

MATHEMATICS (EXTENSION 1)

2014 HSC Course Assessment Task 2 Wednesday March 12, 2014

General instructions

- Working time 55 minutes. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

• Mark your answers on the answer sheet provided (numbered as page 5)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:# BOOKLETS USED:Class (please \checkmark) \bigcirc 12M3A - Mr Zuber \bigcirc 12M4A - Ms Ziaziaris \bigcirc 12M3B - Mr Berry \bigcirc 12M4B - Mr Lam \bigcirc 12M3C - Mr Lowe \bigcirc 12M4C - Mr Ireland

Marker's use only.								
QUESTION	1-4	5	6	7	8	9	Total	%
MARKS	4	6	10	11	10	9	50	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.Marks**1.** How many real solutions are there to the equation $e^{2x} + e^x - 6 = 0$?**1**(A) 0(C) 2(B) 1(D) None of the above**2.** Which of the following represent the solution(s) to the equation**1** $\ln(x-2) + \ln(x-1) = \ln(x+2)$ $\ln(x-2) + \ln(x-1) = \ln(x+2)$

- (A) x = 0, x = 4. (C) x = 0 only
- (B) x = 4 only (D) No real solutions
- 3. Which of the following represents the primitive of π^x , excluding the constant of **1** integration?

(A)
$$x^{\pi}$$
 (B) π^{x} (C) $\pi^{x} \ln \pi$ (D) $\frac{\pi^{x}}{\ln \pi}$

4. Which of the following represents the correct integral to evaluate the volume generated when the area beneath the curve $y = \log_e x$ between x = 1 and x = e is rotated about the y axis?

End of Section I. Examination continues overleaf. 1

Question 5 (6 Marks) Commence a NEW page.

(a) Find the set of values of x for which the limiting sum exists for this series:

$$1 + \ln x + (\ln x)^2 + (\ln x)^3 + \cdots$$

(b) i. Copy and fill in the table of values for $y = \log_e x - 1$.

x	3	4	5	6	7
y					

ii. By using Simpson's Rule with five function values, find the approximate 3 volume when the curve y = f(x) is rotated about the x axis between x = 3to x = 7, correct to 4 decimal places.

Ques	stion (6 (10 Marks) Commence a NEW page.	Marks
(a)	Find	$\lim_{x \to 0} \frac{\sin 9x}{\tan 4x}.$	2
(b)	i.	State the period and amplitude of $y = 2 - \cos \frac{1}{2}x$.	2
	ii.	Hence, sketch the graph of $y = 2 - \cos \frac{1}{2}x$ where $-\pi \le x \le \pi$.	2
(c)	i.	Sketch the graph of $y = \tan x$ for $-\pi \le x \le \pi$.	2
	ii.	Hence on the same set of axes, sketch the graph of $y = \cot x$.	2

Question 7 (11 Marks) Commence a NEW page. Marks
(a) Find the derivative of
$$y = \log_e \left(\sqrt{\frac{1-x^2}{1+x^2}} \right)$$
. 3

(b) i. Differentiate
$$\frac{2x^2+1}{3x^2-4}$$
 with respect to x . 2

ii. Hence evaluate
$$\int \frac{x}{(3x^2-4)^2} dx.$$
 2

(c) i. Show that
$$\frac{x^3}{x+1} = x^2 - x + 1 - \frac{1}{x+1}$$
. 2

ii. Hence evaluate
$$\int \frac{x^3 - 2}{x + 1} dx$$
. 2

 $\mathbf{2}$

1

Marks

Que	stion 8 (10 Marks)	Commence a NEW page.	Marks
For t	he curve $y = xe^x + e^x$,		
(a)	Find the stationary point on the	curve and determine its nature.	3
(b)	Find any points of inflexion.		3
(c)	Find where the curve cuts the co	oordinate axes.	2
(d)	Hence sketch the curve $y = e^x +$	xe^x .	2

Question 9 (9 Marks)Commence a NEW page.Marks

(a) Prove that $4 \times 2^n + 3^{3n}$ is divisible by 5 for all integers $n, n \ge 1$.

(b) The diagram shows a sector of a circle with radius r cm. the angle at the centre is θ radians, and the area is 32 cm^2 .

i.	Find an expression for r in terms of θ .	1
ii.	Show that the perimeter P of the sector is given by	2

$$P = \frac{8(2+\theta)}{\sqrt{\theta}}$$

iii. Find the minimum perimeter and the value of θ for which this occurs.

End of paper.

