EXTENSION 1 MATHEMATICS

2016 HSC Course Assessment Task 2

$16^{\text {th }}$ March 2016

General Instructions

- Working time -1 hours (plus 5 minutes reading time).
- Use a blue or black pen.

Diagrams may be sketched in pencil.

- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.

Section I

- Mark answers on the answer grid provided.

Section II

- Commence each question on a new page.
- Write on both sides of the paper.
- Show all necessary working for every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER: \qquad \# BOOKLETS USED: \qquad
Teacher (please \checkmark) \square Mr Lin
\square Mr Jooma

Mr Ireland
\square Mr Berry \square Ms Ziaziaris \square Ms Lee

Question	$\mathbf{1 - 5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	Total	$\%$
Marks	$\overline{5}$	$\overline{7}$	$\overline{7}$	$\overline{5}$	$\overline{7}$	$\overline{7}$	$\overline{8}$	$\overline{46}$	$\overline{100}$

Section I

5 Marks
Attempt Questions 1 to 5
Mark your answers on the answer sheet provided on page 2.

1. Find the value of $\log _{4} 32$
A) $\quad 1.5$
B) 2
C) $\quad 2.5$
D) 3
2. The solution to $\log _{3}(x-1)=3$ is?
A) 7
B) 10
C) 26
D) 28
3. Evaluate $\int_{e}^{e^{2}} \frac{2}{x} d x$
A) 2
B) 4
C) 6
D) 8
4. The derivative of $y=x \tan 2 x$ is
(A) $\tan 2 x+x \sec ^{2} 2 x$
(B) $\tan 2 x+2 \sec ^{2} 2 x$
(C) $x \tan 2 x+\sec ^{2} 2 x$
(D) $2 \tan 2 x+x \sec ^{2} 2 x$
5. The diagram shows the graph of $y=e^{x}(1+x)$

How many solutions are there to the equation $e^{x}(1+x)=1-x^{2}$?
(A)0
(B) 1
(C) 2
(D) 3

END OF SECTION I

1

2

3

4

5

Section II

Total of $\mathbf{4 1}$ marks
Attempt Questions 6 to 11 .
Write your answers in the writing book provided.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (7 marks) Use a NEW page.

Differentiate the following
(a) $y=e^{\sin x} \quad 1$
(b) $y=\cos (\log x) \quad 2$
(c) $y=e^{x^{2}} e^{x} \quad 2$
(d) $\quad y=\log \left(\frac{x}{x^{2}-1}\right) \quad 2$

Question 7 (7 marks) Use a NEW page.
(a) Find the following integrals
(i) $\int \frac{2 x+3}{x^{2}+3 x+5} d x$
(ii) $\int \frac{x^{2}+2 x-3}{x^{2}} d x$
(b) Evaluate the following integrals
(i) $\int_{0}^{1} x e^{x^{2}+3} d x$
(ii) $\int_{0}^{1} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$

Question 8 (5 marks) Use a NEW page.
(a) The area of a sector of a circle of radius 6 cm is $50 \mathrm{~cm}^{2}$. Find the length of the arc.
(b) Find the equation of the tangent to the curve $y=2 \sin \left(2 x+\frac{\pi}{3}\right)$ at the point where $x=\frac{\pi}{2}$.

Question 9 (7 marks) Use a NEW page.
(a) Find the volume of the solid generated when the curve $y=\tan x$, the x axis and $x=\frac{\pi}{3}$ is rotated about the x axis.
(b) Let $f(x)=2 \cos 2 x$
(i) Sketch $f(x)$ for $0 \leq x \leq 2 \pi$
(ii) Hence, find all values of x such that $f(x) \leq 1$, for $0 \leq x \leq 2 \pi$

Question 10 (7 marks) Use a NEW page.
(a) (i) Show that $\frac{1}{2^{2}-1}+\frac{1}{3^{2}-1}+\cdots+\frac{1}{p^{2}-1}=\frac{p(3 p+5)}{4 p(p+1)}$ by using the principle of mathematical induction
(ii) Hence find

$$
\lim _{x \rightarrow \infty} \sum_{t=2}^{x}\left(\frac{1}{t^{2}-1}\right)
$$

(b) If $(a x)^{\log a}=(b x)^{\log b}$, prove that $x=\frac{1}{a b}$

Question 11 (8 marks) Use a NEW Page.
Given the function $y=x^{x}$ for $x>0$
(a) What is the value of $\lim _{x \rightarrow 0} x^{x}$?
(b) By using $x=e^{\log x}$ or otherwise, show that $\frac{d y}{d x}=x^{x}(1+\log x)$
(c) Find the turning point(s) and determine its nature
(d) Using the information from above, sketch the curve of $y=x^{x}$

BLANK PAGE

BLANK PAGE

Multiple Choice
$1 . C \quad 2 . D \quad 3 \cdot A \quad 4 . B \quad 5 . C$

Quertion 6
a) $y=e^{\sin x}$

$$
\frac{d y}{d x}=\cos x \cdot e^{\sin x}
$$

b) $y=\cos (\log x)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{x} \cdot-\sin (\log x) \\
& =\frac{-\sin (\log x)}{x}
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =e^{x^{2}} \cdot e^{x} \\
& =e^{x^{2}+x} \\
\frac{d y}{d x} & =(2 x+1) e^{x^{2}+x}
\end{aligned}
$$

(d)

$$
\begin{aligned}
y & =\log \frac{x}{x^{2}-1} \\
& =\log x-\log \left(x^{2}-1\right) \\
\frac{d y}{d x} & =\frac{1}{x}-\frac{2 x}{x^{2}-1}
\end{aligned}
$$

