MATHEMATICS (EXTENSION 1)

2012 HSC Course Assessment Task 2
 March 12, 2012

General instructions

- Working time - 55 minutes.
(plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 5)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:
\# BOOKLETS USED: \qquad

Class (please \boldsymbol{V})12M4A - Mr Weiss
○ 12M3C - Ms Ziaziaris
O 12M4B - Mr Ireland
○ 12M3D - Mr Lowe
○ 12M4C - Mr Fletcher
O 12M3E - Mr Lam

Marker's use only.

QUESTION	$1-6$	7	8	9	10	11	12	Total	$\%$
MARKS	$\overline{6}$	$\overline{10}$	$\overline{10}$	$\overline{8}$	$\overline{8}$	$\overline{4}$	$\overline{4}$	$\overline{50}$	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

1. If $y=e^{\ln x}$, then $\frac{d y}{d x}=$
(A) 1
(C) $\frac{1}{x}$
(B) 0
(D) none of these
2. If $\log _{a} b=c$, then
(A) $a=b^{c}$
(C) $b=c^{a}$
(B) $c=b^{a}$
(D) $b=a^{c}$
3. A logarithm is another name for
(A) a base
(C) an operator
(B) an index
(D) none of these
4. If $x^{k+3}=e^{7 \ln x}$, the value of k is
(A) e
(C) -3
(B) 0
(D) 4
5. $\int \frac{e^{x}}{1+e^{x}} d x$ evaluates to
(A) $e^{x}+C$
(C) $\ln \left(1+e^{x}\right)+C$
(B) $\ln \left(1+e^{2 x}\right)+C$
(D) $\ln \left(1-e^{x}\right)+C$
6. Given that $\log _{8} 2=\log _{x} 5$, then $x=$
(A) $\frac{1}{2}$
(C) 2
(B) $\frac{1}{3}$
(D) none of the above

Section II: Short answer

Question 7 (10 Marks)
Commence a NEW page.
Marks
(a) Draw an accurate sketch of the function $y=\log _{e}(2 x+1)$, showing its essential features. State its domain and range.
(b) Differentiate:
i. $\quad \log _{e}\left(\frac{2 x+1}{3 x-7}\right)$.
ii. $\quad 5^{x}$.
iii. $x^{3} e^{-3 x}$.

Question 8 (10 Marks)
Commence a NEW page.
Marks
(a) Write the primitive of
i. $\frac{x}{9+x^{2}}$
ii. $\frac{2}{x}+5 e^{x}$.
iii. $\frac{6-2 x-x^{2}}{x}$.
iv. $x\left(x^{2}+4\right)^{5}$.
(b) Evaluate $\int_{1}^{4} y d x$ if $x y=1$.
(a) i. Show that $\frac{d}{d x}(x \ln x-x)=\ln x$.
ii. Hence or otherwise, find $\int \ln x^{2} d x$.
(b) For the curve $y=\frac{e^{x}}{x^{2}+1}$, find the stationary point and determine its nature.

Question 10 (8 Marks)

(a) The gradient of a curve is given by $\frac{d y}{d x}=\frac{2}{2 x-1}$ and the curve passes through $\left(1, \log _{e} 3\right)$. Find the equation of the curve.
(b) i. Evaluate $\int_{0}^{4}\left(x^{2}-2 x\right) d x$.
ii. Find the area bounded by the curve $y=x^{2}-2 x$, the x axis and the ordinates $x=0$ and $x=4$.
iii. What do you notice about your answers to parts (i) and (ii)? Give a brief explanation.

Question 11 (4 Marks)
Commence a NEW page.
Marks
(i) Find the volume formed when the portion of the curve $x y=1$ between $x=1$ and $x=a$ is rotated about the x axis.
(ii) What is the limiting value of this volume as $a \rightarrow \infty$?

Question 12 (4 Marks)
Commence a NEW page.
Marks
Prove by mathematical induction:

$$
1 \times 2+3 \times 4+5 \times 6+\cdots+2 n(2 n-1)=\frac{n(n+1)(4 n-1)}{3}
$$

End of paper.

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})
○ 12M4A - Mr Weiss12M3C - Ms Ziaziaris
○ 12 M 4 B - Mr Ireland12M3D - Mr Lowe12M4C - Mr Fletcher12M3E - Mr Lam
$1-{ }^{\text {A }}$ (B) (C) (D)

Suggested Solutions

Section I

1. (A) 2. (D) 3. (B) 4. (D) 5. (C) 6. (D)

Question 7 (Lowe)
(a) (4 marks)
$\checkmark \quad[2]$ for graph.
$\checkmark \quad$ [1] each for domain \& range.

