North Sydney Boys HIGH SCHOOL

2013 HSC ASSESSMENT TASK 2

Mathematics
 Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 55 minutes
- Write on the lined paper in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Class Teacher:

(Please tick or highlight)
O Mr Lucas
O Mr Berry
O Mr Lin
O Mr Fletcher
O Mr Lam
O Ms Ziaziaris

Student Name/Number: \qquad
(To be used by the exam markers only.)

Question No	$\mathbf{1 - 5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	Total	Total $\%$
Mark	$\overline{5}$	$\overline{10}$	$\overline{8}$	$\overline{6}$	$\overline{10}$	$\overline{3}$	$\overline{7}$	$\overline{49}$	$\overline{100}$

SECTION A - MULTIPLE CHOICE (5 Marks)

1. If $y=e^{x^{2}}$ which of the following is an expression for $\frac{d^{2} y}{d x^{2}}$
(A) $2 x e^{x^{2}}$
(B) $2 e^{x^{2}}$
(C) $4 x e^{x^{2}}$
(D) $\left(4 x^{2}+2\right) e^{x^{2}}$
2. If $e^{x+2}=4$, the exact value of x is:
(A) 2
(B) $e^{4}+2$
(C) $\log _{e} 2$
(D) $\log _{e} 4-2$
3. The polynomial $P(x)=a x^{3}+b x^{2}+c x+d$ has zeros at: $-2,-1,1$ and 2 . What is the value of b
(A) -2
(B) -1
(C) 0
(D) 2
4. The function $y=x^{3}+2 x^{2}+3 x+4$ has a root between -1 and -2 . By halving the interval a better approximation can be determined to be between:
(A) -1 and -1.25
(B) -1.25 and -1.5
(C) -1.5 and -1.75
(D) -1.75 and -2
5. The gradient of the normal to the curve $y=\log _{e} x^{2}$ at $x=2$ is:
(A) -1
(B) 0
(C) 1
(D) 4

SECTION B - EXTENDED RESPONSE

Question 6 (10 Marks)

(a) Differentiate
(i) $\log _{10} x$
(ii) $x^{2} e^{x}$
(b) Find the primitive of:
(i) $2 e^{x}+1$
(ii) $\frac{x}{2 x^{2}+1}$
(iii) $\frac{2 x^{2}+1}{x}$
(c) Evaluate $\int_{1}^{3} e^{2 x} d x$ correct to two decimal places:

Question 7 (8 Marks)

(a) (i) Factorise $x^{3}-x^{2}-8 x+12$ completely
(ii) Hence sketch $P(x)=x^{3}-x^{2}-8 x+12$
(you are not required to use calculus)
(b) The root of $f(x)=0.4 x-e^{-x^{2}}$ is near $x=1$. Use Newton's Method once to find a 2 decimal place approximation to this root

Question 8 (6 Marks)

(a) If α, β and γ are the roots of the equation $3 x^{3}-5 x^{2}+2 x-3=0$.

Find the values of
(i) $\alpha+\beta+\gamma$
(ii) $\alpha \beta+\beta \gamma+\alpha \gamma$
(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(b) The polynomial $P(x)=x^{3}+a x^{2}-b x+6$ has $(x-3)$ as a factor. When $P(x)$ is divided by $(x+1)$ the remainder is 8 .

Question 9 (10 Marks)

(a) Find the volume when $y=\frac{2}{\sqrt{x}}$ is rotated around the x-axis between $x=3$ and $x=5$
(b) (i) Draw a neat sketch of $y=\log _{e}(x-1)$ showing all relevant features
(ii) Use 2 applications (i.e. five function values) of Simpson's rule to estimate the area enclosed by $y=\log _{e}(x-1), x=6$ and the x-axis, in the first quadrant correct to two decimal places.
(iii) Hence, or otherwise, approximate the area enclosed by the lines $y=\log _{e}(x-1)$, $y=\log _{e} 5$ and the coordinate axes.

Question 10 (3 Marks)

(a) Prove by mathematical induction that $7^{n}-6 n-1$ is divisible by 36 for all positive integers $n \geq 2$.