3

3

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "•"

STUDENT NUMBER:

Class (please \checkmark)

- \bigcirc 12M3B Mr Berry
- \bigcirc 12M3C Mr Lowe

- \bigcirc 12M4A Ms Ziaziaris
- \bigcirc 12M4B Mr Lam
- \bigcirc 12M4C Mr Ireland

STANDARD INTEGRALS

$$\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1} + C, \qquad n \neq -1; \quad x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} dx \qquad \qquad = \ln x + C, \qquad \qquad x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a}e^{ax} + C, \qquad \qquad a \neq 0$$

$$\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax + C, \qquad a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax + C, \qquad a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C, \qquad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx \qquad = \sin^{-1} \frac{x}{a} + C, \qquad \qquad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

NOTE: $\ln x = \log_e x, x > 0$

Suggested Solutions

Section I

1. (B) **2.** (B) **3.** (D) **4.** (B)

Section II

Question 5 (Lam)

(a) (2 marks)

$$1 + \ln x + (\ln x)^2 + (\ln x)^3 + \cdots$$

 $a = 1$ $r = \ln x$

Limiting sum exists when |r| < 1, i.e.

 $\left|\ln x\right| < 1$

From the graph of $y = \ln x$,

 $\frac{1}{e}$

y

1

 $^{-1}$

1

(b) i. (1 mark)

> • Award full marks for either 3-4 decimal places required for full marks

 $\mathbf{2}$

(3 marks)ii.

$$V = \pi \int_{a}^{b} y^{2} dx$$

$$\approx \int_{a}^{b} y^{2} dx$$

$$V \approx \pi \times \underbrace{\frac{h}{3} \left((y_{0})^{2} + 4 \left(\sum (y_{\text{odd}})^{2} \right) + 2 \left(\sum (y_{\text{even}})^{2} \right) + (y_{\ell})^{2} \right)}_{+2 \left(\ln 3 - 1 \right)^{2}}$$

$$= \frac{\pi}{3} \left((\ln 3 - 1)^{2} + (\ln 6 - 1)^{2} \right) + 2 \left(\ln 5 - 1 \right)^{2} + (\ln 7 - 1)^{2} \right)$$

$$= 4.97599 \dots \approx 4.9760$$

(2 marks)(a)

→ x e

$$\lim_{x \to 0} \frac{\sin 9x}{\tan 4x} = \lim_{x \to 0} \left(\frac{\sin 9x}{9x} \times \frac{4x}{\tan 4x} \right) \times \frac{9}{4}$$
$$= \frac{9}{4}$$

y

 $\mathbf{2}$

(b) i. (2 marks)
$$y = 2 - \cos \frac{1}{2}x$$

•
$$T = 4\pi$$

•
$$a = 1$$

 $\cos \frac{1}{r}r$

Question 7 (Zuber)

(a) (3 marks)

$$y = \ln \sqrt{\frac{1 - x^2}{1 + x^2}}$$

= $\frac{1}{2} \ln (1 - x^2) - \frac{1}{2} \ln (1 + x^2)$

Differentiating,

$$\frac{dy}{dx} = \frac{-\not\!\!\!\!2x}{\not\!\!\!2(1-x^2)} - \frac{\not\!\!\!2x}{\not\!\!\!2(1+x^2)} \\ = -\frac{x}{1-x^2} - \frac{x}{1+x^2}$$

(b) i. (2 marks)

$$y = \frac{2x^2 + 1}{3x^2 - 4}$$
$$\begin{vmatrix} u = 2x^2 + 1 & v = 3x^2 - 4 \\ u' = 4x & v' = 6x \end{vmatrix}$$
$$\frac{dy}{dx} = \frac{4x (3x^2 - 4) - 6x (2x^2 + 1)}{(3x^2 - 4)^2}$$
$$= \frac{12x^3 - 16x - 12x^3 - 6x}{(3x^2 - 4)^2}$$
$$= -\frac{22x}{(3x^2 - 4)^2}$$

ii. (2 marks)

$$\int \frac{x}{(3x^2 - 4)^2} \, dx = -\frac{1}{22} \int \frac{-22x}{(3x^2 - 4)^2} \, dx$$
$$= -\frac{1}{22} \left(\frac{2x^2 + 1}{3x^2 - 4}\right) + C$$

i. (2 marks)

$$\frac{x^3}{x+1} = \frac{x^3+1}{x+1} - 1$$
$$= \frac{(x+1)(x^2-x+1)}{x+1} - \frac{1}{x+1}$$
$$= x^2 - x + 1 - \frac{1}{x+1}$$

ii. (2 marks)

$$\int \frac{x^3 - 2}{x + 1} dx = \int \left(\frac{x^3}{x + 1} - \frac{2}{x + 1}\right) dx$$
$$= \int \left(x^2 - x + 1 - \frac{3}{x + 1}\right) dx$$
$$= \frac{1}{3}x^3 - \frac{1}{2}x^2 + x - 3\ln(x + 1) + C$$

Question 8 (Ireland)

(a) (3 marks)

$$y = xe^{x} + e^{x} = e^{x}(x+1)$$
$$u = e^{x} \quad v = x+1$$
$$u' = e^{x} \quad v' = 1$$
$$\frac{dy}{dx} = e^{x} + e^{x}(x+1)$$
$$= e^{x}(x+2)$$

Stationary points occur when $\frac{dy}{dx} = 0$ $(e^x > 0)$

$$\therefore x = -2 \qquad y = -e^{-2}$$

Test for type of statioary point. Find second derivative:

$$u = e^x \quad v = x + 2$$
$$u' = e^x \quad v' = 1$$
$$\frac{d^2y}{dx^2} = e^x + e^x(x+2) = e^x(x+3)$$

When x = -2,

$$\frac{d^2y}{dx^2} = e^{-2}(-2+3) > 0$$

Hence $(-2, -e^{-2})$ is a local minimum.