Question 7
a) (i) $\ln \left(x^{2}+3 x+5\right)+c$
(ii) $\int \frac{x^{2}+2 x-3}{x^{2}} d x$

$$
\begin{aligned}
& =\int 1-\frac{2}{x}-\frac{3}{x^{2}} d x \\
& =x-2 \ln |x|+\frac{3}{x}+c
\end{aligned}
$$

b)

$$
\text { (i) } \begin{aligned}
& \int_{0}^{1} x e^{x^{2}+3} d x \\
& =\frac{1}{2}\left[e^{x^{2}+3}\right]_{0}^{1} \\
& =\frac{1}{2} e^{3}[e-1]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{1} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x \\
= & \left.\ln \left(e^{x}+e^{-x}\right)\right]_{0}^{1} \\
= & \ln \left(e+\frac{1}{e}\right)-\ln 2 \\
= & \ln \left(\frac{e^{2}+1}{2 z}\right)
\end{aligned}
$$

Quection 8
a.) $A=\frac{1}{2} r^{2} \theta$

$$
50=\frac{1}{2} \cdot 36 \cdot \theta
$$

$$
\theta=\frac{25}{9}
$$

$$
e=r \theta
$$

$$
=6 \times \frac{25}{9}
$$

$$
\begin{aligned}
& =\frac{150}{9} \mathrm{~cm} \\
& =\frac{50}{3} \mathrm{~cm}
\end{aligned}
$$

b) $\quad y=\sin \left(x+\frac{\pi}{3}\right)$

$$
\frac{d y}{d x}=\cos \left(x+\frac{\pi}{3}\right)
$$

when $x=\frac{\pi}{2} \quad y=\frac{1}{2}$

$$
\begin{aligned}
& m=\cos \left(\frac{5 \pi}{6}\right) \\
& =-\frac{\sqrt{3}}{2} \\
& y-\frac{1}{2}=-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{2}\right) \\
& -2 y+1=\sqrt{3} x+\frac{\sqrt{3}}{2} \\
& 2 \sqrt{3} x+4 y+(\sqrt{3}-2)=0
\end{aligned}
$$

Question 9
a)

b) $\quad(a x)^{\log a}=(b x)^{\log b}$

$$
\begin{aligned}
& \log (a x)^{\log a}=\log (\operatorname{lox})^{\log b} \\
& \log a \cdot \log (a x)=\log b-\log (b x) \\
& \log a(\log a+\log x)=\log b(\log b+\log x) \\
& (\log a)^{2}+\log a \cdot \log x=(\log b)^{2}+\log \log \log x
\end{aligned}
$$

$$
(\log a)^{2}-(\log b)^{2}=(\log b-\log a) \cdot \log x
$$

$$
(\log a-\log b)(\log a+\log b)=\log x-(\log b-\log a)
$$

$$
\log (a b)=-\log x
$$

$$
\log x=\log \left(\frac{1}{a b}\right)
$$

$$
x=\frac{1}{a b}
$$

Question 10

Prove true for the base case $p=2$

$$
\text { LHS }=\frac{1}{3} \quad R H S=\frac{(2-1)(6+2)}{8(z+1)}
$$

true for $p=2$
Assume true for $p=k$ where $k \geqslant 2, k \in \mathbb{Z}$

$$
\begin{equation*}
\text { ie. } \frac{1}{2^{2}-1}+\frac{1}{3^{2}-1}++\frac{1}{k^{2}-1}=\frac{(k-1)(3 k+2)}{4 k(k+1)} \tag{4}
\end{equation*}
$$

Required to prove true for $p=k+1$

$$
\text { ie e } \frac{1}{2^{2}-1}+\frac{1}{3^{2}-1}+\frac{1}{k^{2}-1}+\frac{1}{(k+1)^{2}-1}=\frac{k(3 k+5)}{4(k+1)(k+4)}
$$

Now $L H S=\frac{(k-1)(3 k+2)}{4 k(k+1)}+\frac{1}{(k+1)^{2}-1}$ from the induction hypothesis

$$
\begin{aligned}
& =\frac{(k+1)(3 k+2)}{4 k(k+1)}+\frac{1}{k(k+2)} \\
& =\frac{(k-1)(3 k+2)(k+2)+4(k+1)}{4 k(k+1)(k+2)} \\
& =\frac{3 k^{3}+5 k^{2}}{4 k(k+1)(k+2)} \\
& =\frac{k(3 k+5)}{4(k+1)(k+2)} \\
& =\text { RHS }
\end{aligned}
$$

- true for $p=k+1$
- since ts, true for $p=2$ and $p=6+1$, then t is toe tor all integers $p \geqslant 2$ by the principle of mathematical induction.

Question 11
a) $\lim _{x \rightarrow 0} x^{x}=1$
b) $y=x^{x}=e^{x \log _{2} x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[x \log _{e} x\right) \cdot e^{x \log _{e} x} \\
& =\left(x \cdot \frac{1}{x}+(\log x) \cdot e^{x \log _{e} x}\right. \\
& =\left(1+\log _{e} x\right) \cdot x^{x}
\end{aligned}
$$

c) staticinam point occurs when

$$
\frac{d y}{d x}=0 \Rightarrow(1+\log x) x^{x}=0
$$

sire x^{x} to tor all values.

$$
\begin{aligned}
1+\log x & =0 \\
x & =\frac{1}{e} \approx 0.368 \\
y & =\left(\frac{1}{e}\right)^{\frac{1}{e}} \approx 0.692
\end{aligned}
$$

x	0.3	$\frac{1}{e}$	0.4
$\frac{d y}{d x}$	-0.14	0	0.06

d)