Question 11 (7 Marks)
(a) Solve for $x: \quad \log _{2} x+\log _{2}(x+7)=3$
(b) If $y=\frac{\log _{e} x}{x}$
(i) Show that $\frac{d y}{d x}=\frac{1-\log _{e} x}{x^{2}}$
(ii) Hence or otherwise show that:

$$
\int_{e}^{e^{2}} \frac{1-\log _{e} x}{x \log _{e} x} d x=\left(\log _{e} 2\right)-1
$$

Multiple choice

1. D
2. D
3. C
4. C
5. A

Question 6
(a) (i) $\frac{d}{d x} \log _{10} x=\frac{1}{x \log _{e} 10}$
(a) (ii) $y=x^{2} e^{x}$
let $u=x^{2}$
let $v=e^{x}$
$\therefore y^{\prime}=2 x$
$v^{\prime}=e^{x}$

$$
\begin{aligned}
y^{\prime} & =u^{\prime} v+v^{\prime} u \\
& =(2 x)\left(e^{x}\right)+\left(e^{x}\right)\left(x^{2}\right) \\
& =x e^{x}(x+2)
\end{aligned}
$$

\checkmark product
$\sqrt{ }$ answer
(b). (i) $\int\left(2 e^{x}+1\right) d x=2 e^{x}+x+c$
$\checkmark \begin{aligned} & \text { correct } \\ & \text { answer }\end{aligned}$

$$
\begin{aligned}
& \text { correct } \\
& \text { and wee }
\end{aligned}
$$

(b) (ii) $\int \frac{x}{2 x^{2}+1} d x$

$$
\begin{aligned}
& =\frac{1}{4} \int\left(\frac{4 x}{2 x^{2}+1}\right) d x \\
& =\frac{1}{4} \log _{e}\left(2 x^{2}+1\right)+c
\end{aligned}
$$

$\sqrt{\text { any }} \log$ as the primitive
$\sqrt{ }$ correct answer
(b)

$$
\text { (iii) } \begin{aligned}
& \int \frac{2 x^{2}+1}{x} d x \\
= & \int\left(2 x+\frac{1}{x}\right) d x \\
= & x^{2}+\log _{e} x+c
\end{aligned}
$$

$\sqrt{\text { breaking ap }}$ fraction fraction
$\sqrt{\text { correct }} \begin{gathered}\text { answer }\end{gathered}$

$$
\text { (c) } \begin{aligned}
& \int_{1}^{3} e^{2 x} d x \\
= & {\left[\frac{1}{2} e^{2 x}\right]_{1}^{3} } \\
= & 1 / 2\left(e^{6}-e^{2}\right) \\
= & 198 \cdot 02\left(2 d \rho_{1}\right)
\end{aligned}
$$

\checkmark correct primitive
\checkmark correct answer.

Question 7
(a) (i) let $P(x)=x^{3}-x^{2}-8 x+12$

$$
\begin{aligned}
P(2) & =2^{3}-2^{2}-8 \times 2+12 \\
& =0
\end{aligned}
$$

$\therefore(x-2)$ is o factor

$$
\left.\begin{array}{rl}
x-2 & \frac{x^{2}+x-6}{x^{3}-x^{2}-8 x+12} \\
\frac{x^{3}-2 x^{2}}{x^{2}-8 x} \\
\frac{x^{2}-2 x}{-6 x+12} \\
\frac{-6 x+12}{}
\end{array}\right] \begin{aligned}
& \therefore P(x)=(x-2)\left(x^{2}+x-6\right) \\
& \therefore P(x)=(x-2)(x+3)(x-2) \\
& P(x)=(x-2)^{2}(x+3)
\end{aligned}
$$

(a) (ii)

$\sqrt{ }$ correct singe \& ducble rout \checkmark shape

$$
\text { (b) } \begin{aligned}
f(x) & =0.4 x-e^{-x^{2}} \\
\therefore f^{\prime}(x) & =0.4+2 x e^{-x^{2}} \\
a_{0} & =1 \\
a_{1} & =a_{0}-\frac{f\left(a_{0}\right)}{f^{\prime}\left(a_{0}\right)} \\
& =1-\frac{0.4-e^{-1}}{0.4+2 e^{-1}} \\
\therefore a_{1} & =0.97\left(2 \mathrm{~d} p_{1}\right)
\end{aligned}
$$

\checkmark currect derivative

Question 8

$$
\text { (a) (i) } \begin{aligned}
\alpha+\beta+\gamma & =-b / a \\
& =5 / 3
\end{aligned}
$$

(a) (i)

$$
\text { (ii) } \begin{aligned}
\alpha \beta+\alpha \gamma+\beta \gamma & =c / a \\
& =2 / 3
\end{aligned}
$$