$D=\left\{x: x \geq-\frac{1}{2}\right\} \quad R=\{y: y \in \mathbb{R}\}$
(b) (2 marks)
$\checkmark \quad$ [1] for using log laws correctly.
\checkmark [1] for $\frac{2}{2 x+1}-\frac{3}{3 x-7}$

$$
\begin{aligned}
& \frac{d}{d x}\left(\log _{e}\left(\frac{2 x+1}{3 x-7}\right)\right) \\
= & \frac{d}{d x}\left(\log _{e}(2 x+1)-\log _{e}(3 x-7)\right) \\
= & \frac{2}{2 x+1}-\frac{3}{3 x-7}\left(=\frac{-17}{(2 x+1)(3 x-7)}\right)
\end{aligned}
$$

(c) (2 marks)
$\checkmark \quad[-1]$ for each incorrect step.

$$
y=5^{x}
$$

Take log base e on both sides,

$$
\begin{gathered}
\ln y=\ln 5^{x}=x \ln 5 \\
\therefore y=e^{x \ln 5} \\
\frac{d}{d x}\left(5^{x}\right)=\frac{d}{d x}\left(e^{x \ln 5}\right) \\
=(\ln 5) e^{x \ln 5} \\
\left(=5^{x} \ln 5\right)
\end{gathered}
$$

(d) (2 marks)
$\checkmark \quad$ [1] for correctly applying the product rule.
\checkmark [1] for correct simplification to $-3 x^{3} e^{-3 x}+3 x^{2} e^{-3 x}$

$$
\begin{gathered}
y=x^{3} e^{-3 x} \\
u=x^{3} \quad v=e^{-3 x} \\
u^{\prime}=3 x^{2} \quad v^{\prime}=-3 e^{-3 x} \\
\frac{d}{d x}\left(x^{3} e^{-3 x}\right)=x^{3}\left(-3 e^{-3 x}\right)+3 x^{2} e^{-3 x} \\
=-3 x^{3} e^{-3 x}+3 x^{2} e^{-3 x} \\
\left(=3 x^{2} e^{-3 x}(1-x)\right)
\end{gathered}
$$

Question 8 (Ziaziaris)

(a) i. (2 marks)
$\checkmark \quad[-1]$ for each error.

$$
\int \frac{x}{9+x^{2}} d x=\frac{1}{2} \log _{e}\left(9+x^{2}\right)+C
$$

ii. $\checkmark \quad[-1]$ for each error.

$$
\int \frac{2}{x}+5 e^{x} d x=2 \log _{e} x+5 e^{x}+C
$$

iii. $\checkmark \quad[-1]$ for each error.

$$
\begin{aligned}
\int \frac{6-2 x-x^{2}}{x} d x & =\int \frac{6}{x}-2-x d x \\
& =6 \log _{e} x-2 x-\frac{1}{2} x^{2}+C
\end{aligned}
$$

iv. $\checkmark \quad[-1]$ for each error.

$$
\begin{aligned}
\int x\left(x^{2}+4\right)^{5} d x & =\frac{1}{2} \int 2 x\left(x^{2}+4\right)^{5} d x \\
& =\frac{1}{2} \times \frac{1}{6}\left(x^{2}+4\right)^{6}+C \\
& =\frac{1}{12}\left(x^{2}+4\right)^{6}+C
\end{aligned}
$$

(b) (2 marks)
$\checkmark \quad[-1]$ for each error.

$$
\begin{aligned}
\int_{1}^{4} \frac{1}{x} d x & =\left[\log _{e} x\right]_{1}^{4} \\
& =\log _{e} 4 \quad\left(=2 \log _{e} 2\right)
\end{aligned}
$$

Question 9 (Lam)

(a)
i. (2 marks)
\checkmark [1] for correctly applying the product rule.
$\checkmark \quad$ [1] for correct simplification.

$$
\begin{aligned}
y & =x \ln x-x \\
u & =x \\
& v=\ln x \\
u^{\prime} & =1 \\
& v^{\prime}=\frac{1}{x} \\
\frac{d y}{d x} & =x \times \frac{1}{x}+\ln x-1 \\
& =\ln x
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for correct use of log law.
$\checkmark \quad$ [1] for correct answer.
$x \quad[0]$ for any other attempts to integrate $\ln \left(x^{2}\right)$.

$$
\begin{aligned}
\int \ln \left(x^{2}\right) d x & =2 \int \ln x d x \\
& =2(x \ln x-x)+C \\
& =2 x \ln x-2 x+C
\end{aligned}
$$

(b) (4 marks)
$\checkmark \quad$ [1] for correct use of quotient rule.
$\checkmark \quad[1]$ for correct testing to discover horizontal point of inflexion.
$\checkmark \quad$ [1] for each correct coordinate.

