

NORTH SYDNEY GIRLS HIGH SCHOOL YEAR 12 – TERM 1 ASSESSMENT 2006

MATHEMATICS EXTENSION 1

TIME ALLOWED: 60 minutes Plus 2 minutes reading time

INSTRUCTIONS:

- Start each question on a new page
- Hand each question in separately, including a sheet for non-attempts
- Show all necessary working

This task is worth 20% of the HSC Assessment Mark

<u>Ouestion One</u> (9 Marks)

(a)	What	is the exact value of $\cos\left(\frac{\pi}{6}\right)$?	1			
(b)	Differentiate $\cos(x^2 + 1)$					
(c)	Find	$\int \sec^2 5x \ dx$	1			
(d)	(i)	Sketch the curve $y = 4\sin 2x$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$	2			
	(ii)	On your diagram for part (i), sketch the line $y = \frac{1}{3}x$, and shade				
		the region represented by $\int_{0}^{\frac{\pi}{4}} \left(4\sin 2x - \frac{1}{3}x\right) dx$	2			
	(iii)	Find the exact value of the integral in part (ii).	2			
<u>Ouestion Two</u> (8 Marks)						

- (a) A sphere is being heated so that its surface area is increasing at a constant rate of 25 cm^2 per second. Find the rate of increase of the volume when the radius is 5 cm.
- (b) One hundred grams of cane sugar in water are being converted into dextrose at a rate which is proportional to the amount unconverted at any time,

i.e. if *M* grams are converted in *t* minutes, then $\frac{dM}{dt} = k (100 - M)$,

where k is a constant.

(i)	Show that $M = 100 + A e^{-kt}$, where A is a constant which	2
	satisfies the above equation.	
(ii)	Find the value of A (initially no cane sugar has been	1

- (ii) Find the value of A (initially no cane sugar has been converted to dextrose)
- (iii) If 40 grams are converted in the first 15 minutes, find how many grams are converted in the first 30 minutes.

Question Three (10 Marks)

(a) Evaluate
$$\lim_{x \to 0} \frac{\sin\left(\frac{x}{4}\right)}{3x}$$

(b) (i) Express $\cos x - \sin x$ in the form $R \cos (x + \alpha)$, where R > 0 and $0 \le \alpha \le \frac{\pi}{2}$ 2 (ii) Hence, or otherwise, solve the equation $\cos x - \sin x = \frac{\sqrt{2}}{2}$ for $0 \le x \le 2\pi$ 2

(c) Prove
$$\frac{\tan A}{\tan 2A - \tan A} \equiv \cos 2A$$
 4

Marks

3

2

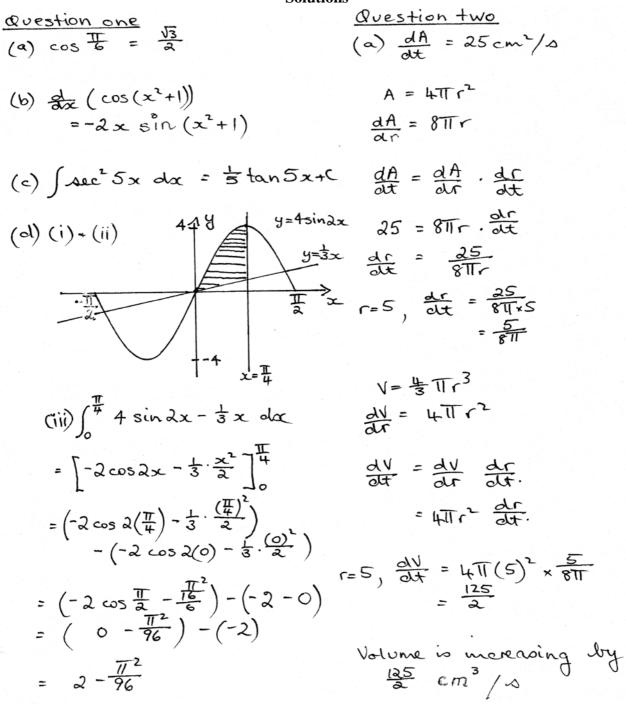
<u>Question Four</u> (10 Marks)

