NORTH SYDNEY GIRLS HIGH SCHOOL YEAR 12 - TERM 1 ASSESSMENT 2006

MATHEMATICS EXTENSION 1

TIME ALLOWED: 60 minutes
Plus 2 minutes reading time

INSTRUCTIONS:

- Start each question on a new page
- Hand each question in separately, including a sheet for non-attempts
- Show all necessary working

Question One (9 Marks)

(a) What is the exact value of $\cos \left(\frac{\pi}{6}\right)$?
(b) Differentiate $\cos \left(x^{2}+1\right)$
(c) Find $\int \sec ^{2} 5 x d x$
(d) (i) Sketch the curve $y=4 \sin 2 x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(ii) On your diagram for part (i), sketch the line $y=\frac{1}{3} x$, and shade the region represented by $\quad \int_{0}^{\frac{\pi}{4}}\left(4 \sin 2 x-\frac{1}{3} x\right) d x$
(iii) Find the exact value of the integral in part (ii).

Question Two (8 Marks)

(a) A sphere is being heated so that its surface area is increasing at a constant rate of $25 \mathrm{~cm}^{2}$ per second. Find the rate of increase of the volume when the radius is 5 cm .
(b) One hundred grams of cane sugar in water are being converted into dextrose at a rate which is proportional to the amount unconverted at any time,
i.e. if M grams are converted in t minutes, then $\frac{d M}{d t}=k(100-M)$, where k is a constant.
(i) Show that $M=100+A e^{-k t}$, where A is a constant which satisfies the above equation.
(ii) Find the value of A (initially no cane sugar has been converted to dextrose)
(iii) If 40 grams are converted in the first 15 minutes, 2 find how many grams are converted in the first 30 minutes.

Question Three (10 Marks)
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{4}\right)}{3 x}$
(b) (i) Express $\cos x-\sin x$ in the form $R \cos (x+\alpha)$, where $R>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$
(ii) Hence, or otherwise, solve the equation $\cos x-\sin x=\frac{\sqrt{2}}{2}$ for $0 \leq x \leq 2 \pi$
(c) Prove $\frac{\tan A}{\tan 2 A-\tan A} \equiv \cos 2 A$

Question Four (10 Marks)
(a) Find the exact value of $\sin 105^{\circ}$
(b) Find the volume of the solid generated when $y=\sin 3 x$ is rotated around the x axis from $x=0$ to $x=\frac{\pi}{3}$.
(c) Differentiate $x \sin 3 x$ with respect to x and hence evaluate $\int_{0}^{\frac{\pi}{2}} x \cos 3 x d x$

Question Five (9 Marks)
(a) If $y=\tan 2 x$, find the equation of the tangent to the curve at $x=\frac{\pi}{6}$
(b) Find the acute angle between the lines $4 x+y+5=0$ and $6 x+3 y-7=0$ correct to the nearest minute.
(c) Solve the equation $\sin 2 \theta+\cos \theta=0$ for $0 \leq \theta \leq 2 \pi$

Question Six (10 Marks)
(a) Solve $5 \sin \theta-2 \cos \theta=2$ for $0^{\circ} \leq \theta \leq 360^{\circ}$, using the result that $\tan \frac{\theta}{2}=t$
(b) A particle moves along a straight line so that its displacement, x metres, from a fixed point O is given by $x=1-3 \cos \left(\frac{t}{2}\right)$, where t is measured in seconds.
(i) Sketch the graph of x as a function of t for $0 \leq t \leq 4 \pi$
(ii) Hence, or otherwise, find when and where the particle first comes to rest after $t=0$
(iii) Find a time when the particle reaches its maximum speed.

What is this speed?

End of paper

Solutions
Question one
Question two
(a) $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
(a) $\frac{d A}{d t}=25 \mathrm{~cm}^{2} / \mathrm{s}$
(b) $\frac{d}{d x}\left(\cos \left(x^{2}+1\right)\right)$

$$
=-2 x \sin \left(x^{2}+1\right)
$$

$$
\begin{aligned}
A & =4 \pi r^{2} \\
\frac{d A}{d r} & =8 \pi r
\end{aligned}
$$

(c) $\int \sec ^{2} 5 x d x=\frac{1}{5} \tan 5 x+c$

$$
\frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t}
$$

(d) $(\mathrm{i})+(\mathrm{ii})$

$$
\begin{aligned}
25 & =8 \pi r \cdot \frac{d r}{d t} \\
\frac{d r}{d t} & =\frac{25}{8 \pi r} \\
r=5, \quad \frac{d r}{d t} & =\frac{25}{8 \pi \times 5} \\
& =\frac{5}{8 \pi}
\end{aligned}
$$