$$
\begin{gathered}
y=\frac{e^{x}}{x^{2}+1} \\
u=e^{x} \quad v=x^{2}+1 \\
u^{\prime}=e^{x} \quad v^{\prime}=2 x \\
\frac{d y}{d x}=\frac{e^{x}\left(x^{2}+1\right)-2 x e^{x}}{\left(x^{2}+1\right)^{2}} \\
=\frac{e^{x}\left(x^{2}-2 x+1\right)}{\left(x^{2}+1\right)^{2}} \\
=\frac{e^{x}(x-1)^{2}}{\left(x^{2}+1\right)^{2}}
\end{gathered}
$$

x	1^{-}	1	1^{+}
$\frac{d y}{d x}$	+	0	+
y			

Hence ($1, \frac{1}{2} e$) is a horizontal point of inflexion.

Question 10 (Weiss)

(a) (3 marks)
$\checkmark \quad$ [1] for correct primitive.
$\checkmark \quad$ [1] for correct substitution of point.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{2}{2 x-1} \\
y=\ln (2 x-1)+C
\end{gathered}
$$

When $x=1, y=\ln 3$

$$
\begin{gathered}
\ln 3=\ln (2-1)+C \\
\therefore C=\ln 3 \\
\therefore y=\ln (2 x-1)+\ln 3
\end{gathered}
$$

i. (2 marks)
[1] for correct primitive.
[1] for final answer.

$$
\begin{aligned}
\int_{0}^{4} x^{2}-2 x d x & =\left[\frac{1}{3} x^{3}-x^{2}\right]_{0}^{4} \\
& =\frac{64}{3}-16=\frac{16}{3}
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad[1]$ for correct resolution into two separate integrals.
$\checkmark \quad$ [1] for correct final answer.

$$
A=\left|\int_{0}^{2} x^{2}-2 x d x\right|
$$

$$
+\int_{0}^{4} x^{2}-2 x d x
$$

$$
=\left|\left[\frac{1}{3} x^{3}-x^{2}\right]_{0}^{2}\right|+\left[\frac{1}{3} x^{3}-x^{2}\right]_{2}^{4}
$$

$$
=\left|\frac{8}{3}-4\right|+\frac{1}{3}\left(4^{3}-2^{3}\right)
$$

$$
-\left(4^{2}-2^{2}\right)
$$

$$
=\frac{4}{3}+\frac{56}{3}-12
$$

$$
=8 \text { units }^{2}
$$

iii. (1 mark)

Part of the required area is below the x axis.

Question 11 (Ireland)

(i) (3 marks)
$\checkmark \quad$ [1] for setting up correct integral.
\checkmark [1] for correct primitive.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
V & =\pi \int_{1}^{a} \frac{1}{x^{2}} d x \\
& =\pi\left[-\frac{1}{x}\right]_{1}^{a} \\
& =\pi\left(1-\frac{1}{a}\right) \text { units }^{3}
\end{aligned}
$$

(ii) (1 mark)

$$
\lim _{a \rightarrow \infty}\left[\pi\left(1-\frac{1}{a}\right)\right]=\pi(1-0)=\pi
$$

Question 12 (Fletcher)
Let $P(n)$ be the statement
$1 \times 2+3 \times 4+5 \times 6+\cdots+2 n(2 n-1)=\frac{n(n+1)(4 n-1)}{3}$

Base case $P(1)$:

$$
\begin{gathered}
2(1)(2(1)-1)=2(2-1)=2 \\
\frac{1(1+1)(4(1)-1)}{3}=\frac{2 \times 3}{3}=2
\end{gathered}
$$

Hence $P(1)$ is true.
Inductive hypothesis: assume the k-th proposition $P(k)$ is true for some $k \in \mathbb{Z}^{+}$, i.e.
$1 \times 2+3 \times 4+5 \times 6+\cdots+2 k(2 k-1)=\frac{k(k+1)(4 k-1)}{3}$
and examine $P(k+1)$:

$$
\begin{aligned}
1 \times 2 & +3 \times 4+\cdots+2 k(2 k-1) \\
& +2(k+1)(2(k+1)-1)
\end{aligned}
$$

$$
=\frac{k(k+1)(4 k-1)}{3}+2(k+1)(2 k+1)
$$

$$
=\frac{(k+1)(k(4 k-1)+6(2 k+1))}{3}
$$

$$
=\frac{(k+1)\left(4 k^{2}-k+12 k+6\right)}{3}
$$

$$
=\frac{(k+1)\left(4 k^{2}+11 k+6\right)}{3}
$$

$$
=\frac{(k+1)(4 k+3)(k+2)}{3}
$$

$$
=\frac{(k+1)((k+1)+1)(4(k+1)-1)}{3}
$$

$\therefore P(k+1)$ is also true. Hence $P(n)$ is true for integers $n \geq 1$ by induction.