V G G G				
(a)	Find the exact value of sin 105°	2		
(b)	Find the volume of the solid generated when $y = \sin 3x$ is rotated around the x axis from $x = 0$ to $x = \frac{\pi}{3}$.	4		
(c)	Differentiate $x \sin 3x$ with respect to x and hence evaluate $\int_{0}^{\frac{\pi}{2}} x \cos 3x dx$	4		
Question Five (9 Marks)				
(a)	If $y = \tan 2x$, find the equation of the tangent to the curve at $x = \frac{\pi}{6}$	3		
(b)	Find the acute angle between the lines $4x + y + 5 = 0$ and $6x + 3y - 7 = 0$ correct to the nearest minute.	3		
(c)	Solve the equation $\sin 2\theta + \cos \theta = 0$ for $0 \le \theta \le 2\pi$	3		
<u>Question Six</u> (10 Marks)				
(a)	Solve $5\sin\theta - 2\cos\theta = 2$ for $0^\circ \le \theta \le 360^\circ$, using the result that $\tan\frac{\theta}{2} = t$	4		
(b)	A particle moves along a straight line so that its displacement, x metres,			
	from a fixed point <i>O</i> is given by $x = 1 - 3\cos\left(\frac{t}{2}\right)$, where <i>t</i> is measured in seconds.			
	(i) Sketch the graph of x as a function of t for $0 \le t \le 4\pi$	2		

- (ii) Hence, or otherwise, find when and where the particle first comes 2 to rest after t = 0
- (iii) Find a time when the particle reaches its maximum speed. 2 What is this speed?

End of paper

Solutions



$$\frac{Q_{\text{vestion two}}}{(b)(i) \quad M = 100 + A e^{-kt}}$$

$$\Rightarrow A e^{-kt} = M - 100$$

$$\frac{Q_{\text{vestion three}}}{(b)(i) \quad M = 100 + A e^{-kt}}$$

$$\frac{dM}{dt} = -k \cdot A e^{-kt}$$

$$\frac{dM}{dt} = -k \cdot A e^{-k}$$

$$\frac{dM}{dt} =$$

(2)

511 31711 12

 $\frac{1}{1}$

Question three
(c) LHS =
$$\frac{\tan A}{\tan 2A - \tan A}$$

= $\frac{\tan A}{2\tan A - \tan A}$
= $\frac{\tan A}{2\tan A - \tan A}$
= $\frac{\tan A}{2\tan A - \tan A}$
= $\frac{\tan A}{1 - \tan^2 A}$
= $\frac{1 - \tan^2 A}{1 - \tan^2 A}$
= $\frac{1 - \tan^2 A}{1 + \tan^2 A}$
= $\frac{1 - \tan^2 A}{1 + \tan^2 A}$
= $\frac{1 - \frac{\sin^2 A}{1 + \tan^2 A}}{1 + \frac{\cos^2 A}{1 - \frac{\cos^2 A}{1 - \frac{\sin^2 A}{1 - \frac{\cos^2 A}{1 - \frac{1 - \cos^2 A}{1 - \frac{$

Question four
(a) aim 105° = aim (60+45)°
= aim 60° cos45° + cos60° sim 60°
=
$$\frac{\sqrt{12}}{\sqrt{12}} + \frac{1}{2} \times \frac{1}{\sqrt{12}}$$

