

North Sydney Boys HIGH SCHOOL

2010 HSC ASSESSMENT TASK 2

Mathematics
 Extension 1

General Instructions

- Working time - 60 minutes
- Write on the lined paper in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.
- Attempt all questions

Class Teacher:

(Please tick or highlight)
O Mr Ireland
O Mr Lowe
O Mr Rezcallah
O Mr Barrett
O Mr Trenwith
O Mr Weiss

Student Number:

\qquad
(To be used by the exam markers only.)

Question No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total	Total $\%$
Mark	$\overline{17}$	$\overline{13}$	$\overline{12}$	$\overline{10}$	$\overline{14}$	$\overline{66}$	$\overline{100}$

(a) Evaluate $\frac{\pi}{e^{3}}$ correct to 3 significant figures.
(b) Find $\frac{d y}{d x}$ for the following:
(i) $y=x^{2} e^{3 x}$ 2
(ii) $y=\sqrt{\ln 2 x}$ 2
(iii) $y=3^{x}$
(c) (i) Find $\int \frac{x^{2}}{x^{3}+3} d x$
(ii) Evaluate $\int_{0}^{1} x^{2} e^{3 x} d x$
(d) If $y=\ln \left(\frac{e^{x}+1}{e^{x}-1}\right)$, find $\frac{d y}{d x}$ as a fraction in simplest form.
(e) If $f(x)=\ln (x-3)(5-x)$, what is the domain of $f(x)$?
(f) Solve the equation $2 \ln (x-1)=\ln (4 x-7)$.

Question 2 (13 marks)
(a) Use Mathematical Induction to prove that $4^{n}-1$ is divisible by 3 for all $n \geq 1$.
(b) (i) Show that the equation $x^{3}+2 x-4=0$ has a root α in the interval $1<\alpha<2$.
(ii) Show that this equation has exactly one root in this interval.
(Hint: You might want to consider the derivative.)
(iii) Use Newton's method to show that if $x_{1}=a$ is an approximation to α, then the next approximation is $x_{2}=\frac{2 a^{3}+4}{3 a^{2}+2}$.
(iv) Use Newton's method once with an initial approximation of $x_{1}=2$ to find a 2 better approximation for α. (Give your answer correct to 2 decimal places.)

Question 3 (12 marks)

(a)

In the diagram above, $P Q$ is the arc of a circle, centre O.
The length of the arc is $3 \pi \mathrm{~cm}$, and angle $P O Q$ is $\frac{2 \pi}{3}$.
(i) Find the radius of the circle.
(ii) Find the area of the sector $O P Q$.
(iii) Find the area of the shaded region.
(b) (i) State the period and amplitude of the function $y=3-\cos 2 x$.
(ii) Sketch the curve $y=3-\cos 2 x$ for $0 \leq x \leq 2 \pi$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$.

Question 4 (10 marks)
(a)

Write an expression involving integrals for the area of the shaded region.
(b) Find the area enclosed between the hyperbola $y=\frac{4}{x}$ and the line $y=5-x$.
(c) (i) Differentiate $y=\ln \left(x^{2}\right)$.
(ii) Hence evaluate $\int_{e}^{e^{2}} \frac{d x}{x \ln \left(x^{2}\right)}$.

Question 5 (14 marks)
(a) (i) Find the stationary point on the curve $y=e^{x}+x e^{x}$, and determine its nature. 3
(ii) Find any points of inflexion. 3
(iii) Find where the above curve cuts the coordinate axes. 2
(iv) Sketch the curve $y=e^{x}+x e^{x}$, $\quad 2$
(b) Find the volume of the solid generated when the region bounded by the curve 4 $y=\ln x$, the x-axis, and the lines $x=1$ and $x=2$ is rotated about the y-axis.

