

MATHEMATICS (EXTENSION 1)

2012 HSC Course Assessment Task 2 March 12, 2012

General instructions

- Working time 55 minutes. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

• Mark your answers on the answer sheet provided (numbered as page 5)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:# BOOKLETS USED:Class (please \checkmark) \bigcirc 12M4A - Mr Weiss \bigcirc 12M3C - Ms Ziaziaris \bigcirc 12M4B - Mr Ireland \bigcirc 12M3D - Mr Lowe \bigcirc 12M4C - Mr Fletcher \bigcirc 12M3E - Mr Lam

Marker's use only.									
QUESTION	1-6	7	8	9	10	11	12	Total	%
MARKS	6	10	10	8	8	4	4	50	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.			Marks
1.	If $y = e^{\ln x}$, then $\frac{dy}{dx} =$		1
	(A) 1	(C) $\frac{1}{x}$	
	(B) 0	(D) none of these	
2.	If $\log_a b = c$, then		1
	(A) $a = b^c$	(C) $b = c^a$	
	(B) $c = b^a$	(D) $b = a^c$	
3.	A logarithm is another name for		1
	(A) a base	(C) an operator	
	(B) an index	(D) none of these	
4.	If $x^{k+3} = e^{7 \ln x}$, the value of k is		1
	(A) e	(C) -3	
	(B) 0	(D) 4	
5.	$\int \frac{e^x}{1+e^x} dx \text{ evaluates to}$		1
	(A) $e^x + C$	(C) $\ln(1+e^x) + C$	
	(B) $\ln(1+e^{2x}) + C$	(D) $\ln(1-e^x) + C$	
6.	Given that $\log_8 2 = \log_x 5$, then $x =$		1
	(A) $\frac{1}{2}$	(C) 2	
	(B) $\frac{1}{3}$	(D) none of the above	

Examination continues overleaf...

Section II: Short answer

Quest	tion 7	(10 Marks)	Commence a NEW page.	Marks
(a)	Draw a feature	an accurate sketch of the func es. State its domain and range	ction $y = \log_e(2x + 1)$, showing its essential e.	4
(b)	Differe	ntiate:		
	i. l	$\operatorname{og}_e\left(\frac{2x+1}{3x-7}\right).$		2
	ii. 5	5^x .		2

iii.
$$x^3 e^{-3x}$$
. 2

Ques	$\mathbf{stion 8} (10 \text{ Marks})$	Commence a NEW page.	Marks
(a)	Write the primitive of		
	i. $\frac{x}{9+x^2}$		2
	ii. $\frac{2}{x} + 5e^x$.		2
	iii. $\frac{6-2x-x^2}{x}.$		2
	iv. $x(x^2+4)^5$.		2
(b)	Evaluate $\int_{1}^{4} y dx$ if $xy = 1$.		2

Question 9 (8 Marks)Commence a NEW page.Marks(a)i. Show that
$$\frac{d}{dx}(x \ln x - x) = \ln x$$
.2ii. Hence or otherwise, find $\int \ln x^2 dx$.2

(b) For the curve
$$y = \frac{e^x}{x^2 + 1}$$
, find the stationary point and determine its nature. 4

Marks

Question 10 (8 Marks)

Commence a NEW page.

The gradient of a curve is given by $\frac{dy}{dx} = \frac{2}{2x-1}$ and the curve passes through $(1, \log_e 3)$. Find the equation of the curve. (a) 3

(b) i. Evaluate
$$\int_0^4 (x^2 - 2x) dx$$
. **2**

- ii. Find the area bounded by the curve $y = x^2 2x$, the x axis and the $\mathbf{2}$ ordinates x = 0 and x = 4.
- iii. What do you notice about your answers to parts (i) and (ii)? Give a brief 1 explanation.

Ques	tion 11 (4 Marks)	Commence a NEW page.	Marks
(i)	Find the volume formed when the and $x = a$ is rotated about the x as	portion of the curve $xy = 1$ between $x = 1$ cis.	. 3
(ii)	What is the limiting value of this v	olume as $a \to \infty$?	1

Question 12 (4 Marks)	Commence a NEW page.	Marks
Prove by mathematical induction:		4

Prove by mathematical induction:

$$1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + 2n(2n-1) = \frac{n(n+1)(4n-1)}{3}$$

End of paper.

