

NORTH SYDNEY BOYS

2010 HSC ASSESSMENT TASK 2

Mathematics Extension 1

General Instructions

- Working time 60 minutes
- Write on the lined paper in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a **new page**.

Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Ireland
- O Mr Lowe
- O Mr Rezcallah
- O Mr Barrett
- O Mr Trenwith
- O Mr Weiss

Student Number:

(To be used by the exam markers only.)

Question No	1	2	3	4	5	Total	Total %
Mark	17	13	12	10	14	66	100

(a) Evaluate
$$\frac{\pi}{e^3}$$
 correct to 3 significant figures.

(b) Find
$$\frac{dy}{dx}$$
 for the following:
(i) $y = x^2 e^{3x}$

(ii)
$$y = \sqrt{\ln 2x}$$
 2

(iii)
$$y = 3^x$$
 1

(c) (i) Find
$$\int \frac{x^2}{x^3 + 3} dx$$
 2

(ii) Evaluate
$$\int_0^1 x^2 e^{3x} dx$$
 2

(d) If
$$y = \ln\left(\frac{e^x + 1}{e^x - 1}\right)$$
, find $\frac{dy}{dx}$ as a fraction in simplest form. 3

(e) If
$$f(x) = \ln(x-3)(5-x)$$
, what is the domain of $f(x)$? 2

(f) Solve the equation
$$2\ln(x-1) = \ln(4x-7)$$
. 2

Question 2 (13 marks)

(a)	Use N	Mathematical Induction to prove that $4^n - 1$ is divisible by 3 for all $n \ge 1$.	5	
(b)	(i)	Show that the equation $x^3 + 2x - 4 = 0$ has a root α in the interval $1 < \alpha < 2$.		
	(ii)	Show that this equation has exactly one root in this interval. (Hint: You might want to consider the derivative.)	2	
	(iii)	Use Newton's method to show that if $x_1 = a$ is an approximation to α , then the next approximation is $x_2 = \frac{2a^3 + 4}{3a^2 + 2}$.	3	
	<i>/•</i> ``		-	

Use Newton's method once with an initial approximation of $x_1 = 2$ to find a 2 better approximation for α . (Give your answer correct to 2 decimal places.) (iv)

Marks

1

2

Question 3 (12 marks)

(b)

In the diagram above, PQ is the arc of a circle, centre O. The length of the arc is 3π cm, and angle POQ is $\frac{2\pi}{3}$.

(c) Evaluate
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
.

2

(b) Find the area enclosed between the hyperbola $y = \frac{4}{x}$ and the line y = 5 - x. 4

(c) (i) Differentiate
$$y = \ln(x^2)$$
.
(ii) Hence evaluate $\int_{e}^{e^2} \frac{dx}{x \ln(x^2)}$.

Question 5 (14 marks)

(a)	(i)	Find the stationary point on the curve $y = e^x + xe^x$, and determine its nature	e. 3
	(ii)	Find any points of inflexion.	3
	(iii)	Find where the above curve cuts the coordinate axes.	2
	(iv)	Sketch the curve $y = e^x + xe^x$, .	2
(b)	Find	the volume of the solid generated when the region bounded by the curve	4

 $y = \ln x$, the x-axis, and the lines x = 1 and x = 2 is rotated about the y-axis.

North Sydney Boys High School Page No: e) f(x) = ln(x-3)(5-x)(x-3)(5-x)>() 1 Q1) a) 0.156 b) i) $y = \chi^2 e^{\chi^3}$ $dy = 2\pi e^{\chi^3} + \chi^2 \cdot 3\pi^2 e^{\chi^3} \cdot 2\pi$ $dx = \chi e^{\chi^3} (2 + 3\pi^3)$ D: 3 < x < 5 $f) = ln(x-1)^2 = ln(4n-7)$ $\frac{(n-1)^2 = 4n-7}{x^2 - 2n + 1} = 4n - 7$ $ii) \quad y = (ln 2n)^{\frac{1}{2}} \\ \frac{dy}{dn} = \frac{1}{2} (ln 2n)^{-\frac{1}{2}} \frac{2}{2n} \\ \frac{dy}{dn} = \frac{1}{2} (ln 2n)^{-\frac{1}{2}} \frac{dy}{dn} \\ \frac{dy}{dn} = \frac{1}{2} (ln 2n)^{-\frac{1}{2}} \frac{dy}{dn} \\ \frac{dy}{dn} = \frac{1}{2} (ln 2n)^{-\frac{1}{2}} \frac{dy}{dn} \\ \frac{dy}{dn} = \frac{1}{2} (ln 2n)^{-\frac{1}{2} \frac{dy}{dn} \\ \frac{dy}{dn} =$ x²-6x+8=0 (x-4)(x-2)=0 = 1 $\frac{2\pi(-\ln 2\pi)^{3/2}}{2\pi}$. n= 2 or 4 $\begin{array}{rcl} & y &= 3^{2k} \\ & lny &= x ln & 3 \\ & i & dy &= ln & 3 \\ & i & dy &= ln & 3 \\ & y & dy &= ln & 3 & 3^{2k} \\ & dy &= ln & 3 & 3^{2k} \\ & dx & & \\ \end{array}$ c) $i = \frac{3 x^{2}}{x^{3}+3} dn$ = $\frac{1}{3} ln (n^{3}+3) (+c) = 2$ $\frac{i\gamma}{3} \int_{0}^{1} 3x^{2} e^{x^{3}} dn$ $= \frac{1}{3} e^{x^{3}} \int_{0}^{1} dn$ $= \frac{1}{3} \frac{e - 1}{3}$ d) $y = ln(e^{n}+i) - ln(e^{n}-i)$ $\frac{dy}{dn} = e^{n} - e^{n}$ $\frac{dx}{dn} = e^{n} + i$ $= e^{2n} - e^{n} - e^{n}$ $= e^{2n} - e^{n} - e^{n}$ $\frac{(e^{n}+i)(e^{n}-i)}{(e^{n}+i)(e^{n}-i)}$ $= -2e^{n}$ 2

