MATHEMATICS (EXTENSION 1)

2014 HSC Course Assessment Task 2
 Wednesday March 12, 2014

General instructions

- Working time - 55 minutes.
(plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 5)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:
\# BOOKLETS USED: \qquad

Class (please $\boldsymbol{\checkmark}$)
○ $12 \mathrm{M} 3 \mathrm{~A}-\mathrm{Mr}$ Zuber
12M4A - Ms Ziaziaris
○ 12M3B - Mr Berry
○ $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Mr}$ Lam
\bigcirc 12M3C - Mr Lowe
○ $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Ireland

Marker's use only.

QUESTION	$1-4$	5	6	7	8	9	Total	$\%$
MARKS	$\overline{4}$	$\overline{6}$	$\overline{10}$	$\overline{11}$	$\overline{10}$	$\overline{9}$	$\overline{50}$	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

1. How many real solutions are there to the equation $e^{2 x}+e^{x}-6=0$?
(A) 0
(C) 2
(B) 1
(D) None of the above
2. Which of the following represent the solution(s) to the equation

$$
\ln (x-2)+\ln (x-1)=\ln (x+2)
$$

(A) $x=0, x=4$.
(C) $x=0$ only
(B) $x=4$ only
(D) No real solutions
3. Which of the following represents the primitive of π^{x}, excluding the constant of integration?
(A) x^{π}
(B) π^{x}
(C) $\pi^{x} \ln \pi$
(D) $\frac{\pi^{x}}{\ln \pi}$
4. Which of the following represents the correct integral to evaluate the volume generated when the area beneath the curve $y=\log _{e} x$ between $x=1$ and $x=e$ is rotated about the y axis?

(A) $\pi \int_{0}^{1} e^{2 y} d y$
(C) $\pi \int_{1}^{e}\left(\log _{e} x\right)^{2} d x$
(B) $\pi e^{2}-\pi \int_{0}^{1} e^{2 y} d y$
(D) $\pi e^{2}-\pi \int_{1}^{e}\left(\log _{e} x\right)^{2} d x$

Question 5 (6 Marks)
Commence a NEW page.
(a) Find the set of values of x for which the limiting sum exists for this series:

$$
1+\ln x+(\ln x)^{2}+(\ln x)^{3}+\cdots
$$

(b) i. Copy and fill in the table of values for $y=\log _{e} x-1$.

x	3	4	5	6	7
y					

ii. By using Simpson's Rule with five function values, find the approximate volume when the curve $y=f(x)$ is rotated about the x axis between $x=3$ to $x=7$, correct to 4 decimal places.

Question 6 (10 Marks) Commence a NEW page.

Marks
(a) Find $\lim _{x \rightarrow 0} \frac{\sin 9 x}{\tan 4 x}$.
(b) i. State the period and amplitude of $y=2-\cos \frac{1}{2} x$.
ii. Hence, sketch the graph of $y=2-\cos \frac{1}{2} x$ where $-\pi \leq x \leq \pi$.
(c) i. Sketch the graph of $y=\tan x$ for $-\pi \leq x \leq \pi$.
ii. Hence on the same set of axes, sketch the graph of $y=\cot x$.

Question 7 (11 Marks)
Commence a NEW page.
Marks
(a) Find the derivative of $y=\log _{e}\left(\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right)$.
(b) i. Differentiate $\frac{2 x^{2}+1}{3 x^{2}-4}$ with respect to x.
ii. Hence evaluate $\int \frac{x}{\left(3 x^{2}-4\right)^{2}} d x$.
(c) i. Show that $\frac{x^{3}}{x+1}=x^{2}-x+1-\frac{1}{x+1}$.
ii. Hence evaluate $\int \frac{x^{3}-2}{x+1} d x$.

Question 8 (10 Marks)

Commence a NEW page.
Marks
For the curve $y=x e^{x}+e^{x}$,
(a) Find the stationary point on the curve and determine its nature.
(b) Find any points of inflexion.
(c) Find where the curve cuts the coordinate axes.
(d) Hence sketch the curve $y=e^{x}+x e^{x}$.

Question 9 (9 Marks)
Commence a NEW page.
(a) Prove that $4 \times 2^{n}+3^{3 n}$ is divisible by 5 for all integers $n, n \geq 1$.
(b) The diagram shows a sector of a circle with radius $r \mathrm{~cm}$. the angle at the centre is θ radians, and the area is $32 \mathrm{~cm}^{2}$.

i. Find an expression for r in terms of θ.
ii. Show that the perimeter P of the sector is given by

$$
P=\frac{8(2+\theta)}{\sqrt{\theta}}
$$

iii. Find the minimum perimeter and the value of θ for which this occurs.