	1
1	÷

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "●"

STUDENT NUMBER:

Class (please \checkmark)

- $\bigcirc 12\mathrm{M4A}$ Mr Weiss $\bigcirc 12\mathrm{M3C}$ Ms Ziaziaris
- \bigcirc 12M4B Mr Ireland \bigcirc 12M3D Mr Lowe
- $\bigcirc 12M4C Mr$ Fletcher
- \bigcirc 12M3E Mr Lam

1 -	\bigcirc	B	\bigcirc	\bigcirc
2 -	\bigcirc	B	C	\bigcirc
3 -	\bigcirc	B	\bigcirc	\bigcirc
4 -	(A)	B	C	\bigcirc
5-	\bigcirc	B	C	\bigcirc
6 –	(A)	B	\bigcirc	\bigcirc

Suggested Solutions

Section I

- (a) (4 marks)
 - $\checkmark\quad [2] \;\; {\rm for \; graph.}$
 - \checkmark [1] each for domain & range.

$$D = \left\{ x : x \ge -\frac{1}{2} \right\} \qquad R = \{y : y \in \mathbb{R}\}$$

- (b) (2 marks)
 - ✓ [1] for using log laws correctly. ([1] for $\frac{2}{3} = \frac{3}{3}$

$$\mathbf{v}$$
 [1] 101 $\frac{1}{2x+1} = \frac{1}{3x-7}$

$$\frac{d}{dx} \left(\log_e \left(\frac{2x+1}{3x-7} \right) \right)$$

= $\frac{d}{dx} \left(\log_e (2x+1) - \log_e (3x-7) \right)$
= $\frac{2}{2x+1} - \frac{3}{3x-7} \left(= \frac{-17}{(2x+1)(3x-7)} \right)$

(c) (2 marks) \checkmark [-1] for each incorrect step.

$$y = 5^x$$

Take log base e on both sides,

$$\ln y = \ln 5^{x} = x \ln 5$$
$$\therefore y = e^{x \ln 5}$$
$$\frac{d}{dx} (5^{x}) = \frac{d}{dx} \left(e^{x \ln 5} \right)$$
$$= (\ln 5)e^{x \ln 5}$$
$$(= 5^{x} \ln 5)$$

(d) (2 marks)

- ✓ [1] for correctly applying the product rule.
- ✓ [1] for correct simplification to $-3x^3e^{-3x} + 3x^2e^{-3x}$

$$y = x^{3}e^{-3x}$$

$$u = x^{3} \quad v = e^{-3x}$$

$$u' = 3x^{2} \quad v' = -3e^{-3x}$$

$$\frac{d}{dx} (x^{3}e^{-3x}) = x^{3} (-3e^{-3x}) + 3x^{2}e^{-3x}$$

$$= -3x^{3}e^{-3x} + 3x^{2}e^{-3x}$$

$$(= 3x^{2}e^{-3x} (1-x))$$

(a)

i. (2 marks) $\checkmark [-1]$ for each error.

$$\int \frac{x}{9+x^2} \, dx = \frac{1}{2} \log_e \left(9+x^2\right) + C$$

ii. \checkmark [-1] for each error.

$$\int \frac{2}{x} + 5e^x \, dx = 2\log_e x + 5e^x + C$$

iii. \checkmark [-1] for each error.

$$\int \frac{6 - 2x - x^2}{x} \, dx = \int \frac{6}{x} - 2 - x \, dx$$
$$= 6 \log_e x - 2x - \frac{1}{2}x^2 + C$$

iv. \checkmark [-1] for each error.

$$\int x (x^2 + 4)^5 dx = \frac{1}{2} \int 2x (x^2 + 4)^5 dx$$
$$= \frac{1}{2} \times \frac{1}{6} (x^2 + 4)^6 + C$$
$$= \frac{1}{12} (x^2 + 4)^6 + C$$

- (b) (2 marks)
 - ✓ [-1] for each error.

$$\int_{1}^{4} \frac{1}{x} dx = \left[\log_{e} x\right]_{1}^{4}$$
$$= \log_{e} 4 \quad (= 2\log_{e} 2)$$

Question 9 (Lam)

- (a) i. (2 marks)
 - \checkmark [1] for correctly applying the product rule.
 - \checkmark [1] for correct simplification.

$$y = x \ln x - x$$
$$u = x \quad v = \ln x$$
$$u' = 1 \quad v' = \frac{1}{x}$$
$$\frac{dy}{dx} = \varkappa \times \frac{1}{\varkappa} + \ln x - 1$$
$$= \ln x$$

ii. (2 marks)

$$\checkmark$$
 [1] for correct use of log law.