	Question ? a) There would be up to	- Gor Z	
		a) Let S(n) be statement t	has 4" -1 is divisible by 2 from
	When n=1:		a to the
	4-1=3	145=4'-1=3	
		ie sci) is true	
	The when n=1		
		Assume screp is true	
	Assume true for n2k	i.e 4R-1 = 3M where N	als on integer
	<u>4-1= SN</u> where N is an integer	$\therefore 4^{k} = 3M + 1$	
		RTP S(R+1) is true	\
	Kove frue for n=k+1	i.e 4th-1 is divisible by	,3
	4 -1 = 4.4 -1	KHI	
		<u>7 -1 598 = 4*** -1</u>	
	$\underline{} = 4(SN)_{*} \langle \mathbf{z} \rangle$	= 4.4*-1	and
	= $=$ $3(4N+1)$	= 4(SM+1)=1	
. ¥		= 3(4m+1)	
	. The for n=ktl if the for	which is	awisibledy is since 4M+1 is on integer
		.: IF SCRI is true, then scritt) is true
<i>,</i>	Ble Since tone for n=1 also true for	Since 3(1) is true and then	S(2) is the old S(3) is true old by a
	a=2 and also for a=2 and so	- By MI, S(1) is true for	AII 021
. "	°0.		
			,
	4-1 is divisible by 3 for	•	
			1 17
ž	b) i/ 2 ³ +22 - 4 =0	<u> </u>	a - a + 2a - 4
	$ _{11} + f_{12} = n^3 + 2n - 4$		3e ² +2
	$\Gamma/1 = -1.50$ 2 beckwell	a ·	303+20 - 03 - 20 +4]
	f(t) = f + c		392+2
	4/2/ 0 70) OPPOSIR 3		293+4
,	root between x 21 and 2	······································	302+2
	$\ddot{u} / f'(z) = 3z + z$		= <u> </u>
	70 for all n		
	. curve concerning for all is increasing f	wall x] V	= 1.43 h 29 V
•	. Crosses x- axis once	<u>_</u>	
	(Alt. show	no solution to	
	3x ² 72=•;	then store state	x
	This means	no stationaus I tuning	
	pointo).		•
			ø

Ľ North Sydney Boys High School Page No: Q3) l= ro a) i/ . + = 317 × 3 24 1 = 9 1 cm $\frac{A}{2} = \frac{1}{2} \frac{r^2}{27} \bigcirc$ ii/ $= \frac{1}{4} \times \frac{81}{3} \times \frac{2}{3} \times \frac{1}{3}$ $= 27\pi \text{ cm}^2 \text{ or } 21.21$ $\frac{iii}{A} = \frac{27\pi}{4} - \frac{1}{2} \frac{x}{2} \frac{y}{2} \frac{y}{3}$ $\frac{27\pi}{4} - \frac{81}{8} \frac{53}{2}$ 277- 815 on " or 10811-8113 or 12.437 z 16 5) i/ amp = 1 period = T ii/ 3 Ħ 271 ۵ Sin 2x 2 lim <u>c)</u> 22 *7L-*70 2 x 1 z 2 2

Morth Sydney Boys High School $\frac{1}{2} \int_{a}^{a} f(n) dn + \int_{a}^{b} g(n) d$ Q4) a) 5 $\chi = 1$ $A = \int \left(\frac{5-\varkappa - 4}{\varkappa}\right) d\varkappa$ <u>52-2-4 ln 2 74</u> 20 - 8-4/n 4 -5+1 $= \frac{15 - 4 \ln 4}{2}$ c) if $y = ln(z^2)$ <u>z 2</u> λ $\frac{\ddot{\mu}}{\frac{1}{2}} \int_{e}^{e^2} \frac{\ddot{\lambda}}{\lambda} dn$ $\frac{1}{2} \ln \left[\ln x^{2} \right]_{0}^{e^{2}} = \frac{1}{2} \left[\ln \left(\ln e^{4} \right) - \ln \left(\ln e^{2} \right) \right] = \frac{1}{2} \left(\ln 4 - \ln 2 \right)$ 1 ln 2 -The hence has to be used. students who work by substitution and get the correct answer, lose 100 2 marko

North Sydney Boys High School Page No: a) i/ y=extre 44 y= ln n Q5) 6) $\frac{dy}{dn} = 2e^{\chi} + e^{\chi} + xe^{\chi}$ 1 On 2 = $e^{x}(2+n)$ $\frac{dy}{dn} = 0$ when n = -22 $\frac{d^2y}{d^2y} = 2e^2 + e^2 + xe^2$ $ani = 3e^{x} + xe^{x}$ [x' dy √ = Tī when n = -2 $\frac{d^2y}{dn^2} = \frac{3}{e^2} - \frac{2}{e^2} = 1$ =4Th2 - IT e⁴ d = 4 I bn 2 - T 70 min at $\left(-2, \frac{-1}{e^2}\right)$ $= 4\pi \ln 2 - \frac{\pi}{2} \left[4 - \frac{\pi}{2} \right]$ ulen x = -3 d'y ane ī/ = 0 $\frac{=(4\pi lm^2 - 3\pi)u^3}{2}$ x - 4 - 3 - 2 dry dri² =0 >0 1 -: infl at (-3, -2) y 11