(iii) $\int_{0}^{\frac{\pi}{4}} 4 \sin 2 x-\frac{1}{3} x d x$

$$
V=\frac{4}{3} \pi r^{3}
$$

$=\left[-2 \cos 2 x-\frac{1}{3} \cdot \frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{4}}$

$$
\frac{d V}{d r}=4 \pi r^{2}
$$

$$
\frac{d v}{d t}=\frac{d V}{d r} \frac{d r}{d t}
$$

$$
=\left(-2 \cos 2\left(\frac{\pi}{4}\right)-\frac{1}{3} \cdot \frac{\left(\frac{\pi}{4}\right)^{2}}{2}\right)^{2}
$$

$$
=4 \pi r^{2} \frac{d r}{d t}
$$

$$
=\left(-2 \cos \frac{\pi}{2}-\frac{\frac{\pi^{2}}{6}}{\pi^{2}}\right)-(-2-0)
$$

$$
r=5
$$

$$
=\left(0-\frac{\pi^{2}}{96}\right)-(-2)
$$

$$
=2-\frac{\pi^{2}}{96}
$$

Volume is mereasing by $\frac{125}{2} \mathrm{~cm}^{3} / s$

Question two
(b) (i)

$$
\begin{aligned}
& \text { stion two } \\
& M= 100+A e^{-k t} \\
& \Rightarrow A e^{-k t}=M-100 \\
& \begin{aligned}
\frac{d M}{d t}= & -k \cdot A e^{-k t} \\
= & -k(M-100) \\
= & k(100-M)
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
t=0, M=0 \\
M=100+A e^{0} \\
A=-100
\end{gathered}
$$

(iii)

$$
\begin{aligned}
& M=100-100 e^{-k t} \\
& t=15, M=40 \\
& 40=100-100 e^{-k \times 15} \\
& -60=-100 e^{-k \times 15} \\
& \frac{3}{5}=e^{-k \times 15} \\
& \log _{e} \frac{3}{5}=-k \times 15 \\
& k=-\frac{1}{15} \log _{e} \frac{3}{5} \\
& t=30, M=? \\
& M=100-100 e^{-k \times 30} \\
& =64
\end{aligned}
$$

Question three
a)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin \frac{x}{4}}{\frac{x}{4}} \times \frac{\frac{1}{4}}{3} \\
= & 1 \times \frac{1}{12} \\
= & \frac{1}{12}
\end{aligned}
$$

Question three
(b) $\cos x-\sin x \equiv R \cos (x+\alpha)$

$$
\begin{aligned}
R \cos (x+\alpha) & =R(\cos x \cos \alpha-\sin x \sin \alpha) \\
& =R \cos x \cos \alpha-R \sin x \sin \alpha
\end{aligned}
$$

$$
\begin{equation*}
1=R \cos \alpha \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
-1=-R \sin \alpha \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\frac{(2)}{(1)} \quad \frac{R \sin \alpha}{R \cos \alpha} & =\frac{1}{1} \\
\tan \alpha & =1 \\
\alpha & =\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
&(1)^{2}+(2)^{2} \\
& R^{2} \cos ^{2} \alpha+R^{2} \sin ^{2} \alpha=1^{2}+1^{2} \\
& R^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=2 \\
& R^{2}=2 \\
& R= \pm \sqrt{2}, R>0 \\
& R=\sqrt{2}
\end{aligned}
$$

$$
\therefore \cos x-\sin x=\sqrt{2} \cos \left(x+\frac{\pi}{4}\right)
$$

(ii)

$$
\begin{aligned}
\sqrt{2} \cos \left(x+\frac{\pi}{4}\right) & =\frac{\sqrt{2}}{2} \\
\cos \left(x+\frac{\pi}{4}\right) & =\frac{1}{2} \\
x+\frac{\pi}{4} & =\frac{\pi}{3}, \frac{5 \pi}{3} \\
x & =\frac{\pi}{12}, \frac{17 \pi}{12}
\end{aligned}
$$

Question three
(c)

$$
\begin{aligned}
& L+1 S=\frac{\tan A}{\tan 2 A-\tan A} . \\
& =\frac{\tan A}{\frac{2 \tan A}{1-\tan ^{2} A}-\tan A} \text {. } \\
& =\frac{\tan A}{\frac{2 \tan A-\tan A\left(1-\tan ^{2} A\right)}{1-\tan ^{2} A}} \\
& =\frac{\tan A \cdot}{\frac{2 \tan A-\tan A+\tan ^{2} A}{1-\tan ^{2} A}} \\
& =\frac{\tan A .}{\frac{\tan A+\tan A}{1-\tan -A .}} . \\
& =\tan A \times\left(\frac{1-\tan ^{2} A}{\tan A\left(1+\tan ^{2} A\right)}\right) \\
& =\frac{1-\tan ^{2} A}{1+\tan ^{2} A} \\
& -\frac{1-\frac{\sin ^{2}-A}{\cos ^{2} A}}{1+\frac{\sin ^{2} A}{\cos ^{2} A}} \\
& =\frac{\frac{\cos ^{2} A-\sin ^{2} A}{\cos ^{2} A}}{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}} \\
& =\frac{\cos ^{2} A-\sin ^{2} A}{1} \\
& =\cos 2 \mathrm{~A} \\
& =R+5
\end{aligned}
$$

Question four
(a)

$$
\begin{aligned}
\sin 105^{\circ} & =\sin (60+45)^{\circ} \\
& =\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ} \\
& =\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2} \times \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