 \checkmark [1] for correct answer.

× [0] for any other attempts to integrate $\ln(x^2)$.

$$\int \ln (x^2) dx = 2 \int \ln x dx$$
$$= 2 (x \ln x - x) + C$$
$$= 2x \ln x - 2x + C$$
(b)

(b) (4 marks)

- \checkmark [1] for correct use of quotient rule.
- \checkmark [1] for correct testing to discover horizontal point of inflexion.
- \checkmark [1] for each correct coordinate.

$$y = \frac{e^{x}}{x^{2} + 1}$$

$$u = e^{x} \quad v = x^{2} + 1$$

$$u' = e^{x} \quad v' = 2x$$

$$\frac{dy}{dx} = \frac{e^{x} (x^{2} + 1) - 2xe^{x}}{(x^{2} + 1)^{2}}$$

$$= \frac{e^{x} (x^{2} - 2x + 1)}{(x^{2} + 1)^{2}}$$

$$= \frac{e^{x} (x - 1)^{2}}{(x^{2} + 1)^{2}}$$

$$\frac{x}{dx} = \frac{1 - 1 \quad 1^{+}}{(x^{2} + 1)^{2}}$$

$$\frac{dy}{dx} = \frac{1 - 1 \quad 1^{+}}{(x^{2} + 1)^{2}}$$

Hence $(1, \frac{1}{2}e)$ is a horizontal point of inflexion.

Question 10 (Weiss)

(a) (3 marks)

✓ [1] for correct primitive.

- $\checkmark~~[1]~$ for correct substitution of point.
- \checkmark [1] for final answer.

$$\frac{dy}{dx} = \frac{2}{2x - 1}$$
$$y = \ln(2x - 1) + C$$

When $x = 1, y = \ln 3$

$$\ln 3 = \ln(2-1) + C$$
$$\therefore C = \ln 3$$
$$\therefore y = \ln(2x-1) + \ln 3$$

- i. (2 marks) \checkmark [1] for correct primitive.
 - ✓ [1] for final answer.

$$\int_0^4 x^2 - 2x \, dx = \left[\frac{1}{3}x^3 - x^2\right]_0^4$$
$$= \frac{64}{3} - 16 = \frac{16}{3}$$

- ii. (2 marks)
 - [1] for correct resolution into two \checkmark separate integrals.
 - [1] for correct final answer. \checkmark

(ii)(1 mark)

$$\lim_{a \to \infty} \left[\pi \left(1 - \frac{1}{a} \right) \right] = \pi (1 - 0) = \pi$$

Question 12 (Fletcher)

Let P(n) be the statement

$$1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + 2n(2n-1) = \frac{n(n+1)(4n-1)}{3}$$

Base case P(1):

$$\frac{2(1)(2(1)-1) = 2(2-1) = 2}{\frac{1(1+1)(4(1)-1)}{3}} = \frac{2 \times 3}{3} = 2$$

Hence P(1) is true.

Inductive hypothesis: assume the k-th proposition P(k) is true for some $k \in \mathbb{Z}^+$, i.e.

$$1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + 2k(2k-1) = \frac{k(k+1)(4k-1)}{3}$$

Part of the required area is below the

(1 mark)

x axis.

(i)
$$(3 \text{ marks})$$

iii.

[1] for setting up correct integral. \checkmark

 $=\frac{4}{3}+\frac{56}{3}-12$

 $= 8 \, \mathrm{units}^2$

- [1] for correct primitive.
- [1] for final answer.

and examine
$$P(k+1)$$
:

$$1 \times 2 + 3 \times 4 + \dots + 2k(2k - 1) \\+ 2(k + 1)(2(k + 1) - 1)$$

$$= \frac{k(k+1)(4k-1)}{3} + 2(k+1)(2k+1)$$

$$= \frac{(k+1)\left(k(4k-1) + 6(2k+1)\right)}{3}$$

$$= \frac{(k+1)(4k^2 - k + 12k + 6)}{3}$$

$$= \frac{(k+1)(4k^2 + 11k + 6)}{3}$$

$$= \frac{(k+1)(4k+3)(k+2)}{3}$$

$$= \frac{(k+1)((k+1)+1)(4(k+1)-1)}{3}$$

 $\therefore P(k+1)$ is also true. Hence P(n) is true for integers $n \ge 1$ by induction.

LAST UPDATED MARCH 15, 2012