= $\frac{\sqrt{12}}{\sqrt{12}} + \frac{1}{2} \times \frac{1}{\sqrt{12}}$
= $\frac{\sqrt{12}+\sqrt{12}}{4}$
(b) $V = \pi \int_{0}^{\frac{1}{3}} (aim 3x)^{2} dx$ cos $20 = 1 - 20in^{2}0$
 $lat = 3x$.
 $= \pi \int_{0}^{\frac{1}{3}} \frac{1}{4} (1 - \cos 6x) dx$ cos $6x = 1 - 20in^{2}0$
 $lat = 3x$.
 $= \pi \int_{0}^{\frac{1}{3}} \frac{1}{4} (1 - \cos 6x) dx$ cos $6x = 1 - 20in^{2}0$
 $lat = 3x$.
 $= \pi \int_{0}^{\frac{1}{3}} \frac{1}{4} (1 - \cos 6x) dx$ cos $6x = 1 - 20in^{2}0$
 $lat = 3x$.
 $= \pi \left[x - t \sin 6x \right]_{0}^{\frac{1}{3}}$ aim $3x = \frac{1}{2} (1 - \cos 6x)$
 $= \frac{\pi}{4} \left((\frac{\pi}{3} - 6) - (0) \right)$
 $= \frac{\pi}{4} \left((\frac{\pi}{3} - 6) - (0) \right)$
 $= \frac{\pi}{4} \left((\frac{\pi}{3} - 0) - (0) \right)$
 $= \frac{\pi}{4} \left((\frac{\pi}{3} - 0) - (0) \right)$
 $= \frac{\pi}{4} \left(x \sin 3x \right)$
 $\int_{0}^{\frac{\pi}{3}} x \cos 3x + \sin 3x$
 $\int_{0}^{\frac{\pi}{3}} x \cos 3x + \sin 3x$
 $\int_{0}^{\frac{\pi}{3}} x \cos 3x + \sin 3x$
 $\int_{0}^{\frac{\pi}{3}} x \cos 3x dx = \int_{0}^{\frac{\pi}{3}} \frac{dx}{dx} (x \sin 3x) - \sin 3x dx$.
 $\int_{0}^{\frac{\pi}{3}} x \cos 3x dx = \frac{1}{3} \left(x \sin 3x + \frac{1}{3} \cos 3x \right)^{\frac{\pi}{3}}$
 $= \frac{1}{3} \left((-\frac{\pi}{3} + 0) - (\frac{1}{3}) \right)^{\frac{\pi}{3}} - (0 + \frac{1}{3} \cos 0) \right)$

Question five
(a)
$$y = \tan 2x$$
.
 $a_{12} = 2 \sec^{2} 2x$.
 $x = \overline{T}, \quad a_{22} = 2 \sec^{2} \overline{T}, \quad y = \tan \overline{T}, \quad z = \sqrt{3}$
 $= 2 \times \frac{1}{(\frac{1}{2})^{2}}$
 $= 8$
 $y = \sqrt{3} = 8 (x - \overline{T})$
 $g = \sqrt{3} = 8 x - \frac{4\pi}{3}$.
(b) $y = -4x - 5$ $3y = -6x + 7$
 $m_{1} = -4$ $m_{2} = -2$
 $\tan \theta = \left|\frac{m_{1} - m_{2}}{1 + m_{1}m_{2}}\right|$
 $= \left|\frac{-4 - -2}{1 + (-4)(-2)}\right|$
 $\tan \theta = \left|\frac{-2}{9}\right|$
 $\theta = 12^{\circ}32^{\prime}$
(c) $\sin 2\theta + \cos \theta = 0$
 $\cos \theta (2\sin \theta + 1) = 0$

$$cos \Theta = 0$$

$$e = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$e = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$e = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}$$

Check 180°
(a)
$$5 x = 0$$
 $0 = 2 \cos 0 = 2$
 $5 \left(\frac{2t}{1+t^{-1}}\right) = 2 \left(1-t^{-1}\right) = 2 \left(1+t^{-2}\right)$
 $10t = 2 + 2t^{-1} = 2 + 2t^{-1}$
 $10t = 2 + 2t^{-1} = 2 + 2t^{-1}$
 $10t = 2 + 2t^{-1} = 2 + 2t^{-1}$
 $10t = 4$
 $t = \frac{7}{5}$.
 $t = \frac{9}{2} = \frac{7}{5}$.
 $(\frac{9}{2} = 21^{\circ} 48^{\circ})$
 $0 = 43^{\circ} 36^{\circ}$
Check 180°
 $5 x = 180^{\circ} - 2 \cos 180^{\circ} = 0 - 2x - 1$
 $= 2$
 $= RHS$.
 $\therefore Soth 0 = 43^{\circ} 36^{\circ}, 180^{\circ}$
(b) $4 \frac{1}{10}$
 $\frac{1}{10}$
 $\frac{1}{10}$

.