(b) (3 marks) Point(s) of inflexion occur when $\frac{d^2y}{dx^2} = 0$: + C $\therefore x = -3$ $y = e^{-3}(-3+1) = -2e^{-3}$ Testing for sign change: • $x = -4, \ \frac{d^2y}{dx^2} = e^{-4}(-4+1) < 0$ • $x = -2, \ \frac{d^2y}{dx^2} > 0$

Hence $(-3, -2e^{-3})$ is a point of inflexion.

- (c) (2 marks)
 - x = 0 $y = e^0(0+1) = 1$
 - y = 0,
- $e^x(x+1) = 0$ $\therefore x = -1$
- (d) (2 marks)

Question 9 (Lam)

(a) (3 marks) Let P(n) be the proposition

$$P(n): 4 \times 2^n + 3^{3n} = 5M$$

where $M \in \mathbb{Z}^+$.

• Base case: P(1):

$$4 \times 2 + 3^3 = 8 + 27 = 35$$

Hence P(1) is true.

• Inductive step: assume P(k) is true for some $k \in \mathbb{Z}^+$, i.e.

$$P(k): 4 \times 2^k + 3^{3k} = 5N$$

 $(N \in \mathbb{Z}^+)$

Examine P(k+1):

$$4 \times 2^{k+1} + 3^{3(k+1)}$$

$$= \left(4 \times 2^k\right) \times 2^1 + 3^{3k} \times 3^3$$

$$= \left(5N - 3^{3k}\right) \times 2 + 3^{3k} \times 3^3$$

$$= 5 \times 2N - 2 \times 3^{3k} + 27 \times 3^{3k}$$

$$= 5 \times 2N + 25 \times 3^{3k}$$

$$= 5 \left(2N + 5 \times 3^{3k}\right) = 5P$$
where $P \in \mathbb{Z}^+$

 $\therefore P(k+1)$ is also true, and P(n) is true by induction.

$$A = 32 = \frac{1}{2}r^{2}\theta$$
$$\therefore r^{2} = \frac{64}{\theta}$$
$$r = \frac{8}{\sqrt{\theta}}$$

ii. (2 marks)

$$P = 2r + r\theta = r(2 + \theta)$$
$$= \left(\frac{8}{\sqrt{\theta}}\right)(2 + \theta)$$

iii. (3 marks)

$$P = 8\theta^{-\frac{1}{2}} \left(2 + \theta\right)$$

Differentiating,

$$\begin{vmatrix} u = 8\theta^{-\frac{1}{2}} & v = 2 + \theta \\ u' = -\frac{1}{2} \times 8\theta^{-\frac{3}{2}} & v' = 1 \\ = -4\theta^{-\frac{3}{2}} \\ \frac{dP}{d\theta} = 8\theta^{-\frac{1}{2}} - 4\theta^{-\frac{3}{2}} (2 + \theta) \\ = 8\theta^{-\frac{1}{2}} - 8\theta^{-\frac{3}{2}} - 4\theta^{-\frac{1}{2}} \\ = 4\theta^{-\frac{1}{2}} - 8\theta^{-\frac{3}{2}} \\ = 4\theta^{-\frac{1}{2}} - 8\theta^{-\frac{3}{2}} \\ = 4\theta^{-\frac{1}{2}} (1 - 2\theta^{-1}) \\ = \frac{4}{\sqrt{\theta}} \left(1 - \frac{2}{\theta} \right) \end{vmatrix}$$

Stationary points occur when $\frac{dP}{d\theta} = 0$:

$$\frac{4}{\sqrt{\theta}} \left(1 - \frac{2}{\theta} \right) = 0$$
$$\left(1 - \frac{2}{\theta} \right) = 0$$
$$\therefore \frac{2}{\theta} = 1$$
$$\theta = 2$$

Check second derivative:

$$\begin{aligned} \frac{d^2 P}{d\theta^2} &= -\frac{1}{2} \times 4\theta^{-\frac{3}{2}} - \left(-\frac{3}{2}\right) \times 8\theta^{-\frac{5}{2}} \\ &= -2\theta^{-\frac{3}{2}} + 12\theta^{-\frac{5}{2}} \Big|_{\theta=2} \\ &= \frac{-2}{\sqrt{2^3}} + \frac{12}{\sqrt{2^5}} \approx 1.414 \\ &> 0 \end{aligned}$$

Hence $\theta = 2$ is a local minimum. *P* is minimised when $\theta = 2$.

$$P = \frac{8}{\sqrt{2}}(2+2) = \frac{32}{\sqrt{2}}$$