Qi)
a) 0.156
b) i)

$$
\begin{aligned}
y & =x^{2} e^{x^{3}} \\
\frac{d y}{d x} & =2 x e^{x^{3}}+x^{2} \cdot 3 x^{2} e^{x^{3}} 2 \\
& =x e^{x^{3}}\left(2+3 x^{3}\right)
\end{aligned}
$$

ii)

$$
\begin{aligned}
y & =(\ln 2 x)^{1 / 2} \\
\frac{d_{y}}{d_{x}} & =\frac{1}{2}(\ln 2 x)^{-1 / 2} \cdot \frac{2}{2 x} \\
& =\frac{1}{2 x(\ln 2 x)^{1 / 2}}
\end{aligned}
$$

f)

$$
\begin{gathered}
\ln (x-1)^{2}=\ln (4 x-7) \\
(x-1)^{2}=4 x-7 \\
x^{2}-2 x+1=4 x-7 \\
x^{2}-6 x+8=0 \\
(x-4)(x-2)=0 \\
\therefore \quad x=2 \text { or } 4
\end{gathered}
$$

D: $\quad 3<x<5$
e) $f(x)=\ln (x-3)(5-x)$
iii)

$$
\begin{aligned}
y & =3^{x} \\
\ln y & =x \ln 3 \\
\frac{1}{4} \frac{d y}{d x} & =\ln 3 \\
\frac{d y}{d x} & =\ln 3 \cdot 3^{x}
\end{aligned}
$$

c) il

$$
\begin{aligned}
& \text { i) } y \int \frac{3 x^{2}}{x^{3}+3} d x \\
& =\frac{1}{3} \ln \left(x^{3}+3\right)+c \\
& \text { iv } \frac{1}{3} \int_{0}^{1} 3 x^{2} e^{x^{3}} d x \\
& \left.=\frac{1}{3} e^{x^{3}}\right]_{0}^{1} \\
& =\frac{1}{3} e-\frac{1}{3}
\end{aligned}
$$

d)

$$
\begin{aligned}
y & =\ln \left(e^{x}+1\right)-\ln \left(e^{x}-1\right) \\
\frac{d y}{d x} & =\frac{e^{x}-e^{x}}{e^{x}+1}-e^{x}-1 \\
& =\frac{e^{2 x}-e^{x}-e^{2 x}-e^{x}}{\left(e^{x}+1\right)\left(e^{x}-1\right)} \\
& =\frac{-2 e^{x}}{\left(e^{x}+1\right)\left(e^{x}-1\right)}
\end{aligned}
$$

Question 2 a) Two methods shown:
When $n=1$:

$$
4^{i}-1=3
$$

True when $n=1$
Assume true for $n=k$
$4^{n}-1=3 N$ where N is an integer
Prove trove for $n=\mid z+1$

$$
\begin{aligned}
4^{k+1}-1 & =4 \cdot 4^{k}-1 \\
& =4\left(4^{k}-1\right)+3 \\
& =4(3 N)+3 \\
& =3(4 N+1)
\end{aligned}
$$

\therefore True for $n=k+1$ if true for

$$
n=k_{\text {. }}
$$

S Since true for $n=1$, also time for $n=2$, and also for $n=3$ and so on.
$\therefore 4^{n-1}$ is divisible by 3 for all $n \geq 1$.
b) \quad i/ $\quad x^{3}+2 x-4=0$

Let $f(x)=x^{3}+2 x-4$

\therefore root between $x=1$ and 2
ii) $f^{\prime}(x)=3 x^{2}+2$

$$
70 \text { for all } x
$$

\therefore cunceis increasing for all x ?
\therefore cross x axis once.
(Alt. Show no solution to $3 x^{2}+2=0 ;$ then state this means no stationary f tuning points).
$Q_{2} 2$
a) Let $s(n)$ be statement that 4^{n-1} is divisible by 3 for n ?

For $n \equiv 1$:

$$
i_{4 s}=4^{\prime}-1=3
$$

ie scI) is trice

Assume eck) is true
i.e $4^{n}-1=3 M$ where Miso on integer

$$
\therefore 4^{2}=3 M+1
$$

RIP $S(x+1)$ is rus
ie $4^{n+1}-1$ is divisible by 3
$-1=4^{k+1}-1$

$$
=4.4^{k}-1
$$

$$
=4(3 M+1)-1
$$

$$
=12 m+3
$$

$=3(4 m+1)$ which is dirssibleby 3 since $4 m+1$ is on integer
\therefore If $S(R)$ is true, then $s(n+1)$ is true
Since $s(1)$ is true, then $s(2)$ is the and scan is truciend so or \therefore By $M I$, $S(n)$ is true for all $n \geq 1$
\qquad
\qquad
QB)
a)