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M3A - Mr Zuber

- 12M4A - Ms Ziaziaris
- 12M3B - Mr Berry
○ $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Mr}$ Lam
○ 12M3C - Mr Lowe
○ $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Ireland

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Suggested Solutions

Section I

1. (B) 2. (B) 3. (D) 4. (B)

Section II

Question 5 (Lam)
(a) (2 marks)

$$
\begin{gathered}
1+\ln x+(\ln x)^{2}+(\ln x)^{3}+\cdots \\
a=1 \quad r=\ln x
\end{gathered}
$$

Limiting sum exists when $|r|<1$, i.e.

$$
|\ln x|<1
$$

Question 6 (Ziaziaris)

From the graph of $y=\ln x$,

the part of $\ln x$ that lies between -1 and 1 occurs when $\frac{1}{e}<x<e$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 9 x}{\tan 4 x} & =\lim _{x \rightarrow 0}\left(\frac{\sin 9 x}{9 x} \times \frac{4 x}{\tan 4 x}\right) \times \frac{9}{4} \\
& =\frac{9}{4}
\end{aligned}
$$

(b) i. (2 marks) $y=2-\cos \frac{1}{2} x$

$$
\text { - } T=4 \pi
$$

- $a=1$
ii. (2 marks)
(b) i. (1 mark)
- Award full marks for either 3-4 decimal places required for full marks.
(a) (2 marks)
d
(c) (4 marks)

(Dashed line: $y=\tan x$)
(c) i. (2 marks)

$$
\begin{aligned}
\frac{x^{3}}{x+1} & =\frac{x^{3}+1-1}{x+1} \\
& =\frac{(x+1)\left(x^{2}-x+1\right)}{x+1}-\frac{1}{x+1} \\
& =x^{2}-x+1-\frac{1}{x+1}
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
\int \frac{x^{3}-2}{x+1} d x & =\int\left(\frac{x^{3}}{x+1}-\frac{2}{x+1}\right) d x \\
& =\int\left(x^{2}-x+1-\frac{3}{x+1}\right) d x \\
& =\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+x-3 \ln (x+1)+C
\end{aligned}
$$

Question 7 (Zuber)

(a) (3 marks)

$$
\begin{aligned}
y & =\ln \sqrt{\frac{1-x^{2}}{1+x^{2}}} \\
& =\frac{1}{2} \ln \left(1-x^{2}\right)-\frac{1}{2} \ln \left(1+x^{2}\right)
\end{aligned}
$$

Differentiating,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-\not 2 x}{\not 2\left(1-x^{2}\right)}-\frac{\not 2 x}{\not 2\left(1+x^{2}\right)} \\
& =-\frac{x}{1-x^{2}}-\frac{x}{1+x^{2}}
\end{aligned}
$$

$$
\left(e^{\omega}>0\right)
$$

(b) i. (2 marks)

$$
\begin{gathered}
y=\frac{2 x^{2}+1}{3 x^{2}-4} \\
\begin{array}{c}
u=2 x^{2}+1 \quad v=3 x^{2}-4 \\
u^{\prime}=4 x \quad v^{\prime}=6 x \\
\frac{d y}{d x}= \\
=\frac{4 x\left(3 x^{2}-4\right)-6 x\left(2 x^{2}+1\right)}{\left(3 x^{2}-4\right)^{2}} \\
= \\
=-\frac{12 x^{3}-16 x-12 x^{3}-6 x}{\left(3 x^{2}-4\right)^{2}} \\
\left(3 x^{2}-4\right)^{2}
\end{array}
\end{gathered}
$$

ii. (2 marks)

$$
\begin{aligned}
\int \frac{x}{\left(3 x^{2}-4\right)^{2}} d x & =-\frac{1}{22} \int \frac{-22 x}{\left(3 x^{2}-4\right)^{2}} d x
\end{aligned} \begin{array}{ll}
\frac{d^{2} y}{d x^{2}}=0 \\
& =-\frac{1}{22}\left(\frac{2 x^{2}+1}{3 x^{2}-4}\right)+C \\
\therefore x=-3 \quad y=e^{-3}(-3+1)=-2 e^{-3} \\
& \text { Testing for sign change: }
\end{array}
$$

(b) (3 marks) Point(s) of inflexion occur when

Hence $\left(-2,-e^{-2}\right)$ is a local minimum.
Test for type of statioary point. Find second derivative:

$$
\begin{gathered}
u=e^{x} \quad v=x+2 \\
u^{\prime}=e^{x} \quad v^{\prime}=1 \\
\frac{d^{2} y}{d x^{2}}=e^{x}+e^{x}(x+2)=e^{x}(x+3)
\end{gathered}
$$

When $x=-2$,

$$
\frac{d^{2} y}{d x^{2}}=e^{-2}(-2+3)>0
$$

Stationary points occur when $\frac{d y}{d x}=0$ $\left(e^{x}>0\right)$

$$
\therefore x=-2 \quad y=-e^{-2}
$$

Question 8 (Ireland)
(a) (3 marks)

$$
\begin{gathered}
y=x e^{x}+e^{x}=e^{x}(x+1) \\
u=e^{x} \quad v=x+1 \\
u^{\prime}=e^{x} \quad v^{\prime}=1 \\
\frac{d y}{d x}=e^{x}+e^{x}(x+1) \\
=e^{x}(x+2)
\end{gathered}
$$