(b)

$$
\begin{array}{rlr}
V=\pi \int_{0}^{\frac{\pi}{3}}(\sin 3 x)^{2} d x & \cos 2 \theta=1-2 \sin ^{2} \theta \\
& =\pi \int_{0}^{\frac{\pi}{3}} \frac{1}{2}(1-\cos 6 x) d x & \operatorname{let} \theta=3 x \cdot \\
& =\frac{\pi}{2}\left[x-\frac{1}{6} \sin 6 x\right]_{0}^{\frac{\pi}{3}} & \sin ^{2} 3 x=1-2 \sin ^{2} 3 x \\
& =\frac{\pi}{2}(1-\cos 6 x) \\
& =\frac{\pi}{2}\left(\left(\frac{\pi}{3}-\frac{1}{6}-\sin 2 \pi\right)-\left(0-\frac{1}{6} \sin 0\right)\right) \\
& =\frac{\pi^{2}}{6} &
\end{array}
$$

Volume is $\frac{\pi^{2}}{6}$ unts ${ }^{2}$
(c)

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
& \frac{d}{d x}(x \sin 3 x) \\
&=x \times 3 \cos 3 x+\sin 3 x \times 1 \\
&=3 x \cos 3 x+\sin 3 x \\
& \int_{0}^{\frac{\pi}{2}} 3 x \cos 3 x d x=\int_{0}^{\frac{\pi}{2}} \frac{d}{d x}(x \sin 3 x)-\sin 3 x d x \\
& \int_{0}^{\frac{\pi}{2}} x \cos 3 x d x=\frac{1}{3}\left(x \sin 3 x+\frac{1}{3} \cos 3 x\right)_{0}^{\frac{\pi}{2}} \\
&=\frac{1}{3}\left(\left(\frac{\pi}{2} \sin \frac{3 \pi}{2}+\frac{1}{3} \cos \frac{3 \pi}{2}\right)-\left(0+\frac{1}{3} \cos 0\right)\right) \\
&=\frac{1}{3}\left(\left(-\frac{\pi}{2}+0\right)-\left(\frac{1}{3}\right)\right) \\
&=-\frac{\pi}{6}-\frac{1}{9}
\end{aligned}
\end{aligned}
$$

Question five
(a)

$$
\begin{aligned}
& \text { (a) } \left.\begin{array}{rl}
y & =\tan \\
\frac{d y}{d x} & =2 \sec ^{2} 2 x \\
x=\frac{\pi}{6}, \quad \begin{array}{rl}
d x & =2 \sec ^{2} \frac{\pi}{3} \\
& =2 \times \frac{1}{\left(\frac{1}{2}\right)^{2}} \\
& =8 \\
y & -\sqrt{3}=8\left(x-\frac{\pi}{6}\right) \\
y & -\sqrt{3}=8 x-\frac{4 \pi}{3}
\end{array} \quad \begin{array}{rl}
& =\tan \frac{\pi}{3} \\
\end{array}
\end{array} . \begin{array}{l}
y
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
y=-4 x-5 & \quad 3 y=-6 x+7 \\
m_{1}=-4 & m_{2}=-2 \\
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{-4-2}{1+(-4)(-2)}\right| \\
\tan \theta & =\left|\frac{-2}{9}\right| \\
\theta & =12^{\circ} 32^{\prime}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \sin 2 \theta+\cos \theta=0 \\
& 2 \sin \theta \cos \theta+\cos \theta=0 . \\
& \begin{array}{rl}
\cos \theta(2 \sin \theta+1)=0 \\
\cos \theta=0 & 2 \sin \theta=-1 \\
\theta=\frac{\pi}{2}, \frac{3 \pi}{2} & \sin \theta=-1 / 2 \\
\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6} .
\end{array}
\end{aligned}
$$

Question suse
(a)

$$
\begin{aligned}
5 \sin \theta-2 \cos \theta & =2 \\
5\left(\frac{2 t}{1+t^{2}}\right)-2\left(\frac{1-t^{2}}{1+t^{2}}\right) & =2 \\
5(2 t)-2\left(1-t^{2}\right) & =2\left(1+t^{2}\right) \\
10 t-2+2 t^{2} & =2+2 t^{2} \\
10 t & =4 \\
t & =2 / 5 \\
\tan \frac{\theta}{2} & =2 / 5 . \\
\left(\frac{\theta}{2}\right. & \left.=21^{\circ} 48^{\prime}\right) \\
\theta & =43^{\circ} 36^{\prime}
\end{aligned}
$$

Check 180°

$$
\begin{aligned}
5 \sin 180^{\circ}-2 \cos 180^{\circ} & =0-2 \times-1 \\
& =2 \\
& =\text { RHO. } \\
\therefore \text { Sots } \theta=43^{\circ} 36^{\prime}, & 180^{\circ}
\end{aligned}
$$

(b)

(ii) $\dot{x}=0, t=2 \pi s \quad x=4 m$
(iii) Max speed $t=\pi_{5}$ (or 3π)

$$
\dot{x}=3 / 2 \sin \frac{t}{2}=3 / 2 \sin \frac{\pi}{2}=3 / 2
$$

\therefore max speed $=3 / 2 \mathrm{~m} / \mathrm{s}$