$$
\begin{aligned}
e & =r \theta \\
3 \pi & =r \frac{2 \pi}{3} \\
\therefore r & =3 \pi \times \frac{3}{2 \pi} \\
& =\frac{9}{2} \mathrm{~cm}
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \mathrm{O} \\
& =\frac{1}{2} \times \frac{81}{4} \times \frac{x \pi}{3} \\
& =\frac{27 \pi}{4} \mathrm{~cm}^{2} \text { or } 21.21
\end{aligned}
$$

$$
\text { iii } \begin{aligned}
A & =\frac{27 \pi}{4}-\frac{1}{2} \times \frac{9}{2} \times \frac{9}{2} \sin \frac{2 \pi}{3} \\
& =\frac{27 \pi}{4}-\frac{81}{8} \cdot \frac{\sqrt{3}}{2} \\
& =\frac{27 \pi}{4}-\frac{81 \sqrt{3}}{16} \mathrm{am}^{2} \text { or } \frac{108 \pi-8 \sqrt{3}}{16} \text { or } 12 \cdot 437
\end{aligned}
$$

b) i/ amp $=1$
pried $=\pi$

$$
\text { c) } \begin{aligned}
& 2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \\
= & 2 \times 1 \\
= & 2
\end{aligned}
$$

Q4) a) $A=\int_{0}^{a} f(x) d x+\left|\int_{a}^{b} g(x) d x\right|$

$$
\begin{aligned}
A & =\int_{1}^{4}\left(5-x-\frac{4}{x}\right) d x \\
& =\frac{\left.5 x-x^{2}-4 \ln x\right]_{1}^{4}}{} \\
& =20-8-4 \ln 4-5+\frac{1}{2} \\
& =\frac{15-4 \ln 4}{2} u^{2}
\end{aligned}
$$

c) if $y=\ln \left(x^{2}\right)$

$$
\frac{d y}{d x}=\frac{2}{x}
$$

$$
\begin{aligned}
i / & \frac{1}{2} \int_{e^{e^{x}} \frac{2}{\lambda}}^{\left(\ln x^{2}\right)} d x \\
& =\frac{1}{2} \ln \left[\ln x^{2}\right]_{e}^{e^{2}}=\frac{1}{2}\left[\ln \left(\ln e^{4}\right)-\ln \left(\ln e^{2}\right)\right]=\frac{1}{2}(\ln 4-\ln 2)
\end{aligned}
$$

The hence has to be used. students who work by substitution and get the cornet xaonver, lose lop macho.
$\left.Q^{5}\right)$
a) i/ $y=e^{x}+x e^{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x}+e^{x}+x e^{x} \\
& =2 e^{x}+x e^{x} \\
& =e^{x}(2+x)
\end{aligned}
$$

$\frac{d y}{d x}=0$ when $x=-2$

$$
\begin{aligned}
\frac{d^{x} y}{d x^{2}} & =3 e^{x}+e^{x}+x e^{x} \\
& x e^{x}
\end{aligned}
$$

when $x=-2$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{3}{e^{2}}-\frac{2}{e^{2}}=\frac{1}{e^{2}} \\
& >0
\end{aligned}
$$

$\therefore \min$ at $\left(-2, \frac{-1}{e^{2}}\right)$ 1
b)

$$
\begin{aligned}
V & =\pi \int x^{2} d y \\
& =4 \pi \ln 2-\pi \int_{0}^{\ln 2} e^{2 y} d y \\
& \left.=4 \pi \ln 2-\pi \frac{1}{2} e^{2 y}\right]_{0}^{\ln 2}
\end{aligned}
$$

ii) $\frac{d^{2} y}{d x^{2}}=0$ when $x=-3$

$$
=4 \pi \ln 2-\frac{\pi}{2}[4-1]
$$

$$
=\left(4 \pi \ln 2-\frac{3 \pi}{2}\right) u^{3}
$$

$$
\begin{gathered}
x-4-3-2 \\
\frac{d^{2} y}{d x^{2}}<0=0>0
\end{gathered}
$$

$\therefore \quad$ fl at $\left(-3,-\frac{2}{e^{3}}\right)$