- $x=-4, \frac{d^{2} y}{d x^{2}}=e^{-4}(-4+1)<0$
- $x=-2, \frac{d^{2} y}{d x^{2}}>0$

Hence $\left(-3,-2 e^{-3}\right)$ is a point of inflexion.
(c) (2 marks)

- $x=0$

$$
y=e^{0}(0+1)=1
$$

- $y=0$,

$$
\begin{gathered}
e^{x}(x+1)=0 \\
\therefore x=-1
\end{gathered}
$$

(d) (2 marks)

(b) i. (1 mark)

$$
\begin{gathered}
A=32=\frac{1}{2} r^{2} \theta \\
\therefore r^{2}=\frac{64}{\theta} \\
\quad r=\frac{8}{\sqrt{\theta}}
\end{gathered}
$$

Examine $P(k+1)$:

$$
\begin{aligned}
& 4 \times 2^{k+1}+3^{3(k+1)} \\
= & \left(4 \times 2^{k}\right) \times 2^{1}+3^{3 k} \times 3^{3} \\
= & \left(5 N-3^{3 k}\right) \times 2+3^{3 k} \times 3^{3} \\
= & 5 \times 2 N-2 \times 3^{3 k}+27 \times 3^{3 k} \\
= & 5 \times 2 N+25 \times 3^{3 k} \\
= & 5\left(2 N+5 \times 3^{3 k}\right)=5 P
\end{aligned}
$$

$$
\text { where } P \in \mathbb{Z}^{+}
$$

$\therefore P(k+1)$ is also true, and $P(n)$ is true by induction.
where $M \in \mathbb{Z}^{+}$.

- Base case: $P(1)$:

$$
4 \times 2+3^{3}=8+27=35
$$

Hence $P(1)$ is true.

- Inductive step: assume $P(k)$ is true for some $k \in \mathbb{Z}^{+}$, i.e.

$$
\begin{aligned}
& \quad P(k): 4 \times 2^{k}+3^{3 k}=5 N \\
& \left(N \in \mathbb{Z}^{+}\right)
\end{aligned}
$$

Question 9 (Lam)

(a) (3 marks) Let $P(n)$ be the proposition

$$
P(n): 4 \times 2^{n}+3^{3 n}=5 M
$$

ii. (2 marks)

$$
\begin{aligned}
P & =2 r+r \theta=r(2+\theta) \\
& =\left(\frac{8}{\sqrt{\theta}}\right)(2+\theta)
\end{aligned}
$$

iii. (3 marks)

$$
P=8 \theta^{-\frac{1}{2}}(2+\theta)
$$

Differentiating,

$$
\begin{aligned}
& u=8 \theta^{-\frac{1}{2}} \quad v=2+\theta \\
& u^{\prime}=-\frac{1}{2} \times 8 \theta^{-\frac{3}{2}} \quad v^{\prime}=1 \\
&=-4 \theta^{-\frac{3}{2}} \\
& \begin{aligned}
\frac{d P}{d \theta} & =8 \theta^{-\frac{1}{2}}-4 \theta^{-\frac{3}{2}}(2+\theta) \\
& =8 \theta^{-\frac{1}{2}}-8 \theta^{-\frac{3}{2}}-4 \theta^{-\frac{1}{2}} \\
& =4 \theta^{-\frac{1}{2}}-8 \theta^{-\frac{3}{2}} \\
& =4 \theta^{-\frac{1}{2}}\left(1-2 \theta^{-1}\right) \\
& =\frac{4}{\sqrt{\theta}}\left(1-\frac{2}{\theta}\right)
\end{aligned}
\end{aligned}
$$

Stationary points occur when $\frac{d P}{d \theta}=0$:

$$
\begin{gathered}
\frac{4}{\sqrt{\theta}}\left(1-\frac{2}{\theta}\right)=0 \\
\left(1-\frac{2}{\theta}\right)=0 \\
\therefore \frac{2}{\theta}=1 \\
\theta=2
\end{gathered}
$$

Check second derivative:

$$
\begin{aligned}
\frac{d^{2} P}{d \theta^{2}} & =-\frac{1}{2} \times 4 \theta^{-\frac{3}{2}}-\left(-\frac{3}{2}\right) \times 8 \theta^{-\frac{5}{2}} \\
& =-2 \theta^{-\frac{3}{2}}+\left.12 \theta^{-\frac{5}{2}}\right|_{\theta=2} \\
& =\frac{-2}{\sqrt{2^{3}}}+\frac{12}{\sqrt{2^{5}}} \approx 1.414 \\
& >0
\end{aligned}
$$

Hence $\theta=2$ is a local minimum. P is minimised when $\theta=2$.

$$
P=\frac{8}{\sqrt{2}}(2+2)=\frac{32}{\sqrt{2}}
$$

