\right. \\
& \therefore t=\frac{1}{4} \tan ^{-1} \frac{x}{2}+c \\
& \text { when } t=0, x=0 \quad \therefore \quad c=0
\end{aligned} \quad \begin{aligned}
& \therefore t=\frac{1}{4} \tan ^{-1} \frac{\pi}{2} \tag{ii}\\
& \text { when } x=2, t=\frac{1}{4} \tan ^{-1} 1 \\
& \quad=\frac{\pi}{16} \operatorname{seconds}
\end{align*}
$$

(iii) $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-4 x$

$$
\therefore \quad \frac{1}{2} N^{2}=-2 x^{2}+c
$$

$$
\text { when } v=2, x=5
$$

$$
2=-50+c
$$

$$
\therefore c=52
$$

$$
N^{2}=-4 x^{2}+104
$$

$$
v^{2}=4\left(26-x^{2}\right)!
$$

fiturnotive solutan to (b) (1ii)

$\therefore=-2 \operatorname{asin}(2 t+\alpha)$

Whan $t=0 \quad \because 35+a=2$
$S=a \cos \alpha \quad a n d \quad 2=-2 \sin 2$
$\cos \alpha=\frac{5}{a}, \sin \alpha=-\frac{1}{2}$
$\therefore \quad \frac{25}{\pi}+\frac{1}{n^{2}}=\frac{1}{8}$
$\therefore \quad 26=a^{2}$
$\therefore \pi=\sqrt{26}$