(a)(iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =(5 / 3)^{2}-2(2 / 3) \\
& =13 / 9
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P(3)=0 \\
& \therefore 3^{3}+a \times 3^{2}-3 b+6=0 \\
& \quad 33+9 a-3 b=0
\end{aligned}
$$

$$
9 a-3 b=-33,11
$$

$$
P(-1)=8
$$

$$
\begin{gathered}
\therefore(-1)^{3}+a(-1)^{2}+b+6=8 \\
-1+a+b+6=8 \\
a+b=3 \\
\therefore b=3-a \quad \ldots(2)
\end{gathered}
$$

sub (2) \rightarrow (1)

$$
\begin{aligned}
9 a-3(3-a) & =-33 \\
9 a-9+3 a & =-33 \\
12 a & =-24 \\
a & =-2
\end{aligned}
$$

\checkmark solution to 9
sub into (2)

$$
\begin{aligned}
b & =3-9 \\
& =3-(-2) \\
\therefore b & =5
\end{aligned}
$$

\checkmark solution to b

Question 9

(b) (iii)

$$
\begin{aligned}
A & \doteq\left(6 \times \log _{e} 5\right)-4.04 \\
& =5.615\left(3 \mathrm{~d} \mathrm{p}_{4}\right)
\end{aligned}
$$

J area of
rectangle
\checkmark final answer (any rounding is obJ

Question 10
1.) when $n=2$

$$
7^{2}-6 \times 2-1=36
$$

which is divisible by 36
2. assume true for $n=k$ where k is an integer
i. e. $7^{k}-6 k-1=36 m$ where m is an integer
3./ for $n=k+1$

$$
\begin{aligned}
& 7^{k+1}-6(k+1)-1 \\
= & 7 \cdot 7^{k}-6 k-6-1 \\
= & 7 \times 7^{k}-6 k-7 \\
= & 7 \times 7^{k}-42^{k}-7-6 k+42 k \\
= & 7\left(7^{k}-6 k-1\right)+36 k \\
= & 7 \times 36 m+36 k \text {, from assumption } \\
= & 36(7 m+k)
\end{aligned}
$$

which is divisible by, $36 \sin (e$ $m \& k$ are buth.integers
4. therefore the propusition is true by the principle of mathematical induction

Question II

$$
\text { (a) } \begin{gathered}
\log _{2} x+\log _{2}(x+7)=3 \\
\log _{2}\left(x^{2}+7 x\right)=3 \\
\therefore x^{2}+7 x=2^{3} \\
x^{2}+7 x=8 \\
x^{2}+7 x-8=0 \\
(x+8)(x-1)=0 \\
\therefore x=-8 \text { or } x=1 \\
\therefore x=1 \text { as } x>0
\end{gathered}
$$

\checkmark combining into + log
$\sqrt{\text { re-arcanying }}$ to get exponential

1 correct final ansimer must have only I final solution
(b)(i) $y=\frac{\log _{e} x}{x}$
let $u=\log _{e} x \quad \& \quad v=x$

$$
\begin{aligned}
\therefore u^{\prime} & =\frac{1}{x} \& v^{\prime}=1 \\
\frac{d y}{d x} & =\frac{u^{\prime} v-v^{\prime} u}{v^{2}} \\
& =\frac{(\operatorname{lx})(x)-(1) \log _{e} x}{x^{2}} \\
& =\frac{1-\log _{e} x}{x^{2}} \text { as reg }
\end{aligned}
$$

$$
\text { (b) (ii) } \left.\begin{array}{rl}
& \int_{e}^{e^{2}} \frac{1-\log _{e} x}{x \log _{e} x} d x \\
= & \int_{e^{2}}^{e^{2}} \frac{\left(\frac{1-\log _{e} x}{x^{2}}\right)}{\left(\frac{x \log _{e} x}{x^{2}}\right)} d x \\
= & \int_{e}^{e^{2}} \frac{\left(\frac{1-\log _{e} x}{x^{2}}\right)}{\left(\frac{\log _{e} x}{x}\right)} d x \\
= & {\left[\log _{e}\left(\frac{\log _{e} x}{x}\right)\right]_{e}^{e^{2}}(\text { from }(i))} \\
= & \log _{e}\left(\frac{\log _{e} e^{2}}{e^{2}}\right)-\log _{e}\left(\frac{\log _{e} e}{e}\right) \\
= & \log _{e}\left(\frac{2}{e^{2}}\right)-\log _{e}\left(\frac{1}{e}\right) \\
= & \log _{e} 2-\log _{e} e^{2}-\log _{e} l+\log e
\end{array}\right] .
$$

\checkmark dividing by x^{2}
\checkmark correct integral
e $\quad \square$ succestally getting to final answer.

